Frobenius twists in higher invariant theory

Antoine Touzé

Université Paris 13

Mini symposium in honor of Wilberd van der Kallen 22/01/2012

 \Bbbk is a field,

k is a field, (algebraically closed, for simplicity of exposition)

 \Bbbk is a field, (algebraically closed, for simplicity of exposition) ... we deal with :

• Affine algebraic groups G over \Bbbk :

 \Bbbk is a field, (algebraically closed, for simplicity of exposition) ... we deal with :

 Affine algebraic groups G over k : G ⊂ M_n(k),

 \Bbbk is a field, (algebraically closed, for simplicity of exposition) ... we deal with :

• Affine algebraic groups G over k: $G \subset M_n(k)$, There exists polynomials P_1, \ldots, P_N with n^2 variables $G = \{[a_{i,j}]; P_k(a_{i,j}) = 0 \forall k\}$

 \Bbbk is a field, (algebraically closed, for simplicity of exposition) ... we deal with :

- Affine algebraic groups G over k : G ⊂ M_n(k), There exists polynomials P₁,..., P_N with n² variables G = {[a_{i,j}]; P_k(a_{i,j}) = 0 ∀k}
- Algebraic representations of the group G:

 \Bbbk is a field, (algebraically closed, for simplicity of exposition) ... we deal with :

- Affine algebraic groups G over \Bbbk : $G \subset M_n(\Bbbk)$, There exists polynomials P_1, \ldots, P_N with n^2 variables $G = \{[a_{i,j}]; P_k(a_{i,j}) = 0 \ \forall k\}$
- Algebraic representations of the group G :
 k-vect space V + action ρ : G → End_k(V),

 \Bbbk is a field, (algebraically closed, for simplicity of exposition) ... we deal with :

- Affine algebraic groups G over \Bbbk : $G \subset M_n(\Bbbk)$, There exists polynomials P_1, \ldots, P_N with n^2 variables $G = \{[a_{i,j}]; P_k(a_{i,j}) = 0 \ \forall k\}$
- Algebraic representations of the group G :
 k-vect space V + action ρ : G → End_k(V),
 coordinates of ρ([a_{i,j}]) are polynomial expressions of the a_{i,j}

 \Bbbk is a field, (algebraically closed, for simplicity of exposition) ... we deal with :

- Affine algebraic groups G over k : G ⊂ M_n(k), There exists polynomials P₁,..., P_N with n² variables G = {[a_{i,j}]; P_k(a_{i,j}) = 0 ∀k}

Lots of examples in Nature :

$$GL_n(\mathbb{k}), O_n(\mathbb{k}), Sp_n(\mathbb{k}), SL_n(\mathbb{k}), (\mathbb{k}, +), B_n(\mathbb{k}) = \begin{bmatrix} * & * \\ & \ddots & \\ 0 & * \end{bmatrix} \dots$$

 \Bbbk is a field, (algebraically closed, for simplicity of exposition) ... we deal with :

- Affine algebraic groups G over k : G ⊂ M_n(k), There exists polynomials P₁,..., P_N with n² variables G = {[a_{i,j}]; P_k(a_{i,j}) = 0 ∀k}

Lots of examples in Nature :

$$GL_n(\Bbbk), O_n(\Bbbk), Sp_n(\Bbbk), SL_n(\Bbbk), (\Bbbk, +), B_n(\Bbbk) = \begin{bmatrix} * & * \\ & \ddots & \\ 0 & * \end{bmatrix} \dots$$
$$G \subset GL_n(\Bbbk) \text{ acts on } \Bbbk^n \text{ by matrix multiplication, on } M_n(\Bbbk) \text{ by conjugacy, on its Lie algebra } \mathfrak{g} \dots$$

- \Bbbk has prime characteristic p,
- G algebraic group over \Bbbk , V a representation.

k has prime characteristic p, G algebraic group over k, V a representation. Assume that G is defined over \mathbb{F}_p $(G \subset GL_p(\mathbb{k})$ is zero locus of P_1, \ldots, P_N with coeff in \mathbb{F}_p)

 \Bbbk has prime characteristic p, G algebraic group over \Bbbk , V a representation. Assume that G is defined over \mathbb{F}_p $(G \subset GL_n(\Bbbk)$ is zero locus of $P_1, \ldots P_N$ with coeff in $\mathbb{F}_p)$

Frobenius morphism $\mathbf{F} : \mathbb{k} \to \mathbb{k}, x \mapsto x^{p}$,

k has prime characteristic p, G algebraic group over k, V a representation. Assume that G is defined over \mathbb{F}_p $(G \subset GL_n(k)$ is zero locus of $P_1, \ldots P_N$ with coeff in $\mathbb{F}_p)$

Frobenius morphism $\mathbf{F} : \mathbb{k} \to \mathbb{k}, x \mapsto x^p$, induces group morphism

$$f F: egin{array}{ccc} G & o & G \ [a_{ij}] & \mapsto & [a_{ij}^p] \end{array}$$

k has prime characteristic p, G algebraic group over k, V a representation. Assume that G is defined over \mathbb{F}_p $(G \subset GL_n(k)$ is zero locus of $P_1, \ldots P_N$ with coeff in $\mathbb{F}_p)$

Frobenius morphism $\mathbf{F} : \mathbb{k} \to \mathbb{k}, x \mapsto x^{p}$, induces group morphism

$$egin{array}{rcl} egin{array}{ccc} & G &
ightarrow & G \ & [a_{ij}] & \mapsto & [a_{ij}^p] \end{array}$$

Frobenius twist of the representation V is a representation $V^{(1)}$

k has prime characteristic p, G algebraic group over k, V a representation. Assume that G is defined over \mathbb{F}_p $(G \subset GL_n(k)$ is zero locus of $P_1, \ldots P_N$ with coeff in $\mathbb{F}_p)$

Frobenius morphism $\mathbf{F} : \mathbb{k} \to \mathbb{k}, x \mapsto x^{p}$, induces group morphism

$$\begin{array}{rrrr} {\sf F}: & G & \to & G \\ & & [a_{ij}] & \mapsto & [a_{ij}^p] \end{array}$$

Frobenius twist of the representation V is a representation $V^{(1)}$ V as \Bbbk -vector space + action : $G \xrightarrow{\mathbf{F}} G \xrightarrow{\rho} End_{\Bbbk}(V)$

k has prime characteristic p, G algebraic group over k, V a representation. Assume that G is defined over \mathbb{F}_p $(G \subset GL_n(k)$ is zero locus of $P_1, \ldots P_N$ with coeff in $\mathbb{F}_p)$

Frobenius morphism $\mathbf{F} : \mathbb{k} \to \mathbb{k}, x \mapsto x^{p}$, induces group morphism

$$egin{array}{cccc} egin{array}{cccc} & G &
ightarrow & G \ & [a_{ij}] & \mapsto & [a_{ij}^p] \end{array}$$

Frobenius twist of the representation V is a representation $V^{(1)}$

V as \Bbbk -vector space + action :

$$G \xrightarrow{\mathsf{F}} G \xrightarrow{
ho} \mathit{End}_{\Bbbk}(V)$$

We can iterate : $V^{(r)} = (V^{(r-1)})^{(1)}$

- 1. Hilbert's XIVth problem and higher invariant theory
- 2. Cohomology of finite groups of Lie type
- 3. What's new about Frobenius twists?

- 1. Hilbert's XIVth problem and higher invariant theory
- 2. Cohomology of finite groups of Lie type
- 3. What's new about Frobenius twists?

Part 1. and 2. :

Mathematical problems where Frobenius twists $V^{(r)}$ appear.

- 1. Hilbert's XIVth problem and higher invariant theory
- 2. Cohomology of finite groups of Lie type
- 3. What's new about Frobenius twists?

Part 1. and 2. :

Mathematical problems where Frobenius twists $V^{(r)}$ appear.

Part 3. : Recent results on Frobenius twists.

- 1. Hilbert's XIVth problem and higher invariant theory
- 2. Cohomology of finite groups of Lie type
- 3. What's new about Frobenius twists?

Part 1. and 2. :

Mathematical problems where Frobenius twists $V^{(r)}$ appear.

Part 3. : Recent results on Frobenius twists.

Notation :

- 1. Hilbert's XIVth problem and higher invariant theory
- 2. Cohomology of finite groups of Lie type
- 3. What's new about Frobenius twists?

Part 1. and 2. :

Mathematical problems where Frobenius twists $V^{(r)}$ appear.

Part 3. : Recent results on Frobenius twists.

Notation :

In many places we shall need the following notation : vdK = Wilberd van der Kallen

 $\begin{array}{ll} G \text{ an algebraic group over } \Bbbk \\ A \& \text{-alg.} + & \text{action of } G \text{ on } A \\ \text{by algebra automorphisms.} \end{array}$

G an algebraic group over \Bbbk $A \Bbbk$ -alg. + action of G on Aby algebra automorphisms.

Algebra of invariants : $A^{G} = \{a \in A : g.a = a \quad \forall g \in G\}$

 $\begin{array}{l} G \text{ an algebraic group over } \mathbb{k} \\ A \ \mathbb{k}\text{-alg.} + \\ & \text{by algebra automorphisms.} \\ \text{Algebra of invariants : } A^G = \{a \in A \ ; \ g.a = a \ \forall g \in G\} \end{array}$

Invariant Theory : can we describe A^G ?

 $\begin{array}{l}G \text{ an algebraic group over } \Bbbk\\ A \And \mathsf{alg.} + & \begin{array}{c} \operatorname{action of } G \text{ on } A\\ \end{array}\\ \text{by algebra automorphisms.} \end{array}$ Algebra of invariants : $A^G = \{a \in A \;\; ; \; g.a = a \;\; \forall g \in G\}$

Invariant Theory : can we describe A^G ?

XIXth century (before Hilbert) : lots of contributions. Sylvester, Cayley, Capelli, Clebsch, Gordan, ...

 $\begin{array}{l}G \text{ an algebraic group over } \Bbbk\\ A \And \mathsf{alg.} + & \begin{array}{c} \operatorname{action of } G \text{ on } A\\ \end{array}\\ \text{by algebra automorphisms.} \end{array}$ Algebra of invariants : $A^G = \{a \in A \;\; ; \; g.a = a \;\; \forall g \in G\}$

Invariant Theory : can we describe A^G ?

