Abstract

We show how the polar degree of an arbitrarily singular projective hypersurface can be decomposed as a sum of non-negative numbers which represent local vanishing cycles.

Polar degree of projective hypersurfaces - Part 4 -

Mihai Tibăr

Polar degree and vanishing cycles

ヨトィヨト

Lat us remember from Part 1 the statement of Huh's breakthrough result in [Huh, Theorem 2 and its Proof]:

Theorem (Huh, 2013)

Let $V \subset \mathbb{P}^n$ be a hypersurface with isolated singularities. For any general hyperplane \mathcal{H}_p passing through some singular point $p \in \text{Sing}(V)$, such that V is not a cone of apex p, one has:

$$\mathsf{pol}(V) = \mu_{\rho}^{\langle n-2 \rangle}(V) + \mathsf{rank} \ H_n(\mathbb{P}^n \backslash V, (\mathbb{P}^n \backslash V) \cap \mathcal{H}_{\rho}) \tag{1}$$

Lat us remember from Part 1 the statement of Huh's breakthrough result in [Huh, Theorem 2 and its Proof]:

Theorem (Huh, 2013)

Let $V \subset \mathbb{P}^n$ be a hypersurface with isolated singularities. For any general hyperplane \mathcal{H}_p passing through some singular point $p \in \text{Sing}(V)$, such that V is not a cone of apex p, one has:

$$\mathsf{pol}(V) = \mu_p^{\langle n-2 \rangle}(V) + \mathsf{rank} \ H_n(\mathbb{P}^n ackslash V, (\mathbb{P}^n ackslash V) \cap \mathcal{H}_p)$$
 (1)

E 5 4 E 5

The first term is the local invariant $\mu_{\rho}^{\langle n-2 \rangle}(V) \ge 0$ counting a certain type of vanishing cycles, but the second term rank $H_n(\mathbb{P}^n \setminus V, (\mathbb{P}^n \setminus V) \cap \mathcal{H}_{\rho})$ is a global invariant.

Lat us remember from Part 1 the statement of Huh's breakthrough result in [Huh, Theorem 2 and its Proof]:

Theorem (Huh, 2013)

Let $V \subset \mathbb{P}^n$ be a hypersurface with isolated singularities. For any general hyperplane \mathcal{H}_p passing through some singular point $p \in \text{Sing}(V)$, such that V is not a cone of apex p, one has:

$$\mathsf{pol}(V) = \mu_p^{\langle n-2
angle}(V) + \mathsf{rank} \; H_n(\mathbb{P}^n ackslash V, (\mathbb{P}^n ackslash V) \cap \mathcal{H}_p)$$
 (1

- 4 E N 4 E N

The first term is the local invariant $\mu_{\rho}^{\langle n-2 \rangle}(V) \ge 0$ counting a certain type of vanishing cycles, but the second term rank $H_n(\mathbb{P}^n \setminus V, (\mathbb{P}^n \setminus V) \cap \mathcal{H}_{\rho})$ is a global invariant.

There is the following *challenge*:

Express pol(V) as a sum of non-negative local invariants.

Let $f : \mathbb{C}^{n+1} \to \mathbb{C}$ is some non-constant homogeneous polynomial function, and $V := \{f = 0\} \subset \mathbb{P}^n$ be endowed with a Whitney stratification \mathcal{W} . Let also $\hat{\ell} : \mathbb{C}^{n+1} \to \mathbb{C}$ be a linear function defining a hyperplane $H \in \mathbb{C}^{n+1}$ and let $\mathcal{H} \subset \mathbb{P}^n$ denote its corresponding projective hyperplane.

- **A PERSON A PERSON**

Let $f : \mathbb{C}^{n+1} \to \mathbb{C}$ is some non-constant homogeneous polynomial function, and $V := \{f = 0\} \subset \mathbb{P}^n$ be endowed with a Whitney stratification \mathcal{W} . Let also $\hat{\ell} : \mathbb{C}^{n+1} \to \mathbb{C}$ be a linear function defining a hyperplane $H \in \mathbb{C}^{n+1}$ and let $\mathcal{H} \subset \mathbb{P}^n$ denote its corresponding projective hyperplane.

