Invariants, cohomologie et représentations fonctorielles des groupes algébriques

Antoine Touzé

Université Paris 13

Cours Peccot- leçon 3 mardi 6 avril 2010

Objectif: obtenir des informations sur $H^*(G, M)$

G schéma en groupes algébrique affine sur \Bbbk

M une représentation (rationnelle) de G

 $H^*(G,M) = Ext_G^*(\mathbb{k}^{triv},M)$ cohomologie rationnelle

Objectif: obtenir des informations sur $H^*(G, M)$

G schéma en groupes algébrique affine sur \Bbbk

M une représentation (rationnelle) de *G*

 $H^*(G,M) = Ext_G^*(\mathbb{k}^{triv},M)$ cohomologie rationnelle

Q1 : méthodes pour obtenir des calculs explicites ?

Q2 : renseignements qualitatifs généraux?

Objectif: obtenir des informations sur $H^*(G, M)$

G schéma en groupes algébrique affine sur \Bbbk

M une représentation (rationnelle) de G

 $H^*(G,M) = Ext_G^*(\mathbb{k}^{\mathrm{triv}},M)$ cohomologie rationnelle

Q1 : méthodes pour obtenir des calculs explicites ?

Q2 : renseignements qualitatifs généraux?

Leçon 2 : cas
$$G = GL_n$$

Thm (FS): evaluation
$$Ext^*_{\mathcal{P}}(F,G) \to Ext^*_{GL_n}(F(\Bbbk^n),G(\Bbbk^n))$$
 iso si $n \ge \deg F, \deg G$

 \Rightarrow Calculs explicites, $Ext_{\mathcal{P}}^*(F^{(r)}, G^{(r)})$.

Leçon 3 : Interactions entre

- théorie invariants
- cohomologie
- \bullet calculs dans \mathcal{P}_{\Bbbk}

 $\textbf{Le} \boldsymbol{\varsigma} \textbf{on 3}: \textbf{Interactions entre}$

- théorie invariants
- cohomologie
- ullet calculs dans \mathcal{P}_{\Bbbk}

Théorie classique des invariants :

Leçon 3 : Interactions entre

- théorie invariants
- cohomologie
- ullet calculs dans \mathcal{P}_{\Bbbk}

Théorie classique des invariants :

1. Résultats quantitatifs : Premiers théorèmes fondamentaux (Weyl \simeq 1940 en car 0, De Concini, Procesi 1976)

V rep. std de G, ($G = GL_n$, Sp_n , O_n , SO_n , SL_n) 1er Thm fond pour G donne générateurs de :

- $H^0(G, S^*(V^{\sharp \oplus d}))$ si $G \neq GL_n$
- $H^0(G, S^*(V^{\sharp \oplus d} \oplus V^{\oplus \ell}))$ si $G = GL_n$

Leçon 3 : Interactions entre

- théorie invariants
- cohomologie
 - ullet calculs dans \mathcal{P}_{\Bbbk}

Théorie classique des invariants :

1. Résultats quantitatifs : Premiers théorèmes fondamentaux (Weyl $\simeq 1940$ en car 0, De Concini, Procesi 1976)

V rep. std de G, ($G = GL_n$, Sp_n , O_n , SO_n , SL_n) 1er Thm fond pour G donne générateurs de :

- $H^0(G, S^*(V^{\sharp \oplus d}))$ si $G \neq GL_n$
- $H^0(G, S^*(V^{\sharp \oplus d} \oplus V^{\oplus \ell}))$ si $G = GL_n$

Ex : $V \simeq \mathbb{k}^{2n}$ muni de ω . $Sp_n \subset GL_{2n}$ préserve ω .

$$H^0(Sp_n, S^*(V^{\sharp \oplus d}))$$
 engendrée par $< i|j>, 1 \le i < j \le k$ où $< i|j>: V^{\oplus d} \rightarrow \mathbb{k}$ pol deg 2, invariant. $(v_1, \ldots, v_d) \mapsto \omega(v_i, v_j)$

2. Résultats qualitatifs : Engendrement fini des alg. invariants.

A. Réductivité

Groupes linéaires algébriques

 $\Bbbk = \overline{\Bbbk}$. G Z-fermé de $M_n(\overline{\Bbbk})$ ($\Leftrightarrow G$ schéma en gps **lisse** sur $\overline{\Bbbk}$)

$$G \subset M_n(\overline{\Bbbk})$$
 est réductif si $R_u(G) = \{e\}$. $(R_u(G) := + \operatorname{\mathsf{gd}} \operatorname{\mathsf{sg}} \operatorname{\mathsf{normal}} \operatorname{\mathsf{connexe}} \operatorname{\mathsf{unipotent}} \operatorname{\mathsf{de}} G)$

