
Abstract

We show how the polar degree of an arbitrarily singular projective hypersurface
can be decomposed as a sum of non-negative numbers which represent local
vanishing cycles.
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Lat us remember from Part 1 the statement of Huh’s breakthrough result in [Huh,
Theorem 2 and its Proof]:

Theorem (Huh, 2013)
Let V ⊂ Pn be a hypersurface with isolated singularities. For any general
hyperplane Hp passing through some singular point p ∈ Sing(V ), such that V is
not a cone of apex p, one has:

pol(V ) = µ〈n−2〉
p (V ) + rank Hn(Pn\V , (Pn\V ) ∩Hp) (1)

The first term is the local invariant µ〈n−2〉
p (V ) ≥ 0 counting a certain type of

vanishing cycles, but the second term rank Hn(Pn\V , (Pn\V ) ∩Hp) is a global
invariant.

There is the following challenge:

Express pol(V ) as a sum of non-negative local invariants.
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Admissible hyperplanes

Let f : Cn+1 → C is some non-constant homogeneous polynomial function, and
V := {f = 0} ⊂ Pn be endowed with a Whitney stratification W. Let also
ˆ̀ : Cn+1 → C be a linear function defining a hyperplane H ∈ Cn+1 and let
H ⊂ Pn denote its corresponding projective hyperplane.

Definition

We say that the affine hyperplane H ⊂ Cn+1 through 0 (or that the projective
hyperplane H ⊂ Pn) is admissible for f if:
(i) H is transversal to all strata of W except at finitely many points.
(ii) the polar locus Γ(ˆ̀, f ) ⊂ Cn+1 is either of dimension 1, or it is empty.
A hyperplane H which is admissible for f and contains a certain point p ∈ V will
be called admissible for f at p.

By a linear change of coordinates, we may and will assume that p = [1; 0; · · · ; 0].
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Let us remind the definition of the polar locus:

Γ(ˆ̀, f ) :=

{
x ∈ Cn+1 | rank

[
∂f
∂x0

(x) ∂f
∂x1

(x) · · · ∂f
∂xn

(x)

0 a1 · · · an

]
< 2
}
\{f = 0}

(2)

Remark on generic hyperplanes

The set of admissible hyperplanes contains by definition the set of generic
hyperplanes H relative to V , namely hyperplanes which are transversal to all
strata of the stratification PW of V , since in this case:
• the non-transversality locus is empty, thus condition (i) is fulfilled,
• the polar locus Γ(ˆ̀, f ) is 1-dimensional or empty by the Generic Polar Curve

Lemma, thus condition (ii) is fulfilled too.
And we remind (from Part 1 of the lecture) that in this case we have the equality:

mult0Γ(ˆ̀, f ) = pol(V ).
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Here we do not work with transversal hyperplanes, but with admissible ones. For
them, we have the following fundamental result telling that the hyperplanes
admissible for f at some singular point p, even if they are non-generic, they have a
genericity property:

Theorem (Constrained polar curve theorem, [Siersma-Tibăr])

Let f : Cn+1 → C, n ≥ 2, be a homogeneous polynomial with dim Sing f > 0. Let
p ∈ SingV such that V := {f = 0} ⊂ Pn is not a cone of apex p.
Then there is a Zariski open dense subset Ω̂p of the set of hyperplanes through p

such that the polar locus Γ(ˆ̀, f ) ⊂ Cn+1 is either a curve for all ˆ̀∈ Ω̂p, or it is
empty for all ˆ̀∈ Ω̂p.
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The local Milnor-Lê number αp(V ,H).

In some affine chart Cn ⊂ Pn containing p ∈ V , let us consider a linear function
` : Cn → C such that `(p) = 0, and let Hs := {` = s} for s ∈ C, where H0 := H.
Let H ∈ Pn be the projective closure of H. It contains the point p.

We assume that H is transversal to all the strata of the stratification W of V in
the neighbourhood of p, except at the point p itself. This is equivalent to saying
that the restriction of the function ` to some small neighbourhood Bε of p in Pn

has a stratified isolated singularity at p with respect to W. Consequently, it’s local
Milnor-Lê fibre Bε ∩ (V ∩ Hs), for some s close enough to 0, has the homotopy
type of a bouquet of spheres1 of dimension n − 2.