XIXth century (before Hilbert) : lots of contributions. Sylvester, Cayley, Capelli, Clebsch, Gordan, ...

Thm (Hilbert 1890) If $SL_n(\mathbb{C})$ acts on finitely generated commutative \mathbb{C} -alg A then $A^{SL_n(\mathbb{C})}$ is finitely generated.

 $\begin{array}{ll}G \text{ an algebraic group over } \Bbbk & \\ A \And \mathsf{alg.} + & \\ & \text{action of } G \text{ on } A \\ & \text{by algebra automorphisms.} \end{array}$ $\begin{array}{ll} \text{Algebra of invariants} : A^G = \{a \in A \quad ; \ g.a = a \quad \forall g \in G\} \end{array}$

Invariant Theory : can we describe A^G ?

XIXth century (before Hilbert) : lots of contributions. Sylvester, Cayley, Capelli, Clebsch, Gordan, ...

Thm (Hilbert 1890) If $SL_n(\mathbb{C})$ acts on finitely generated commutative \mathbb{C} -alg A then $A^{SL_n(\mathbb{C})}$ is finitely generated.

Hilbert's XIVth problem (1900)

Does this thm generalizes for all algebraic groups ? over all field \Bbbk ?

Answer :

 $\begin{array}{ll}G \text{ an algebraic group over } \Bbbk & \\ A \And \mathsf{alg.} + & \\ & \text{action of } G \text{ on } A \\ & \text{by algebra automorphisms.} \end{array}$ $\begin{array}{ll} \text{Algebra of invariants} : A^G = \{a \in A \quad ; \ g.a = a \quad \forall g \in G\} \end{array}$

Invariant Theory : can we describe A^G ?

XIXth century (before Hilbert) : lots of contributions. Sylvester, Cayley, Capelli, Clebsch, Gordan, ...

Thm (Hilbert 1890) If $SL_n(\mathbb{C})$ acts on finitely generated commutative \mathbb{C} -alg A then $A^{SL_n(\mathbb{C})}$ is finitely generated.

Hilbert's XIVth problem (1900)

Does this thm generalizes for all algebraic groups? over all field &? **Answer :** No (c-ex. Nagata for all & 1958) Frobenius twists in higher invariant theory 22/01/2012 - A. Touzé

Nagata : If $G \curvearrowright A$, A f.g. k-alg., A^G not necessarily f.g.

Nagata : If $G \curvearrowright A$, A f.g. k-alg., A^G not necessarily f.g.

1960es : Geometric Invariant Theory (Mumford)

Need for positive results on finite generation !

Nagata : If $G \curvearrowright A$, A f.g. k-alg., A^G not necessarily f.g.

1960es : Geometric Invariant Theory (Mumford)

Def : G has the finite generation property if A^G f.g for all A commutative f.g.

Nagata : If $G \curvearrowright A$, A f.g. k-alg., A^G not necessarily f.g.

1960es : Geometric Invariant Theory (Mumford)

Def : G has the finite generation property if A^{G} f.g for all A commutative f.g.

G has the (FG) property \iff *G* is reductive.

Nagata : If $G \curvearrowright A$, A f.g. k-alg., A^G not necessarily f.g.

1960es : Geometric Invariant Theory (Mumford)

Def : G has the finite generation property if A^{G} f.g for all A commutative f.g.

Thm (Nagata 1964 + Haboush 1975 + Popov 1979) : Let G be an algebraic group over \Bbbk . Then : G has the (FG) property \iff G is reductive.

Recall :

• A group G is reductive if $R_u(G) = e$.

Nagata : If $G \curvearrowright A$, A f.g. k-alg., A^G not necessarily f.g.

1960es : Geometric Invariant Theory (Mumford)

Def : G has the finite generation property if A^{G} f.g for all A commutative f.g.

Thm (Nagata 1964 + Haboush 1975 + Popov 1979) : Let G be an algebraic group over \Bbbk . Then : G has the (FG) property \iff G is reductive.

Recall :

- A group G is reductive if $R_u(G) = e$.
- ▶ Reductive groups are classified in terms of root systems. (Borel, Chevalley ≃ 1958)
Nagata : If $G \curvearrowright A$, A f.g. k-alg., A^G not necessarily f.g.

1960es : Geometric Invariant Theory (Mumford)

Def : G has the finite generation property if A^{G} f.g for all A commutative f.g.

Thm (Nagata 1964 + Haboush 1975 + Popov 1979) : Let *G* be an algebraic group over \Bbbk . Then : *G* has the (FG) property \iff *G* is reductive.

Recall :

- A group G is reductive if $R_u(G) = e$.
- ▶ Reductive groups are classified in terms of root systems. (Borel, Chevalley ≃ 1958)
- ► Finite groups, GL_n(k), SO_n(k), Sp_n(k), SL_n(k) are reductive (k, +), B_n(k) are not reductive

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Cohomology

The fixed point functor

$$\begin{array}{ccc} -^{\mathsf{G}} : & \{ \mathsf{rep. of } \mathcal{G} \} & \to & \{ \Bbbk \text{-vect spaces} \} \\ & V & \mapsto & V^{\mathsf{G}} \end{array}$$

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Cohomology

The fixed point functor is only left exact

$$\begin{array}{rcl} -^{\mathcal{G}} : & \{ \mathsf{rep. of } \mathcal{G} \} & \to & \{ \Bbbk \text{-vect spaces} \} \\ & V & \mapsto & V^{\mathcal{G}} \end{array}$$

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Cohomology

The fixed point functor is only left exact

$$\begin{array}{ccc} -^{\mathcal{G}} : & \{ \mathsf{rep. of } \mathcal{G} \} & \to & \{ \Bbbk \text{-vect spaces} \} \\ & V & \mapsto & V^{\mathcal{G}} \end{array}$$

Def : $H^{i}(G, V) = R^{i}(-^{G})(V)$.

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Cohomology

The fixed point functor is only left exact

$$\begin{array}{ccc} -^{\mathcal{G}} : & \{ \mathsf{rep. of } \mathcal{G} \} & \to & \{ \Bbbk \text{-vect spaces} \} \\ & V & \mapsto & V^{\mathcal{G}} \end{array}$$

Def : $H^{i}(G, V) = R^{i}(-^{G})(V)$. ► $H^{0}(G, V) = V^{G}$.

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Cohomology

The fixed point functor is only left exact

$$\begin{array}{rcl} -^{\mathsf{G}}: & \{ \mathsf{rep. of } \mathcal{G} \} & \to & \{ \Bbbk \text{-vect spaces} \} \\ & V & \mapsto & V^{\mathsf{G}} \end{array}$$

Def : $H^{i}(G, V) = R^{i}(-^{G})(V)$.

- ► $H^0(G, V) = V^G$.
- $H^i(G, V)$, for i > 0 give more subtle information on V.

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Cohomology

The fixed point functor is only left exact

$$\begin{array}{rcl} -^{\mathsf{G}}: & \{ \mathsf{rep. of } \mathcal{G} \} & \to & \{ \Bbbk \text{-vect spaces} \} \\ & V & \mapsto & V^{\mathsf{G}} \end{array}$$

Def : $H^{i}(G, V) = R^{i}(-^{G})(V)$.

- ► $H^0(G, V) = V^G$.
- $H^i(G, V)$, for i > 0 give more subtle information on V.
- ▶ If A is \Bbbk -alg with action of G, $H^*(G, A)$ is graded \Bbbk -alg.

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Cohomology

The fixed point functor is only left exact

$$\begin{array}{rcl} -^{\mathsf{G}}: & \{ \mathsf{rep. of } \mathcal{G} \} & \to & \{ \Bbbk \text{-vect spaces} \} \\ & V & \mapsto & V^{\mathsf{G}} \end{array}$$

Def : $H^{i}(G, V) = R^{i}(-^{G})(V)$.

- ► $H^0(G, V) = V^G$.
- $H^i(G, V)$, for i > 0 give more subtle information on V.
- ▶ If A is \Bbbk -alg with action of G, $H^*(G, A)$ is graded \Bbbk -alg.

Higher invariant Theory : can we describe $H^*(G, A)$?

In particular, if A is commutative and f.g. is $H^*(G, A)$ f.g?

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Def : G has the cohomological finite generation property if $H^*(G, A)$ f.g for all A commutative f.g.

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Def : G has the cohomological finite generation property if $H^*(G, A)$ f.g for all A commutative f.g.

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Def : G has the cohomological finite generation property if $H^*(G, A)$ f.g for all A commutative f.g.

Question : which groups G have the (CFG) property?

• Observation 1 : (CFG) prop \Rightarrow (FG) prop.

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Def : G has the cohomological finite generation property if $H^*(G, A)$ f.g for all A commutative f.g.

Question : which groups G have the (CFG) property?

▶ Observation 1 : (CFG) prop ⇒ (FG) prop.
So groups with (CFG) prop. must be reductive

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Def : G has the cohomological finite generation property if $H^*(G, A)$ f.g for all A commutative f.g.

- ► Observation 1 : (CFG) prop ⇒ (FG) prop. So groups with (CFG) prop. must be reductive
- Observation 2 : If char(\Bbbk)=0, (CFG) prop \Leftrightarrow (FG) prop.

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Def : G has the cohomological finite generation property if $H^*(G, A)$ f.g for all A commutative f.g.

- ► Observation 1 : (CFG) prop ⇒ (FG) prop. So groups with (CFG) prop. must be reductive
- ► Observation 2 : If char(k)=0, (CFG) prop ⇔ (FG) prop. So we restrict to k with prime char. p.

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Def : G has the cohomological finite generation property if $H^*(G, A)$ f.g for all A commutative f.g.

- ► Observation 1 : (CFG) prop ⇒ (FG) prop. So groups with (CFG) prop. must be reductive
- ► Observation 2 : If char(k)=0, (CFG) prop ⇔ (FG) prop. So we restrict to k with prime char. p.
- ► Thm (Evens 1961) : finite groups have (CFG) property.

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Def : G has the cohomological finite generation property if $H^*(G, A)$ f.g for all A commutative f.g.

- ► Observation 1 : (CFG) prop ⇒ (FG) prop. So groups with (CFG) prop. must be reductive
- ► Observation 2 : If char(k)=0, (CFG) prop ⇔ (FG) prop. So we restrict to k with prime char. p.
- ► Thm (Evens 1961) : finite groups have (CFG) property.
- ► Thm (Friedlander-Suslin, 1997) : finite group schemes have (CFG) property.

