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Example ( [Broughton-1988])

f : C2 → C, f (x , y) = x + x2y .
One checks that the function f has no singular points.

We have f −1(ε) = {y = (ε− x)/x2} for ε 6= 0, thus f −1(ε)
homeo' C∗ := C \ {0}

and f −1(0) = {x(xy + 1) = 0}, thus f −1(0)
homeo' C t C∗.

The function f is not a locally trivial fibration over some neighbourhood of 0 ∈ C.
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Question: what about the real polynomial f : C2 → C, f (x , y) = x̄ + x2y ?
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As we have seen in the preceding lectures, the presence of a singularity is the only
reason for the non-triviality of the local fibration associated to a function germ g ,
where its local Milnor fibre has non-trivial reduced homology, while the fibre
containing the singularity is contractible. In the global affine setting, we have just
seen that the fibres of a polynomial function may not be all homeomorphic even in
the absence of singularities.

Let us state this more precisely:

Definition

One says that f is topologically trivial at t0 ∈ C if there is a neighbourhood D of
t0 ∈ C such that the restriction f| : f −1(D)→ D is a topologically trivial fibration.
If t0 does not satisfy this property, then we say that t0 is an atypical value and
that f −1(t0) is an atypical fibre. We shall denote by Atyp f the set of atypical
fibres of f .
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In the above example, we have seen that the set Atyp f contains the value 0 (one
may actually show that Atyp f = {0}). In general, there is the following inclusion:

f (Sing f ) ⊂ Atyp f ,

where Sing f := Z (Jac f ) denotes the singular locus of f , without any condition
on its dimension.

Since Sing f is an algebraic set, by the Tarski-Seidenberg theorem f (Sing f ) is
semi-algebraic subset of C, hence finite. It turns out that the set of atypical values
Atyp f is also finite.

The proof of the finiteness of the set of atypical values has been sketched by
Thom and uses the existence of Whitney stratifications. A complete proof along
these lines can be deduced from Verdier’s study on Bertini-Sard theorems.
Another proof using the resolution of singularities was given by Pham.
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It will turn out (in the end of this lecture) that in 2 variables one can give a very
precise meaning of singularities at infinity. But this is not the case in higher
dimensions: the problem of characterising the atypical non-singular values is still
open for n ≥ 3.

Another evidence of the impact of singularities at infinity is the following famous
open problem (a similar conjecture holds in Cn):

Conjecture (Jacobian Conjecture in dimension 2)

Let f , h ∈ C[x , y ]. If Sing(f , h) = ∅ then f is equivalent to x modulo an
automorphism of C2.
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This conjecture has the following equivalent formulation in terms of singularities
at infinity:

Conjecture

If f : C2 → C has no critical points but has singularities at infinity then, for any
polynomial h : C2 → C, the critical locus Sing(f , h) is not empty.

Proof.
If the polynomial f has no critical points and no singularities at infinity then f is a
trivial fibration (a theorem will come later), and thus all the fibres of f are
CW-complexes of dimension ≤ 1 with trivial homotopy groups, hence they are
contractible. In this case the Suzuki-Abhyankar-Moh theorem tells that f is
linearisable. The case which is still not covered is therefore that of singularities at
infinity.
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How topology is changing at infinity
Let f : Cn → C be a polynomial of degree d and let f̃ (x , x0) be the
homogenization of f by the new variable x0. Consider the closure in Pn ×C of the
graph of f , that is the hypersurface

X := {(x ; x0), t) ∈ Pn × C|F := f̃ (x , x0)− txd0 = 0}.

Let:
τ : X→ C

be the projection to C, let us denote by H∞ the hyperplane at infinity
{x0 = 0} ⊂ Pn. Let X∞ := X ∩ (H∞ × C) be the part at infinity of X. Note that
τ is a proper map, whereas f is not proper. We denote by Xt the fibre τ−1(t), for
some t ∈ C; this is a projective hypersurface in Pn.