Definition

We say that the affine hyperplane $H \subset \mathbb{C}^{n+1}$ through 0 (or that the projective hyperplane $\mathcal{H} \subset \mathbb{P}^n$) is admissible for f if:

- (i) \mathcal{H} is transversal to all strata of \mathcal{W} except at finitely many points.
- (ii) the polar locus $\Gamma(\hat{\ell}, f) \subset \mathbb{C}^{n+1}$ is either of dimension 1, or it is empty.

4 m b 4 m b 4 m b 4 m b

Let $f : \mathbb{C}^{n+1} \to \mathbb{C}$ is some non-constant homogeneous polynomial function, and $V := \{f = 0\} \subset \mathbb{P}^n$ be endowed with a Whitney stratification \mathcal{W} . Let also $\hat{\ell} : \mathbb{C}^{n+1} \to \mathbb{C}$ be a linear function defining a hyperplane $H \in \mathbb{C}^{n+1}$ and let $\mathcal{H} \subset \mathbb{P}^n$ denote its corresponding projective hyperplane.

Definition

We say that the affine hyperplane $H \subset \mathbb{C}^{n+1}$ through 0 (or that the projective hyperplane $\mathcal{H} \subset \mathbb{P}^n$) is admissible for f if:

- (i) \mathcal{H} is transversal to all strata of \mathcal{W} except at finitely many points.
- (ii) the polar locus $\Gamma(\hat{\ell}, f) \subset \mathbb{C}^{n+1}$ is either of dimension 1, or it is empty.

A hyperplane \mathcal{H} which is admissible for f and contains a certain point $p \in V$ will be called *admissible for* f *at* p.

イロト イボト イヨト イヨト

Let $f : \mathbb{C}^{n+1} \to \mathbb{C}$ is some non-constant homogeneous polynomial function, and $V := \{f = 0\} \subset \mathbb{P}^n$ be endowed with a Whitney stratification \mathcal{W} . Let also $\hat{\ell} : \mathbb{C}^{n+1} \to \mathbb{C}$ be a linear function defining a hyperplane $H \in \mathbb{C}^{n+1}$ and let $\mathcal{H} \subset \mathbb{P}^n$ denote its corresponding projective hyperplane.

Definition

We say that the affine hyperplane $H \subset \mathbb{C}^{n+1}$ through 0 (or that the projective hyperplane $\mathcal{H} \subset \mathbb{P}^n$) is admissible for f if:

- (i) \mathcal{H} is transversal to all strata of \mathcal{W} except at finitely many points.
- (ii) the polar locus $\Gamma(\hat{\ell}, f) \subset \mathbb{C}^{n+1}$ is either of dimension 1, or it is empty.

A hyperplane \mathcal{H} which is admissible for f and contains a certain point $p \in V$ will be called *admissible for* f *at* p.

By a linear change of coordinates, we may and will assume that $p = [1; 0; \dots; 0]$.

- 3

Let us remind the definition of the polar locus:

$$\Gamma(\hat{\ell}, f) := \left\{ x \in \mathbb{C}^{n+1} \mid \text{rank} \quad \begin{bmatrix} \frac{\partial f}{\partial x_0}(x) & \frac{\partial f}{\partial x_1}(x) & \cdots & \frac{\partial f}{\partial x_n}(x) \\ 0 & a_1 & \cdots & a_n \end{bmatrix} < 2 \right\} \setminus \{ f = 0 \}$$
(2)

Mihai Tibăr (CIMPA Research School) Polar degree – lecture B3 - Part 4 Polar degree and vanishing cycles 4/16

< ロ > < 同 > < 回 > < 回 >

2

Let us remind the definition of the polar locus:

$$\Gamma(\hat{\ell}, f) := \overline{\left\{ x \in \mathbb{C}^{n+1} \mid \text{rank } \begin{bmatrix} \frac{\partial f}{\partial x_0}(x) & \frac{\partial f}{\partial x_1}(x) & \cdots & \frac{\partial f}{\partial x_n}(x) \\ 0 & a_1 & \cdots & a_n \end{bmatrix}} < 2 \right\} \setminus \{f = 0\}$$
(2)

Remark on generic hyperplanes

The set of **admissible hyperplanes** contains by definition the set of *generic* hyperplanes \mathcal{H} relative to V, namely hyperplanes which are transversal to all strata of the stratification $\mathbb{P}W$ of V, since in this case:

- the non-transversality locus is empty, thus condition (i) is fulfilled,
- the polar locus $\Gamma(\hat{\ell}, f)$ is 1-dimensional or empty by the Generic Polar Curve Lemma, thus condition (ii) is fulfilled too.