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Def : G has the cohomological finite generation property if $H^*(G, A)$ f.g for all A commutative f.g.

- ► Observation 1 : (CFG) prop ⇒ (FG) prop. So groups with (CFG) prop. must be reductive
- ► Observation 2 : If char(k)=0, (CFG) prop ⇔ (FG) prop. So we restrict to k with prime char. p.
- ► Thm (Evens 1961) : finite groups have (CFG) property.
- ► Thm (Friedlander-Suslin, 1997) : finite group schemes have (CFG) property.
- ► Conjecture (vdK, 2000) : All red. groups have (CFG) prop!

Invariant theory : G has the (FG) property if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Def : G has the cohomological finite generation property if $H^*(G, A)$ f.g for all A commutative f.g.

- ► Observation 1 : (CFG) prop ⇒ (FG) prop. So groups with (CFG) prop. must be reductive
- ► Observation 2 : If char(k)=0, (CFG) prop ⇔ (FG) prop. So we restrict to k with prime char. p.
- ► Thm (Evens 1961) : finite groups have (CFG) property.
- Thm (Friedlander-Suslin, 1997) : finite group schemes have (CFG) property.
- Conjecture (vdK, 2000) : All red. groups have (CFG) prop ! Complete proof of the conjecture in 2010.

Invariant theory : G has (FG) prop. if A^G always f.g. Thm : G has (FG) prop. \Leftrightarrow G is reductive

Higher inv. theory : G has (CFG) prop. if $H^*(G, A)$ always f.g.

Invariant theory : G has (FG) prop. if A^G always f.g. Thm : G has (FG) prop. $\Leftrightarrow G$ is reductive

Higher inv. theory : G has (CFG) prop. if $H^*(G, A)$ always f.g.

Thm (vdK, T 2010) : Let G be a reductive algebraic group (or group scheme) over \Bbbk . Then G has the (CFG) property.

Invariant theory : G has (FG) prop. if A^G always f.g. Thm : G has (FG) prop. $\Leftrightarrow G$ is reductive

Higher inv. theory : G has (CFG) prop. if $H^*(G, A)$ always f.g.

Thm (vdK, T 2010) : Let G be a reductive algebraic group (or group scheme) over \Bbbk . Then G has the (CFG) property.

Reformulation : (CFG) prop. \Leftrightarrow (FG) prop.

Invariant theory : G has (FG) prop. if A^G always f.g. Thm : G has (FG) prop. $\Leftrightarrow G$ is reductive

Higher inv. theory : G has (CFG) prop. if $H^*(G, A)$ always f.g.

Thm (vdK, T 2010) : Let G be a reductive algebraic group (or group scheme) over \Bbbk . Then G has the (CFG) property.

Reformulation : (CFG) prop. \Leftrightarrow (FG) prop.

The proof (designed by vdK) uses :

Invariant theory : G has (FG) prop. if A^G always f.g. Thm : G has (FG) prop. $\Leftrightarrow G$ is reductive

Higher inv. theory : G has (CFG) prop. if $H^*(G, A)$ always f.g.

Thm (vdK, T 2010) : Let G be a reductive algebraic group (or group scheme) over \Bbbk . Then G has the (CFG) property.

Reformulation : (CFG) prop. \Leftrightarrow (FG) prop.

The proof (designed by vdK) uses :

- ► Friedlander and Suslin's work on finite group schemes.
- Grosshans filtrations of representations.
- ► Results of Srinivas and vdK on good filtrations (2009).

Invariant theory : G has (FG) prop. if A^G always f.g. Thm : G has (FG) prop. $\Leftrightarrow G$ is reductive

Higher inv. theory : G has (CFG) prop. if $H^*(G, A)$ always f.g.

Thm (vdK, T 2010) : Let G be a reductive algebraic group (or group scheme) over \Bbbk . Then G has the (CFG) property.

Reformulation : (CFG) prop. \Leftrightarrow (FG) prop.

The proof (designed by vdK) uses :

- ► Friedlander and Suslin's work on finite group schemes.
- Grosshans filtrations of representations.
- ► Results of Srinivas and vdK on good filtrations (2009).
- ► The computation (T) of universal cohomology classes c[i], where

$$c[i] \in H^{2i}\left(GL_n(\mathbb{k}), \ \Gamma^i(\mathfrak{gl}_n)^{(1)}\right)$$

Situation :

- \Bbbk is alg. closed, with prime characteristic p,
- *G* is an algebraic group over \mathbb{k} , defined over \mathbb{F}_p

Situation :

 \Bbbk is alg. closed, with prime characteristic p,

G is an algebraic group over \mathbb{k} , defined over \mathbb{F}_p

 $\mathsf{Ex}: GL_n(\Bbbk), \ O_n(\Bbbk), \ Sp_n(\Bbbk), \ B_n(\Bbbk), \ \operatorname{Spin}(\Bbbk), \ SL_n(\Bbbk)...$

Situation :

k is alg. closed, with prime characteristic p, G is an algebraic group over \Bbbk , defined over \mathbb{F}_p $\operatorname{Ex} : GL_n(\Bbbk), O_n(\Bbbk), Sp_n(\Bbbk), B_n(\Bbbk), \operatorname{Spin}(\Bbbk), SL_n(\Bbbk)...$ Iterated Frobenius map : $\mathbf{F}^r : G \to G$

 $[a_{ij}] \mapsto [a_{ij}^{p^r}]$

Situation :

Def : The finite group of fixed points under the action of \mathbf{F}^r :

$$G(\mathbb{F}_q) = G^{\mathsf{F}^r} = \{g \in G ; \; \mathsf{F}^r(g) = g\}$$

Situation :

Def : The finite group of fixed points under the action of \mathbf{F}^r :

$$G(\mathbb{F}_q) = G^{\mathsf{F}^r} = \{g \in G ; \; \mathsf{F}^r(g) = g\}$$

is called a finite group of Lie type when the algebraic group G is connected, reductive and split over \mathbb{F}_p .

Situation :

Def : The finite group of fixed points under the action of \mathbf{F}^r :

$$G(\mathbb{F}_q) = G^{\mathsf{F}^r} = \{g \in G ; \mathsf{F}^r(g) = g\}$$

is called a finite group of Lie type when the algebraic group G is connected, reductive and split over \mathbb{F}_p .

Examples : $GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$...

They play key role in the theory of finite groups.

Situation :

k is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over k, defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

▶ Restriction to $G(\mathbb{F}_q)$ induces a functor :

 $\{ \text{algebraic rep. of } G \} \longrightarrow \{ \text{rep. of } G(\mathbb{F}_q) \}$.

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

▶ Restriction to $G(\mathbb{F}_q)$ induces a functor :

$$\{ \text{algebraic rep. of } G \} \longrightarrow \{ \text{rep. of } G(\mathbb{F}_q) \}$$
.

Thm : (Steinberg, 1963) If G is semisimple, all simple representations of $G(\mathbb{F}_q)$ are obtained by restriction of simple representations of G

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

▶ Restriction to $G(\mathbb{F}_q)$ induces a functor :

$$\{ \text{algebraic rep. of } G \} \longrightarrow \{ \text{rep. of } G(\mathbb{F}_q) \}$$
.

Thm : (Steinberg, 1963) If G is semisimple, all simple representations of $G(\mathbb{F}_q)$ are obtained by restriction of simple representations of G

▶ Restriction induces a map : $H^*(G, M) \to H^*(G(\mathbb{F}_q), M)$
Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

▶ Restriction to $G(\mathbb{F}_q)$ induces a functor :

$$\{ \text{algebraic rep. of } G \} \longrightarrow \{ \text{rep. of } G(\mathbb{F}_q) \}$$
.

Thm : (Steinberg, 1963) If G is semisimple, all simple representations of $G(\mathbb{F}_q)$ are obtained by restriction of simple representations of G

▶ Restriction induces a map : $H^*(G, M) \to H^*(G(\mathbb{F}_q), M)$ Question : Does this map tell us anything interesting on $H^*(G(\mathbb{F}_q), M)$?

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

▶ Restriction to $G(\mathbb{F}_q)$ induces a functor :

$$\{ \text{algebraic rep. of } G \} \longrightarrow \{ \text{rep. of } G(\mathbb{F}_q) \}$$
.

Thm : (Steinberg, 1963) If G is semisimple, all simple representations of $G(\mathbb{F}_q)$ are obtained by restriction of simple representations of G

▶ Restriction induces a map : $H^*(G, M) \to H^*(G(\mathbb{F}_q), M)$ Question : Does this map tell us anything interesting on $H^*(G(\mathbb{F}_q), M)$? Yes!

Situation :

k is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over k, defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

Thm : (CPSvdK, 1977) Let G be semisimple, M a representation of G, and n a positive integer.

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

Thm : (CPSvdK, 1977) Let G be semisimple, M a representation of G, and n a positive integer.

For $i \leq n$,

$$H^i(G, M^{(r)}) \to H^i(G(\mathbb{F}_{p^{r+f}}), M^{(r)})$$
.

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

Thm : (CPSvdK, 1977) Let G be semisimple, M a representation of G, and n a positive integer.

There exists explicit integers r(G, n), f(G, M) such that : For $i \le n$, $r \ge r(G, n)$, $f \ge f(G, M)$, the restriction map induces an isomorphism :

$$H^{i}(G, M^{(r)}) \xrightarrow{\simeq} H^{i}(G(\mathbb{F}_{p^{r+f}}), M^{(r)}).$$

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

Thm : (CPSvdK, 1977) Let G be semisimple, M a representation of G, and n a positive integer. There exists explicit integers r(G, n), f(G, M) such that : For $i \le n$, $r \ge r(G, n)$, $f \ge f(G, M)$, the restriction map induces

an isomorphism :

$$H^{i}(G, M^{(r)}) \xrightarrow{\simeq} H^{i}(G(\mathbb{F}_{p^{r+f}}), M^{(r)}).$$

Slogan: Let G be semisimple. If r and q big enough, then $H^i(G, M^{(r)})$ computes $H^i(G(\mathbb{F}_q), M^{(r)})$ for all $i \leq n$.

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

Thm: (CPSvdK, 1977) Let *G* be semisimple **Slogan**: if *r* and *q* big enough, then $H^i(G, M^{(r)})$ computes $H^i(G(\mathbb{F}_q), M^{(r)})$ for all $i \leq n$.