We denote it’s Milnor-Lê number by αp(V ,H).

If Hgen is a general hyperplane through p, then αp(V ,Hgen) is the Milnor number
of the complex link of V at p. We will denote it by αp(V ).

1See the general Bouquet theorem in Lecture B1.
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By its definition, the integer αp(V ,H) is non-negative. It depends only on the
reduced structure of V at p, and on the chosen hyperplane H.

Let fp = 0 be a local equation of the reduced hypersurface germ (V , p). Then
αp(V ,H) equals the polar multiplicity of fp with respect to ` at p, namely:

αp(V ,H) = multp(H0, Γ(`, fp)), (3)

This polar intersection multiplicity might be higher than the generic polar number
multpΓ(`gen, fp) = αp(V ).

Exercice. Prove that αp(V ) = 0 except of finitely many points p ∈ V , for any
projective hypersurface V .
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Lemma
Let H be admissible for f . Then αp(V ,H) > 0 =⇒ V 6tp H.

Proof.
Our claim is equivalent to the following:
V tp H =⇒ Γp(`, fp) = ∅ and V 6tp H =⇒ dimp Γp(`, fp) ≤ 1.
If p is a point of stratified transversal intersection V tp H, then the polar locus
Γp(`, fp) is empty as a direct consequence of its definition.
Let now V 6tp H. Since p is an isolated non-transversality, the polar locus
Γp(`, fp) intersects Bp ∩ V at most at p, for some small enough ball Bp centred at
p. Thus dim Γp(`, fp) ≤ 1.

The above lemma shows in particular that α(V ,H) is a well-defined non-negative
integer.

Definition
Let H be an admissible hyperplane for V . We define:

α(V ,H) :=
∑

p∈V∩H

αp(V ,H). (4)
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Local vanishing cycles of a polynomial Cn → C
By some linear change of coordinates, one may assume that the admissible
hyperplane H has equation xn = 0. We consider it as the hyperplane at infinity for
the coordinate system on Cn = Pn\H.
We then consider the polynomial:

PH : Cn → C, PH(x0, . . . , xn−1) := f (x0, . . . , xn−1, 1).

Exercice. Show that if H is admissible then degPH = deg f = d .

Let X := {f (x0, . . . , xn)− txdn = 0} ⊂ Pn × C. Let

τ : X→ C

be the projection on the second factor, and let us denote by Xt := τ−1(t) its
fibres. The set X is precisely the closure in Pn × C of the graph of PH and

X∞ := X ∩ (H× C) = (V ∩H)× C

is the divisor at infinity.
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The non-isolated singular locus of the fibre X0 = V (if there is any) intersects the
hyperplane at infinity H. We are interested in another type of singularities, the
so-called singularities at infinity of the fibres Xt for t 6= 0.

Definition (Partial Thom stratification at infinity, see e.g. [Ti3])
A locally finite stratification of X∞ such that each stratum is Thom (axn)-regular
with respect to the smooth stratum X\X∞ is called a ∂-Thom stratification at
infinity. This is independent on the affine chart.

Definition (t-singularities at infinity, [Ti3])
Let G be a ∂-Thom stratification at infinity of X, and let η ∈ X∞. If the map
τ : X→ C is transversal to the stratification G at η then we say that PH is
t-regular at infinity at this point. Otherwise we say that PH has a t-singularity at
infinity at η.

We say that η is an isolated t-singularity at infinity of PH if the map τ : X→ C
has an isolated non-transversality at η with respect to G, and if moreover the map
τ has no other singularity on X\X∞ in the neighbourhood of η.
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Theorem ([Siersma-Tibăr])
Let V := {f = 0} ⊂ Pn. If the hyperplane H = {xn = 0} is admissible for f , then
the polynomial PH has, outside P−1

H (0), only isolated t-singularities and only
isolated affine singularities. The set of these singular points is finite.