And we remind (from Part 1 of the lecture) that in this case we have the equality:

$$\operatorname{mult}_0\Gamma(\hat{\ell},f) = \operatorname{pol}(V).$$

A E 5 A E 5

Here we do not work with transversal hyperplanes, but with admissible ones. For them, we have the following fundamental result telling that the hyperplanes admissible for f at some singular point p, even if they are non-generic, they have a genericity property:

イロト イポト イラト イラト

Here we do not work with transversal hyperplanes, but with admissible ones. For them, we have the following fundamental result telling that the hyperplanes admissible for f at some singular point p, even if they are non-generic, they have a genericity property:

Theorem (Constrained polar curve theorem, [Siersma-Tibăr])

Let $f : \mathbb{C}^{n+1} \to \mathbb{C}$, $n \ge 2$, be a homogeneous polynomial with dim Sing f > 0. Let $p \in \text{Sing } V$ such that $V := \{f = 0\} \subset \mathbb{P}^n$ is not a cone of apex p. Then there is a Zariski open dense subset $\hat{\Omega}_p$ of the set of hyperplanes through p such that the polar locus $\Gamma(\hat{\ell}, f) \subset \mathbb{C}^{n+1}$ is either a curve for all $\hat{\ell} \in \hat{\Omega}_p$, or it is empty for all $\hat{\ell} \in \hat{\Omega}_p$.

(人間) トイヨト イヨト

The local Milnor-Lê number $\alpha_{p}(V, \mathcal{H})$.

In some affine chart $\mathbb{C}^n \subset \mathbb{P}^n$ containing $p \in V$, let us consider a linear function $\ell : \mathbb{C}^n \to \mathbb{C}$ such that $\ell(p) = 0$, and let $H_s := \{\ell = s\}$ for $s \in \mathbb{C}$, where $H_0 := H$. Let $\mathcal{H} \in \mathbb{P}^n$ be the projective closure of H. It contains the point p.

¹See the general Bouquet theorem in Lecture B1.

6/16

The local Milnor-Lê number $\alpha_{\rho}(V, \mathcal{H})$.

In some affine chart $\mathbb{C}^n \subset \mathbb{P}^n$ containing $p \in V$, let us consider a linear function $\ell : \mathbb{C}^n \to \mathbb{C}$ such that $\ell(p) = 0$, and let $H_s := \{\ell = s\}$ for $s \in \mathbb{C}$, where $H_0 := H$. Let $\mathcal{H} \in \mathbb{P}^n$ be the projective closure of H. It contains the point p.

We assume that \mathcal{H} is transversal to all the strata of the stratification \mathcal{W} of V in the neighbourhood of p, except at the point p itself. This is equivalent to saying that the restriction of the function ℓ to some small neighbourhood B_{ε} of p in \mathbb{P}^n has a stratified isolated singularity at p with respect to \mathcal{W} . Consequently, it's local Milnor-Lê fibre $B_{\varepsilon} \cap (V \cap H_s)$, for some s close enough to 0, has the homotopy type of a bouquet of spheres¹ of dimension n - 2.

A D N A D N A D N A D N

¹See the general Bouquet theorem in Lecture B1.

The local Milnor-Lê number $\alpha_{\rho}(V, \mathcal{H})$.

In some affine chart $\mathbb{C}^n \subset \mathbb{P}^n$ containing $p \in V$, let us consider a linear function $\ell : \mathbb{C}^n \to \mathbb{C}$ such that $\ell(p) = 0$, and let $H_s := \{\ell = s\}$ for $s \in \mathbb{C}$, where $H_0 := H$. Let $\mathcal{H} \in \mathbb{P}^n$ be the projective closure of H. It contains the point p.

We assume that \mathcal{H} is transversal to all the strata of the stratification \mathcal{W} of V in the neighbourhood of p, except at the point p itself. This is equivalent to saying that the restriction of the function ℓ to some small neighbourhood B_{ε} of p in \mathbb{P}^n has a stratified isolated singularity at p with respect to \mathcal{W} . Consequently, it's local Milnor-Lê fibre $B_{\varepsilon} \cap (V \cap H_s)$, for some s close enough to 0, has the homotopy type of a bouquet of spheres¹ of dimension n - 2.