• $GL_n(\Bbbk)$ not semi-simple, but theorem stays valid

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

- $GL_n(\Bbbk)$ not semi-simple, but theorem stays valid
- Observation : $H^*(G(\mathbb{F}_q), M^{(r)}) \simeq H^*(G(\mathbb{F}_q), M)$

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

- $GL_n(\Bbbk)$ not semi-simple, but theorem stays valid
- Observation : $H^*(G(\mathbb{F}_q), M^{(r)}) \simeq H^*(G(\mathbb{F}_q), M)$

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

- $GL_n(\Bbbk)$ not semi-simple, but theorem stays valid
- Observation : $H^*(G(\mathbb{F}_q), M^{(r)}) \simeq H^*(G(\mathbb{F}_q), M)$
- ► Cohomology of finite groups of Lie type is quite mysterious.

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

- $GL_n(\Bbbk)$ not semi-simple, but theorem stays valid
- Observation : $H^*(G(\mathbb{F}_q), M^{(r)}) \simeq H^*(G(\mathbb{F}_q), M)$
- ► Cohomology of finite groups of Lie type is quite mysterious. H*(GL_n(𝔽_q), 𝑘) unknown !

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

- $GL_n(\Bbbk)$ not semi-simple, but theorem stays valid
- Observation : $H^*(G(\mathbb{F}_q), M^{(r)}) \simeq H^*(G(\mathbb{F}_q), M)$
- ► Cohomology of finite groups of Lie type is quite mysterious. H*(GL_n(𝔽_q), 𝑘) unknown !
- Cohomology of reductive algebraic groups is better understood.

Situation :

 \Bbbk is alg. closed, with prime characteristic p, G is a conn. reductive alg. group over \Bbbk , defined and split over \mathbb{F}_p $G(\mathbb{F}_q) \subset G$ the associated finite group of Lie type (e.g. $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$, $SO_n(\mathbb{F}_q)$, $Sp_n(\mathbb{F}_q)$, $Spin(\mathbb{F}_q)$, $SL_n(\mathbb{F}_q)$)

- $GL_n(\Bbbk)$ not semi-simple, but theorem stays valid
- Observation : $H^*(G(\mathbb{F}_q), M^{(r)}) \simeq H^*(G(\mathbb{F}_q), M)$
- ► Cohomology of finite groups of Lie type is quite mysterious. H*(GL_n(𝔽_q), 𝑘) unknown !
- Cohomology of reductive algebraic groups is better understood.

$$H^*(GL_n(\Bbbk), \Bbbk) = H^0(GL_n(\Bbbk), \Bbbk) = \Bbbk$$

So far, we have seen :

 Solution to van der Kallen conjecture (reductive groups have finitely generated cohomology algebras) relies on computations of classes

$$c[i] \in H^{2i}\left(GL_n(\mathbb{k}), \ \Gamma^i(\mathfrak{gl}_n)^{(1)}\right)$$

So far, we have seen :

 Solution to van der Kallen conjecture (reductive groups have finitely generated cohomology algebras) relies on computations of classes

$$c[i] \in H^{2i}\left(GL_n(\mathbb{k}) , \ \Gamma^i(\mathfrak{gl}_n)^{(1)}\right)$$

If M a G-module, Hⁱ(G, M^(r)) computes Hⁱ(G(𝔽_q), M) for r, q big enough (Thm CPSvdK).

So far, we have seen :

 Solution to van der Kallen conjecture (reductive groups have finitely generated cohomology algebras) relies on computations of classes

$$c[i] \in H^{2i}\left(GL_n(\mathbb{k}) , \ \Gamma^i(\mathfrak{gl}_n)^{(1)}\right)$$

If M a G-module, Hⁱ(G, M^(r)) computes Hⁱ(G(𝔽_q), M) for r, q big enough (Thm CPSvdK).

Problem : Compute $H^*(G, M^{(r)})$

So far, we have seen :

 Solution to van der Kallen conjecture (reductive groups have finitely generated cohomology algebras) relies on computations of classes

$$c[i] \in H^{2i}\left(GL_n(\mathbb{k}), \ \Gamma^i(\mathfrak{gl}_n)^{(1)}\right)$$

If M a G-module, Hⁱ(G, M^(r)) computes Hⁱ(G(𝔽_q), M) for r, q big enough (Thm CPSvdK).

Problem : Compute $H^*(G, M^{(r)})$ from $H^*(G, M)$

What do we know about Frobenius twists in general?

▶ Thm (Andersen) : $H^i(G, M^{(r)}) \hookrightarrow H^i(G, M^{(r+1)})$ for all *i*, *r*.

Problem : Compute $H^*(G, M^{(r)})$ from $H^*(G, M)$

What do we know about Frobenius twists in general?

► Thm (Andersen) : Hⁱ(G, M^(r)) → Hⁱ(G, M^(r+1)) for all i, r. Slogan : Frobenius twists makes cohomology bigger...

Problem : Compute $H^*(G, M^{(r)})$ from $H^*(G, M)$

- ► Thm (Andersen) : Hⁱ(G, M^(r)) → Hⁱ(G, M^(r+1)) for all i, r.
 Slogan : Frobenius twists makes cohomology bigger...
- ► Thm (CPSvdK) : Hⁱ(G, M^(r)) → Hⁱ(G, M^(r+1)) is an isomorphism when r big enough with respect to i.

Problem : Compute $H^*(G, M^{(r)})$ from $H^*(G, M)$

- ► Thm (Andersen) : Hⁱ(G, M^(r)) → Hⁱ(G, M^(r+1)) for all i, r.
 Slogan : Frobenius twists makes cohomology bigger...
- ► Thm (CPSvdK) : Hⁱ(G, M^(r)) → Hⁱ(G, M^(r+1)) is an isomorphism when r big enough with respect to i. (Stable value is Hⁱ(G(F_q), M))

Problem : Compute $H^*(G, M^{(r)})$ from $H^*(G, M)$

- ► Thm (Andersen) : Hⁱ(G, M^(r)) → Hⁱ(G, M^(r+1)) for all i, r.
 Slogan : Frobenius twists makes cohomology bigger...
- Thm (CPSvdK) : Hⁱ(G, M^(r)) → Hⁱ(G, M^(r+1)) is an isomorphism when r big enough with respect to i. (Stable value is Hⁱ(G(𝔽_q), M))
 Slogan : ...and the process stabilizes at some point (for a given i)

Problem : Compute $H^*(G, M^{(r)})$ from $H^*(G, M)$

What do we know about Frobenius twists in general?

- ► Thm (Andersen) : Hⁱ(G, M^(r)) → Hⁱ(G, M^(r+1)) for all i, r. Slogan : Frobenius twists makes cohomology bigger...
- Thm (CPSvdK) : Hⁱ(G, M^(r)) → Hⁱ(G, M^(r+1)) is an isomorphism when r big enough with respect to i. (Stable value is Hⁱ(G(𝔽_q), M))
 Slogan : ...and the process stabilizes at some point (for a given i)

Purpose of this part :

• $G = GL_n(\Bbbk)$.

Problem : Compute $H^*(G, M^{(r)})$ from $H^*(G, M)$

What do we know about Frobenius twists in general?

- ► Thm (Andersen) : Hⁱ(G, M^(r)) → Hⁱ(G, M^(r+1)) for all i, r.
 Slogan : Frobenius twists makes cohomology bigger...
- Thm (CPSvdK) : Hⁱ(G, M^(r)) → Hⁱ(G, M^(r+1)) is an isomorphism when r big enough with respect to i. (Stable value is Hⁱ(G(𝔽_q), M))
 Slogan : ...and the process stabilizes at some point (for a given i)

Purpose of this part :

- $G = GL_n(\Bbbk)$.
- ► General, simple, explicit formula computing Hⁱ(GL_n(k), M^(r)) for many M.

Problem : Compute $H^*(G, M^{(r)})$ from $H^*(G, M)$

Problem : Compute $H^*(G, M^{(r)})$ from $H^*(G, M)$

Plan :

- 1. Strict polynomial functors.
- 2. The collapsing conjecture.
- 3. Applications and generalizations.

Problem : Compute $H^*(G, M^{(r)})$ from $H^*(G, M)$

Plan :

- 1. Strict polynomial functors.
- 2. The collapsing conjecture.
- 3. Applications and generalizations.

In part 1. and 2. :

- We restrict to $G = GL_n(\Bbbk)$,
- And $M = Hom_{\Bbbk}(N, P)$

Problem : Compute $H^*(G, M^{(r)})$ from $H^*(G, M)$

Plan :

- 1. Strict polynomial functors.
- 2. The collapsing conjecture.
- 3. Applications and generalizations.

In part 1. and 2. :

- We restrict to $G = GL_n(\Bbbk)$,
- And $M = Hom_{\Bbbk}(N, P)$

Since $H^*(G, Hom_{\Bbbk}(N, P)) \simeq Ext^*_G(N, P)$

Problem : Compute $H^*(G, M^{(r)})$ from $H^*(G, M)$

Plan :

- 1. Strict polynomial functors.
- 2. The collapsing conjecture.
- 3. Applications and generalizations.

In part 1. and 2. :

- We restrict to $G = GL_n(\mathbb{k})$,
- And $M = Hom_{\Bbbk}(N, P)$

Since $H^*(G, Hom_{\Bbbk}(N, P)) \simeq Ext^*_G(N, P)$

The problem becomes : Compute $Ext^*_{GL_n(\Bbbk)}(N^{(r)}, P^{(r)})$ from $Ext^*_{GL_n(\Bbbk)}(N, P)$.

Problem : Compute $H^*(G, M^{(r)})$ from $H^*(G, M)$

Plan :

- 1. Strict polynomial functors.
- 2. The collapsing conjecture.
- 3. Applications and generalizations.

In part 1. and 2. :

- We restrict to $G = GL_n(\Bbbk)$,
- And $M = Hom_{\Bbbk}(N, P)$

Since $H^*(G, Hom_{\Bbbk}(N, P)) \simeq Ext^*_G(N, P)$

The problem becomes : Compute $Ext^*_{GL_n(\Bbbk)}(N^{(r)}, P^{(r)})$ from $Ext^*_{GL_n(\Bbbk)}(N, P)$.