Let
βaff(V ,H) :=

∑
v∈(Sing PH)\V

µv (PH)

be the total Milnor number of PH outside its fibre over 0.

At each point (q, t) ∈ X∞ which is an isolated t-singularity at infinity, one may
define a number of “vanishing cycles at infinity” λ(q, t) (see [Ti3]). Let then

β∞(V ,H) :=
∑

t 6=0,q∈V∩H

λ(q, t)

denote the sum of the numbers of vanishing cycles at infinity λ(q, t) of the
isolated t-singularities at infinity outside the fibre X0 = V .
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We may then define the non-negative finite integer :

β(V ,H) := βaff(V ,H) + β∞(V ,H), (5)

The quantisation theorem for the polar degree may be stated as follows:

Theorem ([Siersma-Tibăr])
Let V := {f = 0} ⊂ Pn be a projective hypersurface and let H be an admissible
hyperplane for V . Then:

pol(V ) = α(V ,H) + β(V ,H). (6)

This formula is a sum of non-negative numbers representing local vanishing cycles.
It yields lower bounds for the polar degree, actually any of the terms is a lower
bound. This recovers in particular Huh’s lower bound.
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Proof of the theorem

As a general fact, the bifurcation set BP ⊂ C of any polynomial function
P : Cn → C is finite. Let then D0 ⊂ C be some disk such that BPH ∩ D0 = {0}.
By using that PH has isolated singularities outside the fibre over 0, including at
infinity, it follows that the relative homology H∗(Cn,P−1

H (D0)) is concentrated in
dimension n. Moreover:
the top Betti number bn−1(P−1

H (D0)) = bn(Cn,P−1
H (D0)) is precisely β(V ,H).

Since the tube P−1
H (D0) and the fibre P−1

H (0) have the same Euler characteristic,
we have:

(−1)nrank Hn(Cn,P−1
H (D0)) = χ(Cn,P−1

H (D0)) = 1−χ(P−1
H (D0)) = 1−χ(V \H).

Exercice. Why χ(P−1
H (D0)) = χ(P−1

H (0))?
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Consider the germ of a pencil Pδ of hyperplanes of Pn which contains our
admissible hyperplane H, parametrised by an arbitrarily small disk δ ⊂ C ⊂ P1

centred at 0, where π : Pδ\A→ δ is the projection to the parameter, such that
π(H) = 0.

We require that Pδ is generic with respect to V , in the sense that the base locus
A of this pencil Pδ (which is of dimension n − 2) is transversal to the Whitney
stratification W of V ⊂ Pn, and more precisely transversal to the induced
stratification WH on the slice V ∩H. The choice of the axis A covers a
Zariski-open subset of all hyperplane slices of V ∩H.

The general member Hgen of this pencil germ is a general hyperplane with respect
to V . By definition 4 of the polar degree, we therefore have:

(−1)n pol(V ) = 1− χ(V \Hgen).
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Taking the difference, we obtain:

(−1)n[pol(V )− rank Hn(Cn,P−1
H (D0))] =

= χ(V \H)− χ(V \Hgen) = χ(V ∩Hgen)− χ(V ∩H).

Since the axis A of the pencil Pδ is stratified-transversal to W and the stratified
singularities of the pencil Pδ outside A are precisely the set of points of
non-transversality SingW(V ∩H), it follows that the variation of the topology of
the pencil Pδ at its fibre H is localisable, by excision, at the points
q ∈ SingW(V ∩H).

In homology, this variation is concentrated in dimension n − 1, and its
contribution is the number αq(V ,H) defined at (6).
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χ(V ∩Hgen)− χ(V ∩H) = −
∑

q∈SingW (V∩H)

χ(Bq ∩ V ∩ Pδ,Bq ∩ V ∩Hgen)

= (−1)n
∑

q∈SingW (V∩H)

αq(V ,H)

for some small enough balls Bq at q ∈ V ∩H

From this we obtain:

β(V ,H) = rank Hn(Cn,P−1
H (D0)) = pol(V )− α(V ,H)

which ends the proof of our formula.
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