We denote it's Milnor-Lê number by $\alpha_p(V, \mathcal{H})$.

The local Milnor-Lê number $\alpha_{\rho}(V, \mathcal{H})$.

In some affine chart $\mathbb{C}^n \subset \mathbb{P}^n$ containing $p \in V$, let us consider a linear function $\ell : \mathbb{C}^n \to \mathbb{C}$ such that $\ell(p) = 0$, and let $H_s := \{\ell = s\}$ for $s \in \mathbb{C}$, where $H_0 := H$. Let $\mathcal{H} \in \mathbb{P}^n$ be the projective closure of H. It contains the point p.

We assume that \mathcal{H} is transversal to all the strata of the stratification \mathcal{W} of V in the neighbourhood of p, except at the point p itself. This is equivalent to saying that the restriction of the function ℓ to some small neighbourhood B_{ε} of p in \mathbb{P}^n has a stratified isolated singularity at p with respect to \mathcal{W} . Consequently, it's local Milnor-Lê fibre $B_{\varepsilon} \cap (V \cap H_s)$, for some s close enough to 0, has the homotopy type of a bouquet of spheres¹ of dimension n - 2.

We denote it's Milnor-Lê number by $\alpha_p(V, \mathcal{H})$.

If \mathcal{H}_{gen} is a general hyperplane through p, then $\alpha_p(V, \mathcal{H}_{\text{gen}})$ is the Milnor number of the *complex link* of V at p. We will denote it by $\alpha_p(V)$.

 ¹See the general Bouquet theorem in Lecture B1.
 <</td>
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >

(日) (同) (日) (日)

Let $f_p = 0$ be a local equation of the reduced hypersurface germ (V, p). Then $\alpha_p(V, \mathcal{H})$ equals the *polar multiplicity of* f_p *with respect to* ℓ *at* p, namely:

$$\alpha_{p}(V, \mathcal{H}) = \operatorname{mult}_{p}(H_{0}, \Gamma(\ell, f_{p})), \qquad (3)$$

ヨトィヨト

Let $f_p = 0$ be a local equation of the reduced hypersurface germ (V, p). Then $\alpha_p(V, \mathcal{H})$ equals the *polar multiplicity of* f_p *with respect to* ℓ *at* p, namely:

$$\alpha_{p}(V, \mathcal{H}) = \operatorname{mult}_{p}(H_{0}, \Gamma(\ell, f_{p})), \qquad (3)$$

This polar intersection multiplicity might be higher than the generic polar number $\operatorname{mult}_p\Gamma(\ell_{\operatorname{gen}}, f_p) = \alpha_p(V).$

Let $f_p = 0$ be a local equation of the reduced hypersurface germ (V, p). Then $\alpha_p(V, \mathcal{H})$ equals the *polar multiplicity of* f_p *with respect to* ℓ *at* p, namely:

$$\alpha_{p}(V, \mathcal{H}) = \operatorname{mult}_{p}(H_{0}, \Gamma(\ell, f_{p})), \qquad (3)$$

イロト 不得下 イヨト イヨト 一日

This polar intersection multiplicity might be higher than the generic polar number $\operatorname{mult}_p\Gamma(\ell_{\operatorname{gen}}, f_p) = \alpha_p(V).$

Exercice. Prove that $\alpha_p(V) = 0$ except of finitely many points $p \in V$, for any projective hypersurface V.

Lemma

Let \mathcal{H} be admissible for f. Then $\alpha_p(V, \mathcal{H}) > 0 \Longrightarrow V \not \bowtie_p \mathcal{H}$.

Proof.