One may identify Cn to X \ X∞ via the canonical map x
i7→ ([x : 1], f (x)) which

fits into the commuting diagram:

Cn i−→ X
f ↘ ↙τ

C
. (1)
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Exercise. Prove that the singularities of X are contained in X∞, namely
Sing(X) = Σ× C, where:

Σ := { ∂fd
∂x1

= · · · =
∂fd
∂xn

= 0, fd−1 = 0} ⊂ H∞,

where we have denoted by fk the degree k homogeneous part of f .

If SingXt denotes the singular locus of the projective hypersurface Xt , then show
that Σ = H∞ ∩ SingXt , ∀t ∈ C.

The singularities of f , i.e. the affine set Sing f := Z ( ∂f∂x1 , · · · ,
∂f
∂xn

), can be
identified by the above diagram (1), with the singularities of τ on X \ X∞.

Exercise Prove that Sing f ∩ H∞ ⊂ Σ, where Sing f denotes the closure (analytic
or algebraic, the same) of Sing f in Pn. In particular dim Sing f ≤ 1 + dim Σ.
What happens when Σ = ∅?
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In case f has isolated singularities, the quotient algebra:

C[x1, . . . , xn]/Jac(f )

is a finite dimensional complex vector space and its dimension µ(f ) will be called
global Milnor number.

Exercise Prove that µ(f ) is the total sum of the local Milnor numbers of f at its
singular points.

Remark (The case Σ = ∅)
In this case SingX = ∅, which also implies that f has at most isolated singularities.
The restriction of τ to X \ X∞ has a singular set equal to Sing f , which is a
discrete set. Moreover the restriction of τ to X∞ is a submersion, since X∞ is a
product space by the variable t, and τ is also a submersion on the neighbourhood
N ∩ (X \ X∞), where N is the complement of a large enough ball BM in Cn.
Apply now Ehresmann’s theorem to the manifold N ∩ (X \ X∞) with boundary
N ∩ X∞ and to the submersive proper map τ . The conclusion is that the
restriction τ : (N ∩ (X \ X∞),X∞)→ C is a locally trivial fibration.
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Definition

We say that f is topologically trivial at infinity at the value t0 ∈ C if there exists a
compact set K ⊂ Cn and a disk Dδ centred at t0 such that the restriction:

f| : (Cn \ K ) ∩ f −1(Dδ)→ Dδ (2)

is a trivial topological fibration.

In the case Σ = ∅ discussed above, we say that thre are no “singularities at
infinity”, more precisely we have that our polynomial is topologically trivial at
infinity at any value t ∈ C. This implies that Atyp f = f (Sing f ).
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Case dim Σ = 0.

Remark that any non-constant polynomial f : C2 → C verifies the condition
dim Σ = 0.

Unlike the case Σ = ∅ treated before, here we need to replace Ehresmann’s
theorem by the more powerful Thom Isotopy theorem for spaces endowed with a
Whitney stratification.
Here we work with a semi-algebraic Whitney stratification W of X having
X \X∞ ' Cn as one of the strata. The other strata are lower dimensional and are
included in the hyperplane at infinity X∞. Under our hypothesis, they are as
follows: X \X∞, X∞ \ (Σ×C), (Σ×C) \ R and R, where R is some finite set of
points.
Our proper map τ is therefore submersive on each stratum of W except at the set
Sing f and at the point strata R. The points where the transversality of τ to
strata fails, are called W-singularities.
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The set of all W-singularities is denoted by Sing∞ f ; this depends on the chosen
coordinates on Cn. This construction can be done in general for any f , namely
endow X with (the coarsest) Whitney stratification at infinity, and define Sing∞ f .

The image Ainf := τ(Sing∞ f ) is a finite subset of C because the restriction of τ
to each stratum is a semi-algebraic function, thus its critical values are finite
many, again by Tarski-Seidenberg.

By the Thom Isotopy theorem we get the inclusion Atyp f ⊂ Ainf ∪ f (Sing f ), and
in particular that Atyp f is a finite set. This proof works in general for any f .
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The global bouquet theorem for isolated W-singularities at
infinity
Theorem ([ST-1995])
Let f : Cn → C be a polynomial with isolated W-singularities at infinity, i.e.
dim(Sing∞ f ∪ Sing f ) ≤ 0. Then the general fibre of f is homotopy equivalent to
a bouquet of spheres of real dimension n − 1.