2. Résultats qualitatifs : Engendrement fini des alg. invariants.

A. Réductivité

Groupes linéaires algébriques

 $\Bbbk = \overline{\Bbbk}$. G Z-fermé de $M_n(\overline{\Bbbk})$ ($\Leftrightarrow G$ schéma en gps **lisse** sur $\overline{\Bbbk}$)

 $G \subset M_n(\overline{\Bbbk})$ est réductif si $R_u(G) = \{e\}$. $(R_u(G) := + \operatorname{\mathsf{gd}} \operatorname{\mathsf{sg}} \operatorname{\mathsf{normal}} \operatorname{\mathsf{connexe}} \operatorname{\mathsf{unipotent}} \operatorname{\mathsf{de}} G)$

Ex : gpes finis, $GL_n(\overline{\mathbb{k}})$, $SL_n(\overline{\mathbb{k}})$, $O_n(\overline{\mathbb{k}})$, $SO_n(\overline{\mathbb{k}})$, $Sp_n(\overline{\mathbb{k}})$, etc.

2. Résultats qualitatifs : Engendrement fini des alg. invariants.

A. Réductivité

Groupes linéaires algébriques

 $\Bbbk = \overline{\Bbbk}$. G Z-fermé de $M_n(\overline{\Bbbk})$ ($\Leftrightarrow G$ schéma en gps **lisse** sur $\overline{\Bbbk}$)

$$G\subset M_n(\overline{\Bbbk})$$
 est réductif si $R_u(G)=\{e\}.$ $(R_u(G):=+\mathrm{gd}\ \mathrm{sg}\ \mathrm{normal}\ \mathrm{connexe}\ \mathrm{unipotent}\ \mathrm{de}\ G)$

Ex : gpes finis, $GL_n(\overline{\mathbb{k}})$, $SL_n(\overline{\mathbb{k}})$, $O_n(\overline{\mathbb{k}})$, $SO_n(\overline{\mathbb{k}})$, $Sp_n(\overline{\mathbb{k}})$, etc.

Schémas en groupes algébriques

$$\Bbbk$$
 corps qcq. G schéma en gps aff. sur \Bbbk (i.e. $G : \Bbbk$ -alg $\to Gps$, $A \mapsto G(A)$, représ. par $\Bbbk[G]$.)

G réductif $\Leftrightarrow G(\overline{\mathbb{k}})$ réductif.

2. Résultats qualitatifs : Engendrement fini des alg. invariants.

A. Réductivité

Groupes linéaires algébriques

 $\Bbbk = \overline{\Bbbk}$. G Z-fermé de $M_n(\overline{\Bbbk})$ ($\Leftrightarrow G$ schéma en gps **lisse** sur $\overline{\Bbbk}$)

$$G \subset M_n(\overline{\Bbbk})$$
 est réductif si $R_u(G) = \{e\}$. $(R_u(G) := + \operatorname{\mathsf{gd}} \operatorname{\mathsf{sg}} \operatorname{\mathsf{normal}} \operatorname{\mathsf{connexe}} \operatorname{\mathsf{unipotent}} \operatorname{\mathsf{de}} G)$

Ex : gpes finis, $GL_n(\overline{\mathbb{k}})$, $SL_n(\overline{\mathbb{k}})$, $O_n(\overline{\mathbb{k}})$, $SO_n(\overline{\mathbb{k}})$, $Sp_n(\overline{\mathbb{k}})$, etc.

Schémas en groupes algébriques

$$\Bbbk$$
 corps qcq. G schéma en gps aff. sur \Bbbk (i.e. $G : \Bbbk$ -alg $\to Gps$, $A \mapsto G(A)$, représ. par $\Bbbk[G]$.)

G réductif $\Leftrightarrow G(\overline{\mathbb{k}})$ réductif.

Ex : Schémas en gpes finis (dim $k[G] < \infty$, ex : gps finis, $(GL_n)_r$). GL_n , SL_n , O_n , SO_n , SP_n , etc.