In part 3. : We introduce more general coefficients. Frobenius twists in higher invariant theory 22/01/2012 - A. Touzé

1. Strict polynomial functors
1. Strict polynomial functors

Let V be an alg. rep. of $GL_n(\mathbb{k})$. We can build new representations :

1. Strict polynomial functors

Let V be an alg. rep. of $GL_n(\Bbbk)$. We can build new representations : $V^{\otimes n}$,

1. Strict polynomial functors

Let V be an alg. rep. of $GL_n(\mathbb{k})$. We can build new representations : $V^{\otimes n}$, $S^n(V)$,

1. Strict polynomial functors

Let V be an alg. rep. of $GL_n(\mathbb{k})$. We can build new representations : $V^{\otimes n}$, $S^n(V)$, $V^{(r)}$,

1. Strict polynomial functors

Let V be an alg. rep. of $GL_n(\mathbb{k})$. We can build new representations : $V^{\otimes n}$, $S^n(V)$, $V^{(r)}$, $\Lambda^n(V)$...

1. Strict polynomial functors

Let V be an alg. rep. of $GL_n(\Bbbk)$. We can build new representations : $V^{\otimes n}$, $S^n(V)$, $V^{(r)}$, $\Lambda^n(V)$...

These are examples of functorial constructions :

1. Strict polynomial functors

Let V be an alg. rep. of $GL_n(\Bbbk)$. We can build new representations : $V^{\otimes n}$, $S^n(V)$, $V^{(r)}$, $\Lambda^n(V)$...

These are examples of functorial constructions : F is a functor $\mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ (e.g. $F = S^n$)

1. Strict polynomial functors

Let V be an alg. rep. of $GL_n(\Bbbk)$. We can build new representations : $V^{\otimes n}$, $S^n(V)$, $V^{(r)}$, $\Lambda^n(V)$...

These are examples of functorial constructions : F is a functor $\mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ (e.g. $F = S^n$) action of $GL_n(\Bbbk)$ on F(V) given by

$$\begin{array}{cccc} GL_n(\Bbbk) & \xrightarrow{\rho} & End_{\Bbbk}(V) & \xrightarrow{F_V} & End_{\Bbbk}(F(V)) \\ f & \mapsto & F(f) \end{array}$$

1. Strict polynomial functors

Let V be an alg. rep. of $GL_n(\mathbb{k})$. We can build new representations : $V^{\otimes n}$, $S^n(V)$, $V^{(r)}$, $\Lambda^n(V)$...

These are examples of functorial constructions : F is a functor $\mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ (e.g. $F = S^n$) action of $GL_n(\Bbbk)$ on F(V) given by

$$GL_n(\Bbbk) \xrightarrow{\rho} End_{\Bbbk}(V) \xrightarrow{F_V} End_{\Bbbk}(F(V))$$

$$f \mapsto F(f)$$

Warning : Not all functors F yield an algebraic action.

1. Strict polynomial functors

Let V be an alg. rep. of $GL_n(\mathbb{k})$. We can build new representations : $V^{\otimes n}$, $S^n(V)$, $V^{(r)}$, $\Lambda^n(V)$...

These are examples of functorial constructions : F is a functor $\mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ (e.g. $F = S^n$) action of $GL_n(\Bbbk)$ on F(V) given by

$$GL_n(\Bbbk) \xrightarrow{\rho} End_{\Bbbk}(V) \xrightarrow{F_V} End_{\Bbbk}(F(V))$$

$$f \mapsto F(f)$$

Warning : Not all functors F yield an algebraic action.

Def : A strict polynomial functor is $F : \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that for all $V \in \mathcal{V}_{\Bbbk}$, F_V is polynomial.

1. Strict polynomial functors

Let V be an alg. rep. of $GL_n(\mathbb{k})$. We can build new representations : $V^{\otimes n}$, $S^n(V)$, $V^{(r)}$, $\Lambda^n(V)$...

These are examples of functorial constructions : F is a functor $\mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ (e.g. $F = S^n$) action of $GL_n(\Bbbk)$ on F(V) given by

$$\begin{array}{cccc} GL_n(\Bbbk) & \xrightarrow{\rho} & End_{\Bbbk}(V) & \xrightarrow{F_V} & End_{\Bbbk}(F(V)) \\ f & \mapsto & F(f) \end{array}$$

Warning : Not all functors F yield an algebraic action.

Def: A strict polynomial functor is $F : \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that for all $V \in \mathcal{V}_{\Bbbk}$, F_V is polynomial. **Prop**: If F strict polynomial F(V) has an alg. action of $GL_n(\Bbbk)$.

Def : A strict polynomial functor is $F : \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that for all $V \in \mathcal{V}_{\Bbbk}$, $F_V : End_{\Bbbk}(V) \to End_{\Bbbk}(F(V))$ is polynomial.

Def : A strict polynomial functor is $F : \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that for all $V \in \mathcal{V}_{\Bbbk}$, $F_V : End_{\Bbbk}(V) \to End_{\Bbbk}(F(V))$ is polynomial.

 $\mathbf{Def}: \deg F = \sup_{V \in \mathcal{V}_k} \{\deg F_V\}$

Def: A strict polynomial functor is $F : \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that for all $V \in \mathcal{V}_{\Bbbk}$, $F_V : End_{\Bbbk}(V) \to End_{\Bbbk}(F(V))$ is polynomial.

Def : deg $F = \sup_{V \in \mathcal{V}_{\Bbbk}} \{ \deg F_V \}$ **Ex** : S^d , Λ^d , \otimes^d have degree d, $I^{(r)}$ has degree p^r .

Def: A strict polynomial functor is $F : \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that for all $V \in \mathcal{V}_{\Bbbk}$, $F_V : End_{\Bbbk}(V) \to End_{\Bbbk}(F(V))$ is polynomial.

Def : deg $F = \sup_{V \in \mathcal{V}_k} \{ \deg F_V \}$ **Ex** : S^d , Λ^d , \otimes^d have degree d, $I^{(r)}$ has degree p^r .

 $\mathcal{P}_{\Bbbk}: \left\{ \begin{array}{c} \text{Objects} = \text{strict polyn functors of finite degree} \\ \text{Morphisms} = \text{natural transformations} \end{array} \right.$

Def: A strict polynomial functor is $F : \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that for all $V \in \mathcal{V}_{\Bbbk}$, $F_V : End_{\Bbbk}(V) \to End_{\Bbbk}(F(V))$ is polynomial.

Def : deg $F = \sup_{V \in \mathcal{V}_k} \{ \deg F_V \}$ **Ex** : S^d , Λ^d , \otimes^d have degree d, $I^{(r)}$ has degree p^r .

 $\mathcal{P}_{\Bbbk}: \left\{ \begin{array}{c} \text{Objects} = \text{strict polyn functors of finite degree} \\ \text{Morphisms} = \text{natural transformations} \end{array} \right.$

If V f.d. alg. rep. of $GL(\mathbb{k})$, evaluation on V induces :

Def: A strict polynomial functor is $F : \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that for all $V \in \mathcal{V}_{\Bbbk}$, $F_V : End_{\Bbbk}(V) \to End_{\Bbbk}(F(V))$ is polynomial.

Def : deg $F = \sup_{V \in \mathcal{V}_{\Bbbk}} \{ \deg F_V \}$ **Ex** : S^d , Λ^d , \otimes^d have degree d, $I^{(r)}$ has degree p^r .

 $\mathcal{P}_{\Bbbk}: \left\{ \begin{array}{c} \text{Objects} = \text{strict polyn functors of finite degree} \\ \text{Morphisms} = \text{natural transformations} \end{array} \right.$

If V f.d. alg. rep. of
$$GL(\Bbbk)$$
, evaluation on V induces :
Functor $\mathcal{P}_{\Bbbk} \rightarrow \{ \text{alg. rep. of } GL_n(\Bbbk) \}$
 $F \mapsto F(V)$

Def: A strict polynomial functor is $F : \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that for all $V \in \mathcal{V}_{\Bbbk}$, $F_V : End_{\Bbbk}(V) \to End_{\Bbbk}(F(V))$ is polynomial.

Def : deg
$$F = \sup_{V \in \mathcal{V}_k} \{ \deg F_V \}$$

Ex : S^d , Λ^d , \otimes^d have degree d , $I^{(r)}$ has degree p^r .

$$\mathcal{P}_{\Bbbk}$$
:

$$\begin{cases}
Objects = strict polyn functors of finite degree \\
Morphisms = natural transformations
\end{cases}$$

If V f.d. alg. rep. of
$$GL(\mathbb{k})$$
, evaluation on V induces :
Functor $\mathcal{P}_{\mathbb{k}} \rightarrow \{ \text{alg. rep. of } GL_n(\mathbb{k}) \}$
 $F \mapsto F(V)$
Map : $Ext^*_{\mathcal{P}_{\mathbb{k}}}(F,G) \rightarrow Ext^*_{GL_n(\mathbb{k})}(F(V),G(V))$

Def: A strict polynomial functor is $F : \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that for all $V \in \mathcal{V}_{\Bbbk}$, $F_V : End_{\Bbbk}(V) \to End_{\Bbbk}(F(V))$ is polynomial.

Def : deg
$$F = \sup_{V \in \mathcal{V}_{\Bbbk}} \{ \deg F_V \}$$

Ex : S^d , Λ^d , \otimes^d have degree d , $I^{(r)}$ has degree p^r .

$$\mathcal{P}_{\Bbbk}$$
:

$$\begin{cases}
Objects = strict polyn functors of finite degree \\
Morphisms = natural transformations
\end{cases}$$

If V f.d. alg. rep. of
$$GL(\Bbbk)$$
, evaluation on V induces :
Functor $\mathcal{P}_{\Bbbk} \rightarrow \{ \text{alg. rep. of } GL_n(\Bbbk) \}$
 $F \mapsto F(V)$
Map : $Ext^*_{\mathcal{P}_{\Bbbk}}(F, G) \rightarrow Ext^*_{GL_n(\Bbbk)}(F(V), G(V))$

Thm (FS, 97) $V = \mathbb{k}^n$ standard representation of $GL_n(\mathbb{k})$, $n \ge \deg F$, $\deg G$, evaluation induces isomorphism :

$$Ext^*_{\mathcal{P}_{\Bbbk}}(F,G) \xrightarrow{\simeq} Ext^*_{GL_n(\Bbbk)}(F(\Bbbk^n),G(\Bbbk^n))$$

Def: A strict polynomial functor is $F : \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that for all $V \in \mathcal{V}_{\Bbbk}$, $F_V : End_{\Bbbk}(V) \to End_{\Bbbk}(F(V))$ is polynomial.