Sketch of proof. Let c 6∈ Atyp f , let Db denote a small enough disk centred at
b ∈ Atyp f . Let FV := f −1(V ) and XV := τ−1(V ) for some V ⊂ C. Let cb be
some point of the boundary ∂Db. We get like in the proof by Brieskorn of the
local bouquet theorem (lecture B1), by deformation retraction and excision, the
following splitting:

H̃i (Fc) = Hi+1(Cn,Fc) = ⊕b∈Atyp fHi+1(FDb
,Fcb).

We stick to such a term: for simplicity, let D be one of the discs Db and let
u ∈ ∂D be fixed. We have, according to [Broughton-1988, Proposition 5.2] the
following Lefschetz type duality:

H∗(FD ,Fu) ∼= H2n−∗(XD ,Xu).
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It remains to prove that H∗(XD ,Xu) is concentrated. The stratified singularities
of τ|XD

are included in Xb; let those be denoted by a1, . . . , ak . We may choose a
good neighbourhood of ai , say of the form Bi ∩ XD , where Bi is a small enough
closed ball in some local chart and also suppose D small enough such that the
restriction τ : Bi ∩ XD∗ → D∗ is a well-defined Milnor-Lê locally trivial fibration.

Since the fibres are transversal to the semi-algebraic Whitney stratification
induced by W on ∂Bi ∩ XD , there is a fibration on the exterior of the balls:

τ : XD \ ∪i=1,kBi → D

This is a trivial fibration since τ is a submersion (no singularities of the map) and
it is proper. By an excision, we get the isomorphism:

H∗(XD ,Xu) = ⊕i=1,kH
∗(Bi ∩ XD ,Bi ∩ Xu) = ⊕i=1,k H̃

∗−1(Bi ∩ Xu).

Definition
We denote by λa the number of spheres in the Milnor fibre of the germ
τ : (X, a)→ (C, b) and call it the Milnor-Lê number (at infinity) at a.
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of τ|XD

are included in Xb; let those be denoted by a1, . . . , ak . We may choose a
good neighbourhood of ai , say of the form Bi ∩ XD , where Bi is a small enough
closed ball in some local chart and also suppose D small enough such that the
restriction τ : Bi ∩ XD∗ → D∗ is a well-defined Milnor-Lê locally trivial fibration.

Since the fibres are transversal to the semi-algebraic Whitney stratification
induced by W on ∂Bi ∩ XD , there is a fibration on the exterior of the balls:

τ : XD \ ∪i=1,kBi → D

This is a trivial fibration since τ is a submersion (no singularities of the map) and
it is proper. By an excision, we get the isomorphism:

H∗(XD ,Xu) = ⊕i=1,kH
∗(Bi ∩ XD ,Bi ∩ Xu) = ⊕i=1,k H̃

∗−1(Bi ∩ Xu).
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The fibre Bi ∩ Xu is the Milnor fibre of the Milnor-Lê fibration of the map germs
τ : (X, a)→ (C, b), and X is a hypersurface.
The general local Bouquet Theorem says that in this case the Milnor fibre of a
function germ with isolated singularity on a hypersurface of dimension n has the
reduced homology concentrated in dimension n − 1.

In order to finish the proof of the global affine bouquet theorem, we need to pass
from homology to homotopy type, and this is done like in Milnor’s proof of the
local Bouquet Theorem (see Course B1). �
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Notations. µ(f ) = the total Milnor number of f , λ(f ) :=
∑

a∈X∞ λa,
µFb

(f ) :=
∑

v∈Fb
µv (f ), λFb

(f ) :=
∑

a∈X∞∩Xb
λa.