2. Résultats qualitatifs : Engendrement fini des alg. invariants.

A. Réductivité

Groupes linéaires algébriques

$$\Bbbk = \overline{\Bbbk}$$
. G Z-fermé de $M_n(\overline{\Bbbk})$ ($\Leftrightarrow G$ schéma en gps **lisse** sur $\overline{\Bbbk}$)

$$G \subset M_n(\overline{\mathbb{k}})$$
 est réductif si $R_u(G) = \{e\}$.
 $(R_u(G) := + \operatorname{\mathsf{gd}} \operatorname{\mathsf{sg}} \operatorname{\mathsf{normal}} \operatorname{\mathsf{connexe}} \operatorname{\mathsf{unipotent}} \operatorname{\mathsf{de}} G)$

Ex : gpes finis, $GL_n(\overline{\mathbb{k}})$, $SL_n(\overline{\mathbb{k}})$, $O_n(\overline{\mathbb{k}})$, $SO_n(\overline{\mathbb{k}})$, $Sp_n(\overline{\mathbb{k}})$, etc.

Schémas en groupes algébriques

```
\Bbbk corps qcq. G schéma en gps aff. sur \Bbbk (i.e. G : \Bbbk-alg \to Gps, A \mapsto G(A), représ. par \Bbbk[G].)
```

G réductif $\Leftrightarrow G(\overline{\mathbb{k}})$ réductif.

Ex : Schémas en gpes finis (dim $\mathbb{k}[G] < \infty$, ex : gps finis, $(GL_n)_r$). GL_n , SL_n , O_n , SO_n , SP_n , etc.

Origine du nom

Si car(\Bbbk) = 0, G réd $\Leftrightarrow G$ a des représ. semi-simples

B. Engendrement fini des invariants (EF)

Déf: G possède prop. (EF) si : $\forall A$ alg. com. t.f. + action G, $H^0(G,A)$ alg t.f.

B. Engendrement fini des invariants (EF)

Déf: G possède prop. (EF) si :

 $\forall A \text{ alg. com. t.f.} + \text{action } G, H^0(G, A) \text{ alg t.f.}$

Thm: G réductif \Leftrightarrow G possède prop. (EF)

B. Engendrement fini des invariants (EF)

```
Déf: G possède prop. (EF) si : \forall A alg. com. t.f. + action G, H^0(G,A) alg t.f.
```

(Waterhouse 1994) G géom. réd. $\Leftrightarrow G(\overline{\mathbb{k}})$ réd.

Thm: G réductif \Leftrightarrow G possède prop. (EF)

Contributions:

```
G lisse (i.e. \Bbbk[G] \otimes \overline{\Bbbk} réduite).

(Nagata 1964) G géom. réd. \Leftrightarrow G prop. (EF)

(Haboush 1975) G réd \Rightarrow G géom. réd. (Conj de Mumford)

(Popov 1979) G prop. (EF) \Rightarrow G réd

G qcq.

(Borsari, Ferrer Santos 1990) G géom. réd. \Leftrightarrow G prop. (EF).
```

Plan leçons 3 et 4

1. Extensions dans \mathcal{P}_k calculent cohom de SL_n , GL_n , O_n , Sp_n

$$\mathsf{Ex}: \mathit{G} = \mathit{Sp}_n, \ \mathit{V} \simeq \Bbbk^{2n} \ \mathsf{rep.} \ \mathsf{std}.$$

Thm (2009,T):

L'évaluation :
$$\bigoplus_{i\geq 0} Ext^*_{\mathcal{P}_{\Bbbk}}(\Gamma^i(\Lambda^2), F) \to H^*(Sp_n, F(V^{\sharp}))$$
 iso si $2n \geq degF$

Principe:

Ext de fcteurs
$$\simeq$$
 Cohom stable GL_n , $O_{n,n}$, Sp_n à coeff repres. fonctorielles

Plan leçons 3 et 4

1. Extensions dans $\mathcal{P}_{\mathbb{k}}$ calculent cohom de SL_n , GL_n , O_n , Sp_n

Ex :
$$G = Sp_n$$
, $V \simeq \mathbb{k}^{2n}$ rep. std.

Thm (2009,T) :

L'évaluation :
$$\bigoplus_{i\geq 0} Ext_{\mathcal{P}_{\Bbbk}}^*(\Gamma^i(\Lambda^2), F) \to H^*(Sp_n, F(V^{\sharp}))$$
 iso si $2n \geq degF$

Principe:

Ext de fcteurs
$$\simeq$$
 Cohom stable GL_n , $O_{n,n}$, Sp_n à coeff repres. fonctorielles

2. Conjecture de van der Kallen

Thm (2008, T,vdK) :
$$G$$
 réductif agit sur A alg. comm. t.f., alors $H^*(G,A)$ est t.f.

