Changgui ZHANG
Articles à télécharger
- q-series et thèmes de Ramanujuan
Zhang, Changgui
Only four Euler infinity products are theta-type functions.
Zhang, Changgui
Appell-Lerch series viewed as mock theta functions.
Zhang, Changgui
On the mock-theta behavior of Appell-Lerch series. C. R. Math. Acad. Sci. Paris 353 (2015), no. 12, 1067-1073.
Zhang, Changgui
A modular type formula for Euler infinite product $(1-x)(1-xq)(1-xq^2)(1-xq^3)...$
Zhang, Changgui
On the Modular Behaviour of the Infinite Product $(1-x)(1-xq)(1-xq^2)(1-xq^3)\cdots$.
C. R. Math. Acad. Sci. Paris 349 (2011), 725-730.
Ghanmi, Allal; Hantout, Youssef; Intissar, Ahmed; Zhang, Changgui; Zinoun, Azzouz
Identities of arithmetic type between values of the theta function associated to a lattice in $R^d$ and its derivatives.
Ramanujan J. 16 (2008), no. 3, 271-284.
Ismail, Mourad E. H.; Zhang, Changgui
Zeros of entire functions and a problem of Ramanujan. Adv. Math. 209 (2007), no. 1, 363-380.
Zhang, Changgui
Remarks on some basic hypergeometric series.
Theory and applications of special functions, 479-491, Dev. Math., 13, Springer, New York, 2005.
Zhang, Changgui
Sur les fonctions $q$-Bessel de Jackson. [On Jackson's $q$-Bessel functions]
J. Approx. Theory 122 (2003), no. 2, 208-223.
Zhang, Changgui
Sur la fonction $q$-gamma de Jackson.
[On Jackson's $q$-gamma function] Aequationes Math. 62 (2001), no. 1-2, 60-78.
- Equations aux q-différences: Cas linéaires
Ramis, Jean-Pierre;Sauloy, Jacques; Zhang, Changgui
Local analytic classification of $q$-difference equations.
Astérisque No. 355 (2013), vi+151 pp.
Di Vizio, Lucia; Zhang, Changgui
On $q$-summation and confluence. Ann. Inst. Fourier (Grenoble) 59 (2009), no. 1, 347-392.
Zhang, Changgui
Solutions asymptotiques et méromorphes d'équations aux $q$-différences. [Asymptotic and meromorphic solutions of $q$-difference equations]
Théories asymptotiques et équations de Painlevé, 341-356, Sémin. Congr., 14, Soc. Math. France, Paris, 2006.
Di Vizio, L.; Ramis, J.-P.; Sauloy, J.; Zhang, C.
équations aux $q$-différences.
Gaz. Math. No. 96 (2003), 20-49.
Zhang, Changgui
Une sommation discrète pour des équations aux $q$-différences linéaires et à coefficients analytiques: théorie générale et exemples.
[Discrete summation for linear $q$-difference equations with analytic coefficients: general theory and examples]
Differential equations and the Stokes phenomenon, 309-329, World Sci. Publ., River Edge, NJ, 2002.
- Equations aux q-différences: Cas non linéaires
Li, Xianyi; Zhang, Changgui
Existence of analytic solutions to analytic nonlinear $q$-difference equations.
J. Math. Anal. Appl. 375, No. 2, 412-417 (2011).
Zhang, Changgui
Sur un théorème du type de Maillet-Malgrange pour les équations $q$-différences-différentielles.
[A Maillet-Malgrange theorem for $q$-difference-differential equations] Asymptot. Anal. 17 (1998), no. 4, 309-314
- Equations différentielles aux q-différences
Zhang, Changgui
Analytic continuation of solutions of the pantograph equation by means of $θ$-modular formula.
Zhang, Changgui
La série entière $1+\frac z{\Gamma(1+i)}+\frac{z^2}{\Gamma(1+2i)}+\frac{z^3}{\Gamma(1+3i)}+...$ possède une frontière naturelle !
[The Power Series $1+\frac z{\Gamma(1+i)}+\frac{z^2}{\Gamma(1+2i)}+\frac{z^3}{\Gamma(1+3i)}+...$ has a Natural Boundary]
C. R. Math. Acad. Sci. Paris 349 (2011), 519-522.
- Equations différentielles et aux dérivées partielles: sommabilité et fonctions spéciales
Luo, Zhuangchu; Chen, Hua; Zhang, Changgui
On a family of symmetric hypergeometric functions of several variables and their Euler type integral representation.
Adv. Math. 252 (2014), 652-683.
Luo, Zhuangchu; Chen, Hua; Zhang, Changgui
Exponential-type Nagumo norms and summability of formal solutions of singular
partial differential equations.
Ann. Inst. Fourier (Grenoble) 62 (2012), 571–618.
Zhou, Shuang; Luo, Zhuangchu; Zhang, Changgui
On summability of formal solutions to a Cauchy problem and generalization of Mordell's theorem.
C. R. Math. Acad. Sci. Paris 348 (2010), no. 13-14, 753-758.
Chen, Hua; Luo, Zhuangchu; Zhang, Changgui
On the summability of formal solutions for a class of nonlinear singular PDEs with irregular singularity.
Recent progress on some problems in several complex variables and partial differential equations, 53-64,
Contemp. Math., 400, Amer. Math. Soc., Providence, RI, 2006
- Autres
Fruchard, Augustin; Zhang, Changgui
Remarques sur les développements asymptotiques. [Remarks about asymptotic expansions] Ann. Fac. Sci. Toulouse Math. (6) 8 (1999), no. 1, 91-115.