The above proof shows that the relative homology H∗(FDb
,Fb) is concentrated in

dimension n and its rank is equal to λFb
(f ) + µFb

(f ). Applying the additive
function “Euler characteristic” to the homology exact sequence of the pair
(FDb

,Fu), where u ∈ ∂Db, one gets:

(−1)n(λFb
(f ) + µFb

(f )) = χ(FDb
)− χ(Fu)

and one also has χ(FDb
) = χ(Fb). We have obtained:

Corollary
Let f be a polynomial with isolated W-singularities at infinity. Then:

1 The number of spheres in the structure of a general fibre Fgen
ht' ∨Sn−1 is

equal to µ(f ) + λ(f ).
2 χ(Fb)− χ(Fgen) = (−1)n(λFb

(f ) + µFb
(f )). �
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Polar number interpretation
Let us consider the map germ:

(x0, τ) : (X ∩ ({xi 6= 0} × C), y)→ (C2, 0),

at some point y ∈ X∞ in the chart Ui × C, for i = 1, . . . , n. Consider the polar
locus of the map (x0, τ):

Γ(x0, τ)(i)y := closure[Sing(x0, τ)|Cn∩(Ui×K) \ Sing τ|Cn∩(Ui×C)] ⊂ X,

viewed as a germ at y .

If f has isolated W-singularities at infinity, then Γ(x0, τ)
(i)
y is a curve or empty, for

any y ∈ X∞. Using the “box” neighbourhood like in the local Bouquet Theorem,
we obtain:

Corollary

If f has isolated W-singularities at infinity, then the polar number λaj is equal to
the intersection number multaj (Xb, Γ(x0, τ)

(j)
aj ). In particular, the latter does not

depend on the chart Uj .
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One may then prove the following implication:

Γ(x0, τ)(i)y 6= ∅ =⇒ y is a W-singularity at infinity of f . (3)

One may also prove that the set of points y such that Γ(x0, τ)
(i)
y 6= ∅ for some i is

a finite set and that the polar loci Γ(x0, τ)
(i)
y are of dimension ≤ 1.

In case of isolated W-singularities one may prove the following equivalence:

Theorem ([ST-1995, Ti-1999, Ti-2007])
Let y ∈ X∞ where τ has a W-singularity at infinity which is at most isolated.
Then y is not a singularity at infinity of f if and only if Γ(x0, τ)

(i)
y = ∅ for all i . �

The implication “⇐” is proved in 4 steps, and we refer to [ST-1995], [Ti-1999],
[Ti-2007] for the details of the proof and for the definition of the notions evoked
here: one first shows that if a regular fibre Fb has no atypical points at infinity,
then it is t-regular. It turns out that t-regularity implies ρ-regularity. The later
allows one to produce a trivialisation of the fibration of the restriction of P to the
complement of a large enough ball B intersected by a tube P−1(D), where D is a
small enough disk centred at b. Finally, this trivialisation extends to the tube
P−1(D).
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By chaining together the above corollaries and the last theorem, we obtain:

Theorem
Let f be a polynomial with isolated W-singularities at infinity. Then b ∈ Atyp f if
and only if χ(Fb) 6= χ(Fgen).

This is the generalisation of the following result obtained by Suzuki [Suzuki-1974],
and rediscovered by Hà and Lê in 1984:

Theorem ([Suzuki-1974])
Let f : C2 → C be a polynomial function and let λ ∈ C\f (Sing f ). Then
λ 6∈ Atyp f if and only if the Euler characteristic of the fibres χ(Ft) is constant for
t varying in some small neighbourhood of λ.
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Milnor number jump interpretation

Consider a non-constant polynomial of two variables f : C2 → C. Let us assume
that f has at most isolated singularities (at least on the fibre Fb in the
neighbourhood of which we study the variation of topology).
We have seen that in case SingX is not empty, it is a finite collection of lines⊔

j{pj} × C, where pj is an isolated singularity of the fibre Xt := τ−1(t) for all
t ∈ C.
We denote by µpj (Xt) its Milnor number. This number is constant along the line
{pj} × C, except for a finite number of special values of t. Let then µpj ,gen be the
generic value of µpj (Xt) along the line.
At some special value t = b, we have: µpj (Xb) > µpj ,gen.
The atypical points at infinity of f are then precisely the points (pj , b) where the
Milnor number jumps, namely the following difference is positive1:

λpj (b) = µpj (Xb)− µpj ,gen (4)

We then have Atyp f = f (Sing f ) ∪ {b ∈ C | ∃p ∈ Σ, λp(b) > 0}.

1see e.g. [ST-1995], and [Ti-2007, Prop. 3.3.6] for a more general statement.
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