Def : deg $F = \sup_{V \in \mathcal{V}_{\Bbbk}} \{ \deg F_V \}$ **Ex** : S^d , Λ^d , \otimes^d have degree d, $I^{(r)}$ has degree p^r .

 $\mathcal{P}_{\Bbbk}: \left\{ \begin{array}{c} \text{Objects} = \text{strict polyn functors of finite degree} \\ \text{Morphisms} = \text{natural transformations} \end{array} \right.$

Thm (FS, 97) $V = \mathbb{k}^n$ standard representation of $GL_n(\mathbb{k})$, $n \ge \deg F$, $\deg G$, evaluation induces isomorphism :

$$\mathit{Ext}^*_{\mathcal{P}_{\Bbbk}}(\mathsf{F},\mathsf{G}) \xrightarrow{\simeq} \mathit{Ext}^*_{\mathit{GL}_n(\Bbbk)}(\mathit{F}(\Bbbk^n),\mathit{G}(\Bbbk^n))$$

Def: A strict polynomial functor is $F : \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that for all $V \in \mathcal{V}_{\Bbbk}$, $F_V : End_{\Bbbk}(V) \to End_{\Bbbk}(F(V))$ is polynomial.

Def : deg $F = \sup_{V \in \mathcal{V}_{\Bbbk}} \{ \deg F_V \}$ **Ex** : S^d , Λ^d , \otimes^d have degree d, $I^{(r)}$ has degree p^r .

 $\mathcal{P}_{\Bbbk}: \left\{ \begin{array}{c} \text{Objects} = \text{strict polyn functors of finite degree} \\ \text{Morphisms} = \text{natural transformations} \end{array} \right.$

Thm (FS, 97) $V = \Bbbk^n$ standard representation of $GL_n(\Bbbk)$, $n \ge \deg F, \deg G$, evaluation induces isomorphism :

$$\mathit{Ext}^*_{\mathcal{P}_{\Bbbk}}(\mathsf{F},\mathsf{G}) \xrightarrow{\simeq} \mathit{Ext}^*_{\mathit{GL}_n(\Bbbk)}(\mathit{F}(\Bbbk^n),\mathit{G}(\Bbbk^n))$$

Def: A strict polynomial functor is $F : \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that for all $V \in \mathcal{V}_{\Bbbk}$, $F_V : End_{\Bbbk}(V) \to End_{\Bbbk}(F(V))$ is polynomial.

Def : deg $F = \sup_{V \in \mathcal{V}_{\Bbbk}} \{ \deg F_V \}$ **Ex** : S^d , Λ^d , \otimes^d have degree d, $I^{(r)}$ has degree p^r .

 $\mathcal{P}_{\Bbbk}: \left\{ \begin{array}{c} \text{Objects} = \text{strict polyn functors of finite degree} \\ \text{Morphisms} = \text{natural transformations} \end{array} \right.$

Thm (FS, 97) $V = \Bbbk^n$ standard representation of $GL_n(\Bbbk)$, $n \ge \deg F, \deg G$, evaluation induces isomorphism :

$$\mathsf{Ext}^*_{\mathcal{P}_{\Bbbk}}(\mathsf{F},\mathsf{G}) \xrightarrow{\simeq} \mathsf{Ext}^*_{\mathcal{GL}_n(\Bbbk)}(\mathsf{F}(\Bbbk^n),\mathsf{G}(\Bbbk^n))$$

▶ Slogan : $Ext^*_{\mathcal{P}_{\Bbbk}}(F, G)$ computes stable cohomology of $GL_n(\Bbbk)$.

Def : A strict polynomial functor is $F : \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that for all $V \in \mathcal{V}_{\Bbbk}$, $F_V : End_{\Bbbk}(V) \to End_{\Bbbk}(F(V))$ is polynomial.

Def : deg $F = \sup_{V \in \mathcal{V}_{\Bbbk}} \{ \deg F_V \}$ **Ex** : S^d , Λ^d , \otimes^d have degree d, $I^{(r)}$ has degree p^r .

 $\mathcal{P}_{\Bbbk}: \left\{ \begin{array}{c} \text{Objects} = \text{strict polyn functors of finite degree} \\ \text{Morphisms} = \text{natural transformations} \end{array} \right.$

Thm (FS, 97) $V = \mathbb{k}^n$ standard representation of $GL_n(\mathbb{k})$, $n \ge \deg F$, $\deg G$, evaluation induces isomorphism :

$$\mathsf{Ext}^*_{\mathcal{P}_{\Bbbk}}(\mathsf{F},\mathsf{G}) \xrightarrow{\simeq} \mathsf{Ext}^*_{\mathcal{GL}_n(\Bbbk)}(\mathsf{F}(\Bbbk^n),\mathsf{G}(\Bbbk^n))$$

- ► **Slogan** : $Ext^*_{\mathcal{P}_{\Bbbk}}(F, G)$ computes stable cohomology of $GL_n(\Bbbk)$.
- ► Computations in P_k much easier !

►		\mathcal{P}_{\Bbbk}	$\{alg. rep. of GL_n(\Bbbk)\}$
	Injectives	$S^{lpha_1}\otimes\cdots\otimes S^{lpha_n}$	$\Bbbk[GL_n(\Bbbk)]$
		finite dim.	infinite dim.

►		\mathcal{P}_{\Bbbk}	$\{alg. rep. of GL_n(\Bbbk)\}$
	Injectives	$S^{lpha_1}\otimes\cdots\otimes S^{lpha_n}$	$\Bbbk[GL_n(\Bbbk)]$
		finite dim.	infinite dim.
	Projectives	$\Gamma^{\alpha_1}\otimes\cdots\otimes\Gamma^{\alpha_n}$	None
		finite dim.	

►		$ $ \mathcal{P}_{\Bbbk}	$\{alg. rep. of GL_n(\Bbbk)\}$
	Injectives	$S^{\alpha_1}\otimes\cdots\otimes S^{\alpha_n}$	$\Bbbk[GL_n(\Bbbk)]$
		finite dim.	infinite dim.
	Projectives	$\Gamma^{\alpha_1}\otimes\cdots\otimes\Gamma^{\alpha_n}$	None
		finite dim.	
		$\Gamma^n(V) = ($	$(V^{\otimes n})^{\mathfrak{S}_n}$

►		\mathcal{P}_{\Bbbk}	$\{alg. rep. of GL_n(k)\}$
	Injectives	$S^{lpha_1}\otimes\cdots\otimes S^{lpha_n}$	$\mathbb{k}[GL_n(\mathbb{k})]$
		finite dim.	infinite dim.
	Projectives	$\Gamma^{\alpha_1}\otimes\cdots\otimes\Gamma^{\alpha_n}$	None
		finite dim.	

Why are computations in \mathcal{P}_{\Bbbk} easier?

	\mathcal{P}_{\Bbbk}	$\{alg. rep. of GL_n(k)\}$
Injectives	$S^{lpha_1}\otimes\cdots\otimes S^{lpha_n}$	$\mathbb{k}[GL_n(\mathbb{k})]$
	finite dim.	infinite dim.
Projectives	$\Gamma^{\alpha_1}\otimes\cdots\otimes\Gamma^{\alpha_n}$	None
	finite dim.	

• Powerful vanishing results in \mathcal{P}_{\Bbbk} .

Why are computations in \mathcal{P}_{\Bbbk} easier?

•		\mathcal{P}_{\Bbbk}	$\{alg. rep. of GL_n(k)\}$
	Injectives	$S^{lpha_1}\otimes\cdots\otimes S^{lpha_n}$	$\mathbb{k}[GL_n(\mathbb{k})]$
		finite dim.	infinite dim.
	Projectives	$\Gamma^{\alpha_1}\otimes\cdots\otimes\Gamma^{\alpha_n}$	None
		finite dim.	

• Powerful vanishing results in \mathcal{P}_{\Bbbk} .

Ex: $Ext^*_{\mathcal{P}_{\Bbbk}}(I^{(r)}, F \otimes G) = 0$ if F(0) = G(0) = 0.

Why are computations in \mathcal{P}_{\Bbbk} easier?

•		\mathcal{P}_{\Bbbk}	$\{alg. rep. of GL_n(k)\}$
	Injectives	$S^{lpha_1}\otimes\cdots\otimes S^{lpha_n}$	$\mathbb{k}[GL_n(\mathbb{k})]$
		finite dim.	infinite dim.
	Projectives	$\Gamma^{\alpha_1}\otimes\cdots\otimes\Gamma^{\alpha_n}$	None
		finite dim.	

• Powerful vanishing results in \mathcal{P}_{\Bbbk} .

Ex: $Ext^*_{\mathcal{P}_{k}}(I^{(r)}, F \otimes G) = 0$ if F(0) = G(0) = 0.

Remark :

Why are computations in \mathcal{P}_{\Bbbk} easier?

•		\mathcal{P}_{\Bbbk}	$\{alg. rep. of GL_n(\Bbbk)\}$
	Injectives	$S^{lpha_1}\otimes\cdots\otimes S^{lpha_n}$	$\Bbbk[GL_n(\Bbbk)]$
		finite dim.	infinite dim.
	Projectives	$\Gamma^{\alpha_1}\otimes\cdots\otimes\Gamma^{\alpha_n}$	None
		finite dim.	

• Powerful vanishing results in \mathcal{P}_{\Bbbk} .

Ex: $Ext^*_{\mathcal{P}_{k}}(I^{(r)}, F \otimes G) = 0$ if F(0) = G(0) = 0.

 $\begin{array}{l} \text{Remark : Characteristic } p = 3 : \\ Ext^*_{GL_1(\Bbbk)}(\Bbbk^{(1)}, \Bbbk^{\otimes 3}) = \left\{ \begin{array}{l} \& \text{ in degree } 0 \\ 0 \text{ otherwise} \end{array} \right. \end{array}$

Why are computations in \mathcal{P}_k easier?

•		\mathcal{P}_{\Bbbk}	$\{alg. rep. of GL_n(\Bbbk)\}$
	Injectives	$S^{lpha_1}\otimes\cdots\otimes S^{lpha_n}$	$\Bbbk[GL_n(\Bbbk)]$
		finite dim.	infinite dim.
	Projectives	$\Gamma^{\alpha_1}\otimes\cdots\otimes\Gamma^{\alpha_n}$	None
		finite dim.	