Our claim is equivalent to the following: $V \Leftrightarrow_{\rho} \mathcal{H} \implies \Gamma_{\rho}(\ell, f_{\rho}) = \emptyset$ and $V \notin_{\rho} \mathcal{H} \implies \dim_{\rho} \Gamma_{\rho}(\ell, f_{\rho}) \leq 1$. If ρ is a point of stratified transversal intersection $V \Leftrightarrow_{\rho} \mathcal{H}$, then the polar locus $\Gamma_{\rho}(\ell, f_{\rho})$ is empty as a direct consequence of its definition. Let now $V \notin_{\rho} \mathcal{H}$. Since ρ is an isolated non-transversality, the polar locus $\Gamma_{\rho}(\ell, f_{\rho})$ intersects $B_{\rho} \cap V$ at most at ρ , for some small enough ball B_{ρ} centred at ρ . Thus dim $\Gamma_{\rho}(\ell, f_{\rho}) \leq 1$.

The above lemma shows in particular that $\alpha(V, \mathcal{H})$ is a well-defined non-negative integer.

Definition

Let \mathcal{H} be an admissible hyperplane for V. We define:

$$\alpha(V,\mathcal{H}) := \sum_{p \in V \cap \mathcal{H}} \alpha_p(V,\mathcal{H}).$$

(4)

Local vanishing cycles of a polynomial $\mathbb{C}^n \to \mathbb{C}$

By some linear change of coordinates, one may assume that the admissible hyperplane \mathcal{H} has equation $x_n = 0$. We consider it as the hyperplane at infinity for the coordinate system on $\mathbb{C}^n = \mathbb{P}^n \setminus \mathcal{H}$.

We then consider the polynomial:

$$P_{\mathcal{H}}: \mathbb{C}^n \to \mathbb{C}, \quad P_{\mathcal{H}}(x_0, \ldots, x_{n-1}) := f(x_0, \ldots, x_{n-1}, 1).$$

4 AL & A B & A B &

Local vanishing cycles of a polynomial $\mathbb{C}^n \to \mathbb{C}$

By some linear change of coordinates, one may assume that the admissible hyperplane \mathcal{H} has equation $x_n = 0$. We consider it as the hyperplane at infinity for the coordinate system on $\mathbb{C}^n = \mathbb{P}^n \setminus \mathcal{H}$.

We then consider the polynomial:

$$P_{\mathcal{H}}: \mathbb{C}^n \to \mathbb{C}, \quad P_{\mathcal{H}}(x_0, \ldots, x_{n-1}) := f(x_0, \ldots, x_{n-1}, 1).$$

Exercice. Show that if \mathcal{H} is admissible then deg $P_{\mathcal{H}} = \deg f = d$.

Local vanishing cycles of a polynomial $\mathbb{C}^n \to \mathbb{C}$

By some linear change of coordinates, one may assume that the admissible hyperplane \mathcal{H} has equation $x_n = 0$. We consider it as the hyperplane at infinity for the coordinate system on $\mathbb{C}^n = \mathbb{P}^n \setminus \mathcal{H}$.

We then consider the polynomial:

$$P_{\mathcal{H}}: \mathbb{C}^n \to \mathbb{C}, \quad P_{\mathcal{H}}(x_0, \ldots, x_{n-1}) := f(x_0, \ldots, x_{n-1}, 1).$$

Exercice. Show that if \mathcal{H} is admissible then deg $P_{\mathcal{H}} = \deg f = d$.

Let
$$\mathbb{X} := \{f(x_0, \dots, x_n) - tx_n^d = 0\} \subset \mathbb{P}^n \times \mathbb{C}$$
. Let
 $\tau : \mathbb{X} \to \mathbb{C}$

be the projection on the second factor, and let us denote by $\mathbb{X}_t := \tau^{-1}(t)$ its fibres. The set \mathbb{X} is precisely the closure in $\mathbb{P}^n \times \mathbb{C}$ of the graph of $P_{\mathcal{H}}$ and

$$\mathbb{X}^\infty := \mathbb{X} \cap (\mathcal{H} imes \mathbb{C}) = (V \cap \mathcal{H}) imes \mathbb{C}$$

is the divisor at infinity.

A E 5 A E 5

The non-isolated singular locus of the fibre $\mathbb{X}_0 = V$ (if there is any) intersects the hyperplane at infinity \mathcal{H} . We are interested in another type of singularities, the so-called *singularities at infinity* of the fibres \mathbb{X}_t for $t \neq 0$.

Definition (Partial Thom stratification at infinity, see e.g. [Ti3])

A locally finite stratification of \mathbb{X}^{∞} such that each stratum is Thom (a_{x_n}) -regular with respect to the smooth stratum $\mathbb{X}\setminus\mathbb{X}^{\infty}$ is called a ∂ -Thom stratification at infinity. This is independent on the affine chart.