- Principe : se ramener à théorie des invariants, via suites spectrales.
 - ullet Pour arrêt s.s., calcul cohom explicite $(o \mathcal{P}_{\Bbbk})$

Cours Peccot - A. Touzé

6/8

Plan leçons 3 et 4

- 0. Annulations cohomologiques : bonnes filtrations
- 1. Extensions dans $\mathcal{P}_{\mathbb{k}}$ calculent cohom de SL_n , GL_n , O_n , Sp_n

Ex : $G = Sp_n$, $V \simeq \mathbb{k}^{2n}$ rep. std.

Thm (2009,T) :

L'évaluation :
$$\bigoplus_{i\geq 0} Ext_{\mathcal{P}_{\Bbbk}}^*(\Gamma^i(\Lambda^2), F) \to H^*(Sp_n, F(V^{\sharp}))$$
 iso si $2n \geq degF$

Principe:

Ext de fcteurs
$$\simeq$$
 Cohom stable GL_n , $O_{n,n}$, Sp_n à coeff repres. fonctorielles

2. Conjecture de van der Kallen

Thm (2008, T,vdK): G réductif agit sur A alg. comm. t.f., alors $H^*(G,A)$ est t.f.

Principe : • se ramener à théorie des invariants, via suites spectrales.

ullet Pour arrêt s.s., calcul cohom explicite $(o \mathcal{P}_{\Bbbk})$

Cours Peccot - A. Touzé

6/8

G schéma en gpes de Chevalley sur \Bbbk (= réd, lisse, connexe, déployé) Ex : $G=GL_n,\ Sp_n,\ SO_n$

On connait les *G*-mod simples :

G schéma en gpes de Chevalley sur \mathbb{k} (= réd, lisse, connexe, déployé) Ex : $G = GL_n$, Sp_n , SO_n

On connait les G-mod simples :

• car 0 :

 $L(\lambda)$, $\lambda \in X(T)_+$ poids dominants.

On peut définir les $L(\lambda)$ via une formule :

$$L(\lambda) := ind_{B^{-}}^{G} \mathbb{k}_{\lambda} := (\mathbb{k}_{\lambda} \otimes \mathbb{k}[G])^{B^{-}}$$

G schéma en gpes de Chevalley sur \Bbbk (= réd, lisse, connexe, déployé) Ex : $G = GL_n$, Sp_n , SO_n

On connait les G-mod simples :

• car 0 :

$$L(\lambda)$$
, $\lambda \in X(T)_+$ poids dominants.

On peut définir les $L(\lambda)$ via une formule :

$$L(\lambda) := ind_{B^-}^G \Bbbk_{\lambda} := (\Bbbk_{\lambda} \otimes \Bbbk[G])^{B^-}$$

• car p > 0:

$$L(\lambda)$$
, $\lambda \in X(T)_+$ poids dominants.

Mais la formule $ind_{B^-}^G \mathbb{k}_{\lambda}$ ne définit plus G-mod simple

$$\nabla_G(\lambda) := ind_{B^-}^G \mathbb{k}_{\lambda} = \text{module costandard associ\'e à } \lambda.$$

$$L(\lambda) = Soc \nabla_G(\lambda).$$

Modules simples vs modules costandard

▶ Tout G-mod M admet une filtr M_{α} , t.q. $Gr(M) = \bigoplus L(\lambda)$ **Pb**: comportement cohomologique des $L(\lambda)$ complexe

Modules simples vs modules costandard

- ▶ Tout G-mod M admet une filtr M_{α} , t.q. $Gr(M) = \bigoplus L(\lambda)$ **Pb**: comportement cohomologique des $L(\lambda)$ complexe
- ▶ Bon comportement cohomologique des $\nabla_G(\lambda)$ **Prop**: $H^*(G, \nabla_G(\lambda)) = 0 * > 0$ (conséquence thm Kempf)

Modules simples vs modules costandard

- ▶ Tout *G*-mod *M* admet une filtr M_{α} , t.q. $Gr(M) = \bigoplus L(\lambda)$ **Pb**: comportement cohomologique des $L(\lambda)$ complexe
- ▶ Bon comportement cohomologique des $\nabla_G(\lambda)$

Prop:
$$H^*(G, \nabla_G(\lambda)) = 0 *> 0$$
 (conséquence thm Kempf)

Déf: G-mod M admet une bonne filtration, si : il existe filtration M_{α} t.q. $Gr(M) = \bigoplus \nabla_{G}(\lambda)$.

Rq: en particulier $H^*(G, M) = 0$, * > 0.