• Powerful vanishing results in \mathcal{P}_{\Bbbk} .

Ex: $Ext^*_{\mathcal{P}_{\Bbbk}}(I^{(r)}, F \otimes G) = 0$ if F(0) = G(0) = 0.

Remark : Characteristic p = 3 : $Ext^*_{GL_1(\Bbbk)}(\Bbbk^{(1)}, \Bbbk^{\otimes 3}) = \begin{cases} \& \text{ in degree } 0 \\ 0 \text{ otherwise} \end{cases}$ $Ext^*_{GL_2(\Bbbk)}((\Bbbk^2)^{(1)}, (\Bbbk^2)^{\otimes 3}) = \begin{cases} \& \text{ in degree } 1 \\ 0 \text{ otherwise} \end{cases}$

Why are computations in \mathcal{P}_{\Bbbk} easier?

•		\mathcal{P}_{\Bbbk}	$\{alg. rep. of GL_n(k)\}$
	Injectives	$S^{lpha_1}\otimes\cdots\otimes S^{lpha_n}$	$\mathbb{k}[GL_n(\mathbb{k})]$
		finite dim.	infinite dim.
	Projectives	$\Gamma^{\alpha_1}\otimes\cdots\otimes\Gamma^{\alpha_n}$	None
		finite dim.	

• Powerful vanishing results in \mathcal{P}_{\Bbbk} .

Ex : $Ext^*_{\mathcal{P}_{\Bbbk}}(I^{(r)}, F \otimes G) = 0$ if F(0) = G(0) = 0.

Remark : Characteristic p = 3 : $Ext^*_{GL_1(\Bbbk)}(\Bbbk^{(1)}, \Bbbk^{\otimes 3}) = \begin{cases} \& \text{ in degree } 0 \\ 0 \text{ otherwise} \end{cases}$ $Ext^*_{GL_2(\Bbbk)}((\Bbbk^2)^{(1)}, (\Bbbk^2)^{\otimes 3}) = \begin{cases} \& \text{ in degree } 1 \\ 0 \text{ otherwise} \end{cases}$ $Ext^*_{GL_2(\Bbbk)}((\Bbbk^n)^{(1)}, (\Bbbk^n)^{\otimes 3}) = 0 \text{ if } n \geq 3.$

Why are computations in \mathcal{P}_{\Bbbk} easier?

•		\mathcal{P}_{\Bbbk}	$\{alg. rep. of GL_n(k)\}$
	Injectives	$S^{lpha_1}\otimes\cdots\otimes S^{lpha_n}$	$\mathbb{k}[GL_n(\mathbb{k})]$
		finite dim.	infinite dim.
	Projectives	$\Gamma^{\alpha_1}\otimes\cdots\otimes\Gamma^{\alpha_n}$	None
		finite dim.	

• Powerful vanishing results in \mathcal{P}_{\Bbbk} .

Ex: $Ext^*_{\mathcal{P}_{\Bbbk}}(I^{(r)}, F \otimes G) = 0$ if F(0) = G(0) = 0.

Remark : Characteristic p = 3 : $Ext^*_{GL_1(\Bbbk)}(\Bbbk^{(1)}, \Bbbk^{\otimes 3}) = \begin{cases} \& \text{ in degree } 0 \\ 0 \text{ otherwise} \end{cases}$ $Ext^*_{GL_2(\Bbbk)}((\Bbbk^2)^{(1)}, (\Bbbk^2)^{\otimes 3}) = \begin{cases} \& \text{ in degree } 1 \\ 0 \text{ otherwise} \end{cases}$ $Ext^*_{GL_2(\Bbbk)}((\Bbbk^n)^{(1)}, (\Bbbk^n)^{\otimes 3}) = 0 \text{ if } n \ge 3.$ Such vanishings are really stable phenomena!

2. The collapsing conjecture
- 2. The collapsing conjecture
 - ► First success : **Thm :** (FS, 97) : $Ext^*_{\mathcal{P}_{\Bbbk}}(I^{(r)}, I^{(r)}) = \begin{cases} \& \text{ if } * = 2i, 0 \le i < p^r \\ 0 \text{ otherwise} \end{cases}$

- 2. The collapsing conjecture
 - ► First success : **Thm** : (FS, 97) : $E_r = Ext^*_{\mathcal{P}_k}(I^{(r)}, I^{(r)}) = \begin{cases} k \text{ if } * = 2i, 0 \le i < p^r \\ 0 \text{ otherwise} \end{cases}$

- 2. The collapsing conjecture
 - First success :
 Thm : (FS, 97) :

$$E_r = Ext^*_{\mathcal{P}_{\Bbbk}}(I^{(r)}, I^{(r)}) = \begin{cases} & \text{ if } s = 2i, 0 \le i < p^r \\ & 0 \text{ otherwise} \end{cases}$$

► Many computations of Ext^{*}_{P_k}(F^(r), G^(r)) : Franjou-Friedlander-Suslin-Scorichenko, Troesch, Chałupnik...

- 2. The collapsing conjecture
 - First success :
 Thm : (FS. 97) :

$$E_r = Ext^*_{\mathcal{P}_{\Bbbk}}(I^{(r)}, I^{(r)}) = \begin{cases} & \text{ if } s = 2i, 0 \le i < p^r \\ & 0 \text{ otherwise} \end{cases}$$

- ► Many computations of Ext^{*}_{P_k}(F^(r), G^(r)) : Franjou-Friedlander-Suslin-Scorichenko, Troesch, Chałupnik...
- ► After these computation, one could imagine a general formula.

- 2. The collapsing conjecture
 - First success : Thm : (FS, 97) :

 $E_r = Ext^*_{\mathcal{P}_{\Bbbk}}(I^{(r)}, I^{(r)}) = \begin{cases} \ \& \text{ if } * = 2i, 0 \le i < p^r \\ 0 \text{ otherwise} \end{cases}$

- ► Many computations of Ext^{*}_{Pk}(F^(r), G^(r)) : Franjou-Friedlander-Suslin-Scorichenko, Troesch, Chałupnik...
- ► After these computation, one could imagine a general formula.
 Notation : If V ∈ V_k, F ∈ P_k, denote by F_V the functor :

 $W \mapsto F(V \otimes W)$

- 2. The collapsing conjecture
 - ► First success : **Thm** : (FS, 97) : $E_r = Ext^*_{\mathcal{P}_{\Bbbk}}(I^{(r)}, I^{(r)}) = \begin{cases} \& \text{ if } * = 2i, 0 \le i < p^r \\ 0 \text{ otherwise} \end{cases}$
 - ► Many computations of Ext^{*}_{P_k}(F^(r), G^(r)) : Franjou-Friedlander-Suslin-Scorichenko, Troesch, Chałupnik...
 - ► After these computation, one could imagine a general formula.
 Notation : If V ∈ V_k, F ∈ P_k, denote by F_V the functor :

$$W \mapsto F(V \otimes W)$$

If V graded, F_V inherits a grading.

- 2. The collapsing conjecture
 - ► First success : **Thm** : (FS, 97) : $E_r = Ext^*_{\mathcal{P}_{\Bbbk}}(I^{(r)}, I^{(r)}) = \begin{cases} \& \text{ if } * = 2i, 0 \le i < p^r \\ 0 \text{ otherwise} \end{cases}$
 - ► Many computations of Ext^{*}_{P_k}(F^(r), G^(r)) : Franjou-Friedlander-Suslin-Scorichenko, Troesch, Chałupnik...
 - After these computation, one could imagine a general formula.
 Notation : If V ∈ V_k, F ∈ P_k, denote by F_V the functor :

$$W \mapsto F(V \otimes W)$$

If V graded, F_V inherits a grading.

Ex :
$$F = S^d$$
, $V = \Bbbk[0] \oplus \Bbbk[2]$, then
 $S_V^2(W) = S^2(W)[4] \oplus W \otimes W[2] \oplus S^2(W)[0].$

- 2. The collapsing conjecture
 - ► First success : **Thm** : (FS, 97) : $E_r = Ext^*_{\mathcal{P}_{\Bbbk}}(I^{(r)}, I^{(r)}) = \begin{cases} \& \text{ if } * = 2i, 0 \le i < p^r \\ 0 \text{ otherwise} \end{cases}$
 - ► Many computations of Ext^{*}_{P_k}(F^(r), G^(r)) : Franjou-Friedlander-Suslin-Scorichenko, Troesch, Chałupnik...
 - ► After these computation, one could imagine a general formula.
 Notation : If V ∈ V_k, F ∈ P_k, denote by F_V the functor :

$$W \mapsto F(V \otimes W)$$

If V graded, F_V inherits a grading.

Ex :
$$F = S^d$$
, $V = \Bbbk[0] \oplus \Bbbk[2]$, then
 $S_V^2(W) = S^2(W)[4] \oplus W \otimes W[2] \oplus S^2(W)[0].$

Conjecture (T, 2008) : $Ext^*_{\mathcal{P}_{\Bbbk}}(F^{(r)}, G^{(r)}) \simeq Ext^*_{\mathcal{P}_{\Bbbk}}(F, G_{\underline{E}_r}).$

Conjecture (T, 2008) : $Ext^*_{\mathcal{P}_{\Bbbk}}(F^{(r)}, G^{(r)}) \simeq Ext^*_{\mathcal{P}_{\Bbbk}}(F, G_{\underline{E}_r}).$

$$\textbf{Conjecture} \ (\mathsf{T},\ 2008): \textit{Ext}^*_{\mathcal{P}_\Bbbk}(\textit{F}^{(r)},\textit{G}^{(r)}) \simeq \textit{Ext}^*_{\mathcal{P}_\Bbbk}(\textit{F},\textit{G}_{\textit{E}_r}).$$

Remark : there exist spectral sequence

$$E_2^{p,q} = Ext_{\mathcal{P}_{\Bbbk}}^{p}(F, G_{\mathbf{E}_r}) \Rightarrow Ext_{\mathcal{P}_{\Bbbk}}^{p+q}(F^{(r)}, G^{(r)})$$

Conjecture is equivalent to collapsing at E_2 -page.

Conjecture (T, 2008) : $Ext^*_{\mathcal{P}_{\Bbbk}}(F^{(r)}, G^{(r)}) \simeq Ext^*_{\mathcal{P}_{\Bbbk}}(F, G_{\underline{E}_r}).$

Thm : (Chałupnik 2011) : Conjecture holds.