Definition (*t*-singularities at infinity, [Ti3])

Let \mathcal{G} be a ∂ -Thom stratification at infinity of \mathbb{X} , and let $\eta \in \mathbb{X}^{\infty}$. If the map $\tau : \mathbb{X} \to \mathbb{C}$ is transversal to the stratification \mathcal{G} at η then we say that $P_{\mathcal{H}}$ is *t*-regular at infinity at this point. Otherwise we say that $P_{\mathcal{H}}$ has a *t*-singularity at infinity at η .

イロト イポト イヨト イヨト

The non-isolated singular locus of the fibre $\mathbb{X}_0 = V$ (if there is any) intersects the hyperplane at infinity \mathcal{H} . We are interested in another type of singularities, the so-called *singularities at infinity* of the fibres X_t for $t \neq 0$.

Definition (Partial Thom stratification at infinity, see e.g. [Ti3])

A locally finite stratification of \mathbb{X}^{∞} such that each stratum is Thom (a_x)-regular with respect to the smooth stratum $\mathbb{X}\setminus\mathbb{X}^{\infty}$ is called a ∂ -Thom stratification at *infinity*. This is independent on the affine chart.

Definition (*t*-singularities at infinity, [Ti3])

Let \mathcal{G} be a ∂ -Thom stratification at infinity of \mathbb{X} , and let $\eta \in \mathbb{X}^{\infty}$. If the map $\tau: \mathbb{X} \to \mathbb{C}$ is transversal to the stratification \mathcal{G} at η then we say that $P_{\mathcal{H}}$ is *t-regular at infinity* at this point. Otherwise we say that $P_{\mathcal{H}}$ has a *t-singularity at* infinity at η .

We say that η is an *isolated t-singularity* at infinity of $P_{\mathcal{H}}$ if the map $\tau: \mathbb{X} \to \mathbb{C}$ has an isolated non-transversality at η with respect to \mathcal{G} , and if moreover the map τ has no other singularity on $\mathbb{X}\setminus\mathbb{X}^{\infty}$ in the neighbourhood of η .

-

Theorem ([Siersma-Tibăr])

Let $V := \{f = 0\} \subset \mathbb{P}^n$. If the hyperplane $\mathcal{H} = \{x_n = 0\}$ is admissible for f, then the polynomial $P_{\mathcal{H}}$ has, outside $\overline{P_{\mathcal{H}}^{-1}(0)}$, only isolated t-singularities and only isolated affine singularities. The set of these singular points is finite.

4 D K 4 B K 4 B K 4 B K

Theorem ([Siersma-Tibăr])

Let $V := \{f = 0\} \subset \mathbb{P}^n$. If the hyperplane $\mathcal{H} = \{x_n = 0\}$ is admissible for f, then the polynomial $P_{\mathcal{H}}$ has, outside $\overline{P_{\mathcal{H}}^{-1}(0)}$, only isolated t-singularities and only isolated affine singularities. The set of these singular points is finite.

Let

$$eta^{\mathrm{aff}}(V,\mathcal{H}) := \sum_{\mathsf{v}\in(\mathsf{Sing}\,\mathcal{P}_{\mathcal{H}})\setminus V} \mu_{\mathsf{v}}(\mathcal{P}_{\mathcal{H}})$$

be the total Milnor number of $P_{\mathcal{H}}$ outside its fibre over 0.

Theorem ([Siersma-Tibăr])

Let $V := \{f = 0\} \subset \mathbb{P}^n$. If the hyperplane $\mathcal{H} = \{x_n = 0\}$ is admissible for f, then the polynomial $P_{\mathcal{H}}$ has, outside $\overline{P_{\mathcal{H}}^{-1}(0)}$, only isolated t-singularities and only isolated affine singularities. The set of these singular points is finite.

Let

$$eta^{\mathrm{aff}}(V,\mathcal{H}) := \sum_{\mathsf{v}\in(\mathsf{Sing}\,\mathcal{P}_{\mathcal{H}})\setminus V} \mu_{\mathsf{v}}(\mathcal{P}_{\mathcal{H}})$$

be the total Milnor number of $P_{\mathcal{H}}$ outside its fibre over 0.