Modules simples vs modules costandard

- ▶ Tout *G*-mod *M* admet une filtr M_{α} , t.q. $Gr(M) = \bigoplus L(\lambda)$ **Pb**: comportement cohomologique des $L(\lambda)$ complexe
- ▶ Bon comportement cohomologique des $\nabla_G(\lambda)$

Prop:
$$H^*(G, \nabla_G(\lambda)) = 0 *> 0$$
 (conséquence thm Kempf)

Déf: G-mod M admet une bonne filtration, si : il existe filtration M_{α} t.q. $Gr(M) = \bigoplus \nabla_{G}(\lambda)$.

Rq: en particulier $H^*(G, M) = 0$, * > 0.

Q : description explicite des $\nabla_G(\lambda)$?

Modules simples vs modules costandard

- ▶ Tout *G*-mod *M* admet une filtr M_{α} , t.q. $Gr(M) = \bigoplus L(\lambda)$ **Pb**: comportement cohomologique des $L(\lambda)$ complexe
- ▶ Bon comportement cohomologique des $\nabla_G(\lambda)$

Prop:
$$H^*(G, \nabla_G(\lambda)) = 0 *> 0$$
 (conséquence thm Kempf)

Déf: G-mod M admet une bonne filtration, si : il existe filtration M_{α} t.q. $Gr(M) = \bigoplus \nabla_{G}(\lambda)$.

Rq: en particulier $H^*(G, M) = 0$, * > 0.

Q : description explicite des $\nabla_G(\lambda)$?

 $ightharpoonup G = GL_n$: modules de Schur

Modules simples vs modules costandard

- ▶ Tout *G*-mod *M* admet une filtr M_{α} , t.q. $Gr(M) = \bigoplus L(\lambda)$ **Pb**: comportement cohomologique des $L(\lambda)$ complexe
- ▶ Bon comportement cohomologique des $\nabla_G(\lambda)$

Prop:
$$H^*(G, \nabla_G(\lambda)) = 0 *> 0$$
 (conséquence thm Kempf)

Déf: G-mod M admet une bonne filtration, si : il existe filtration M_{α} t.q. $Gr(M) = \bigoplus \nabla_{G}(\lambda)$.

Rq: en particulier $H^*(G, M) = 0$, * > 0.

Q: description explicite des $\nabla_G(\lambda)$?

 $ightharpoonup G = GL_n$: modules de Schur

 $ightharpoonup G = Sp_n : S^d(V^{\sharp})$

Modules simples vs modules costandard

- ▶ Tout *G*-mod *M* admet une filtr M_{α} , t.q. $Gr(M) = \bigoplus L(\lambda)$ **Pb**: comportement cohomologique des $L(\lambda)$ complexe
- ▶ Bon comportement cohomologique des $\nabla_G(\lambda)$

Prop:
$$H^*(G, \nabla_G(\lambda)) = 0 *> 0$$
 (conséquence thm Kempf)

Déf: G-mod M admet une bonne filtration, si : il existe filtration M_{α} t.q. $Gr(M) = \bigoplus \nabla_{G}(\lambda)$.

Rq: en particulier $H^*(G, M) = 0$, * > 0.

Q: description explicite des $\nabla_G(\lambda)$?

▶ $G = GL_n$: modules de Schur

 $G = Sp_n : S^d(V^\sharp)$

 $G = SO_n : S^d(V^{\sharp})/qS^{d-2}(V^{\sharp})$

Modules simples vs modules costandard

- ▶ Tout G-mod M admet une filtr M_{α} , t.g. $Gr(M) = \bigoplus L(\lambda)$ **Pb**: comportement cohomologique des $L(\lambda)$ complexe
- ▶ Bon comportement cohomologique des $\nabla_G(\lambda)$

Prop:
$$H^*(G, \nabla_G(\lambda)) = 0 * > 0$$
 (conséquence than Kempf)

(conséquence thm Kempf)

Déf:
$$G$$
-mod M admet une bonne filtration, si : il existe filtration M_{α} t.q. $Gr(M) = \bigoplus \nabla_{G}(\lambda)$.

Rq: en particulier
$$H^*(G, M) = 0$$
, $* > 0$.

Q: description explicite des $\nabla_G(\lambda)$?

- $ightharpoonup G = GL_n$: modules de Schur
- $ightharpoonup G = Sp_n : S^d(V^{\sharp})$
- $ightharpoonup G = SO_n : S^d(V^{\sharp})/gS^{d-2}(V^{\sharp})$
- ▶ $G = GL_n, SO_n, Sp_n$: représ du 1er Thm Fond a bonne filtr.