Conjecture (T, 2008) : $Ext^*_{\mathcal{P}_{\Bbbk}}(F^{(r)}, G^{(r)}) \simeq Ext^*_{\mathcal{P}_{\Bbbk}}(F, G_{\underline{E}_r}).$

Thm : (Chałupnik 2011) : Conjecture holds.

The proof relies on :

Conjecture (T, 2008) : $Ext^*_{\mathcal{P}_{\Bbbk}}(F^{(r)}, G^{(r)}) \simeq Ext^*_{\mathcal{P}_{\Bbbk}}(F, G_{\underline{E}_r}).$

Thm : (Chałupnik 2011) : Conjecture holds.

The proof relies on :

► A formality phenomenon (T).

Conjecture (T, 2008) : $Ext^*_{\mathcal{P}_{\Bbbk}}(F^{(r)}, G^{(r)}) \simeq Ext^*_{\mathcal{P}_{\Bbbk}}(F, G_{\underline{E}_r}).$

Thm : (Chałupnik 2011) : Conjecture holds.

The proof relies on :

 A formality phenomenon (T).
 Application : retrieve in a simple manner most of prior computations, and prove many new cases of the conjecture

Conjecture (T, 2008) : $Ext^*_{\mathcal{P}_{\Bbbk}}(F^{(r)}, G^{(r)}) \simeq Ext^*_{\mathcal{P}_{\Bbbk}}(F, G_{\underline{E}_r}).$

Thm : (Chałupnik 2011) : Conjecture holds.

The proof relies on :

- A formality phenomenon (T).
 Application : retrieve in a simple manner most of prior computations, and prove many new cases of the conjecture
- An explicit formula (C) for the adjoint of composition by $I^{(r)}$.

Conjecture (T, 2008) : $Ext^*_{\mathcal{P}_{\Bbbk}}(F^{(r)}, G^{(r)}) \simeq Ext^*_{\mathcal{P}_{\Bbbk}}(F, G_{E_r}).$

Thm : (Chałupnik 2011) : Conjecture holds.

The proof relies on :

- A formality phenomenon (T).
 Application : retrieve in a simple manner most of prior computations, and prove many new cases of the conjecture
- An explicit formula (C) for the adjoint of composition by $I^{(r)}$.

Application :

If $F, G \in \mathcal{P}_{\Bbbk}$, then for *n* big enough

$$\mathcal{H}^*\left(GL_n(\mathbb{k}), \operatorname{Hom}_{\mathbb{k}}(F(\mathbb{k}^n), G(\mathbb{k}^n))^{(r)}\right)$$

equals $H^*(GL_n(\mathbb{k}), Hom_{\mathbb{k}}(F(\mathbb{k}^n), G(\underline{E_r} \otimes \mathbb{k}^n)))$

Conjecture (T, 2008) : $Ext^*_{\mathcal{P}_{\Bbbk}}(F^{(r)}, G^{(r)}) \simeq Ext^*_{\mathcal{P}_{\Bbbk}}(F, G_{\underline{E}_r}).$

Thm : (Chałupnik 2011) : Conjecture holds.

The proof relies on :

- A formality phenomenon (T).
 Application : retrieve in a simple manner most of prior computations, and prove many new cases of the conjecture
- An explicit formula (C) for the adjoint of composition by $I^{(r)}$.

Application :

If $F, G \in \mathcal{P}_{\Bbbk}$, then for *n* big enough $(n \ge p^r \deg F, p^r \deg G)$

$$H^*(GL_n(\Bbbk), Hom_{\Bbbk}(F(\Bbbk^n), G(\Bbbk^n))^{(r)})$$

equals $H^*(GL_n(\mathbb{k}), Hom_{\mathbb{k}}(F(\mathbb{k}^n), G(\underline{E_r} \otimes \mathbb{k}^n)))$

3. Generalizations and applications

3. Generalizations and applications

Recall that the solution to vdK conjecture relies on universal classes

 $c[i] \in H^{2i}\left(GL_n(\Bbbk) , \ \Gamma^i(\mathfrak{gl}_n)^{(1)}\right)$

3. Generalizations and applications

Recall that the solution to vdK conjecture relies on universal classes

 $c[i] \in H^{2i}\left(GL_n(\Bbbk) , \ \Gamma^i(\mathfrak{gl}_n)^{(1)}\right)$

Observation : $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is not of the form $Hom_{GL_{n}(\mathbb{k})}(F(\mathbb{k}^{n}), G(\mathbb{k}^{n}))$

3. Generalizations and applications

Recall that the solution to vdK conjecture relies on universal classes

 $c[i] \in H^{2i}\left(GL_n(\Bbbk) , \ \Gamma^i(\mathfrak{gl}_n)^{(1)}\right)$

Observation : $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is not of the form $Hom_{GL_{n}(\Bbbk)}(F(\Bbbk^{n}), G(\Bbbk^{n}))$

Question : can we say something for more general coefficients?

 $\frac{3. \text{ Generalizations and applications}}{\text{Recall that the solution to vdK conjecture relies on universal classes}}$

 $c[i] \in H^{2i}\left(GL_n(\Bbbk) , \ \Gamma^i(\mathfrak{gl}_n)^{(1)}\right)$

Observation : $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is not of the form $Hom_{GL_{n}(\Bbbk)}(F(\Bbbk^{n}), G(\Bbbk^{n}))$ **Question** : can we say something for more general coefficients? $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is given by a strict polynomial bifunctor.

3. Generalizations and applications Recall that the solution to vdK conjecture relies on universal classes

 $c[i] \in H^{2i}\left(GL_n(\Bbbk) , \ \Gamma^i(\mathfrak{gl}_n)^{(1)}\right)$

Observation : $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is not of the form $Hom_{GL_{n}(\Bbbk)}(F(\Bbbk^{n}), G(\Bbbk^{n}))$

 $\ensuremath{\textbf{Question}}$: can we say something for more general coefficients ?

 $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is given by a strict polynomial bifunctor.

Def : (Franjou and Friedlander 2008) $B: \mathcal{V}_{\Bbbk}^{\mathrm{op}} \times \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that $V \mapsto B(V, W), W \mapsto B(V, W)$ are strict polynomial

 $\frac{3. \text{ Generalizations and applications}}{\text{Recall that the solution to vdK conjecture relies on universal classes}}$

 $c[i] \in H^{2i}\left(GL_n(\Bbbk) , \ \Gamma^i(\mathfrak{gl}_n)^{(1)}\right)$

Observation : $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is not of the form $Hom_{GL_{n}(\Bbbk)}(F(\Bbbk^{n}), G(\Bbbk^{n}))$ **Question** : can we say something for more general coefficients? $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is given by a strict polynomial bifunctor.

Def : (Franjou and Friedlander 2008) $B: \mathcal{V}_{\Bbbk}^{\mathrm{op}} \times \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that $V \mapsto B(V, W), W \mapsto B(V, W)$ are strict polynomial

 $B(\Bbbk^n, \Bbbk^n)$ has algebraic action of $GL_n(\Bbbk)$ via : $g \cdot b = B(g^{-1}, g)(v)$

Examples $(V, W) \mapsto \Gamma^{i}(Hom_{\Bbbk}(V, W)) \quad | \qquad \Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$

3. Generalizations and applications Recall that the solution to vdK conjecture relies on universal classes

 $c[i] \in H^{2i}\left(GL_n(\Bbbk) , \ \Gamma^i(\mathfrak{gl}_n)^{(1)}\right)$

Observation : $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is not of the form $Hom_{GL_{n}(\Bbbk)}(F(\Bbbk^{n}), G(\Bbbk^{n}))$ **Question** : can we say something for more general coefficients? $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is given by a strict polynomial bifunctor.

Def: (Franjou and Friedlander 2008) $B: \mathcal{V}_{\Bbbk}^{\mathrm{op}} \times \mathcal{V}_{\Bbbk} \to \mathcal{V}_{\Bbbk}$ such that $V \mapsto B(V, W), W \mapsto B(V, W)$ are strict polynomial

 $B(\Bbbk^n, \Bbbk^n)$ has algebraic action of $GL_n(\Bbbk)$ via : $g \cdot b = B(g^{-1}, g)(v)$

Examples
$$(V, W) \mapsto \Gamma^{i}(Hom_{\mathbb{k}}(V, W))$$
 $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ $(V, W) \mapsto Hom_{\mathbb{k}}(F(V), G(W))$ $Hom_{\mathbb{k}}(F(\mathbb{k}^{n}), G(\mathbb{k}^{n}))$

3. Generalizations and applications

Recall that the solution to vdK conjecture relies on universal classes

 $c[i] \in H^{2i}\left(GL_n(\Bbbk) \ , \ \Gamma^i(\mathfrak{gl}_n)^{(1)} \ \right)$

Observation : $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is not of the form $Hom_{GL_{n}(\Bbbk)}(F(\Bbbk^{n}), G(\Bbbk^{n}))$ **Question** : can we say something for more general coefficients? $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is given by a strict polynomial bifunctor.

3. Generalizations and applications Recall that the solution to vdK conjecture relies on universal classes

 $c[i] \in H^{2i}\left(GL_n(\Bbbk) , \, \Gamma^i(\mathfrak{gl}_n)^{(1)}\right)$

Observation : $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is not of the form $Hom_{GL_{n}(\Bbbk)}(F(\Bbbk^{n}), G(\Bbbk^{n}))$ **Question** : can we say something for more general coefficients? $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is given by a strict polynomial bifunctor.

Thm (T,2011) : The collapsing conjecture generalizes for bifunctors.

3. Generalizations and applications Recall that the solution to vdK conjecture relies on universal classes $c[i] \in H^{2i} (GL_n(\Bbbk), \Gamma^i(\mathfrak{gl}_n)^{(1)})$

Observation : $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is not of the form $Hom_{GL_{n}(\Bbbk)}(F(\Bbbk^{n}), G(\Bbbk^{n}))$ **Question** : can we say something for more general coefficients? $\Gamma^{i}(\mathfrak{gl}_{\mathfrak{n}})$ is given by a strict polynomial bifunctor.

Thm (T,2011) : The collapsing conjecture generalizes for bifunctors.

Cor (T,2011) : new simple proof of the existence of the universal classes.