At each point $(q, t) \in \mathbb{X}^{\infty}$ which is an isolated *t*-singularity at infinity, one may define a number of "vanishing cycles at infinity" $\lambda(q, t)$ (see [Ti3]). Let then

$$eta^\infty(V,\mathcal{H}) := \sum_{t
eq 0, q\in V\cap \mathcal{H}} \lambda(q,t)$$

denote the sum of the numbers of vanishing cycles at infinity $\lambda(q, t)$ of the isolated *t*-singularities at infinity outside the fibre $X_0 = V$.

We may then define the non-negative finite integer :

$$\beta(V,\mathcal{H}) := \beta^{\mathrm{aff}}(V,\mathcal{H}) + \beta^{\infty}(V,\mathcal{H}), \tag{5}$$

イロト イポト イヨト イヨト

2

Mihai Tibăr (CIMPA Research School) Polar degree – lecture B3 - Part 4 Polar degree and vanishing cycles 12/16

We may then define the non-negative finite integer :

$$\beta(V,\mathcal{H}) := \beta^{\mathrm{aff}}(V,\mathcal{H}) + \beta^{\infty}(V,\mathcal{H}), \tag{5}$$

The quantisation theorem for the polar degree may be stated as follows:

Theorem ([Siersma-Tibăr])

Let $V := \{f = 0\} \subset \mathbb{P}^n$ be a projective hypersurface and let \mathcal{H} be an admissible hyperplane for V. Then:

$$pol(V) = \alpha(V, \mathcal{H}) + \beta(V, \mathcal{H}).$$
(6)

We may then define the non-negative finite integer :

$$\beta(V,\mathcal{H}) := \beta^{\mathrm{aff}}(V,\mathcal{H}) + \beta^{\infty}(V,\mathcal{H}), \tag{5}$$

The quantisation theorem for the polar degree may be stated as follows:

Theorem ([Siersma-Tibăr])

Let $V := \{f = 0\} \subset \mathbb{P}^n$ be a projective hypersurface and let \mathcal{H} be an admissible hyperplane for V. Then:

$$pol(V) = \alpha(V, \mathcal{H}) + \beta(V, \mathcal{H}).$$
(6)

イベト イモト イモト

This formula is a sum of non-negative numbers representing local vanishing cycles. It yields lower bounds for the polar degree, actually any of the terms is a lower bound. This recovers in particular Huh's lower bound.

Proof of the theorem

As a general fact, the bifurcation set $\mathcal{B}_P \subset \mathbb{C}$ of any polynomial function $P : \mathbb{C}^n \to \mathbb{C}$ is finite. Let then $D_0 \subset \mathbb{C}$ be some disk such that $\mathcal{B}_{P_{\mathcal{H}}} \cap D_0 = \{0\}$. By using that $P_{\mathcal{H}}$ has isolated singularities outside the fibre over 0, including at infinity, it follows that the relative homology $H_*(\mathbb{C}^n, P_{\mathcal{H}}^{-1}(D_0))$ is concentrated in dimension *n*. Moreover:

the top Betti number $b_{n-1}(P_{\mathcal{H}}^{-1}(D_0)) = b_n(\mathbb{C}^n, P_{\mathcal{H}}^{-1}(D_0))$ is precisely $\beta(V, \mathcal{H})$.

Proof of the theorem

As a general fact, the bifurcation set $\mathcal{B}_P \subset \mathbb{C}$ of any polynomial function $P : \mathbb{C}^n \to \mathbb{C}$ is finite. Let then $D_0 \subset \mathbb{C}$ be some disk such that $\mathcal{B}_{P_{\mathcal{H}}} \cap D_0 = \{0\}$. By using that $P_{\mathcal{H}}$ has isolated singularities outside the fibre over 0, including at infinity, it follows that the relative homology $H_*(\mathbb{C}^n, P_{\mathcal{H}}^{-1}(D_0))$ is concentrated in dimension *n*. Moreover:

the top Betti number $b_{n-1}(P_{\mathcal{H}}^{-1}(D_0)) = b_n(\mathbb{C}^n, P_{\mathcal{H}}^{-1}(D_0))$ is precisely $\beta(V, \mathcal{H})$.

Since the tube $P_{\mathcal{H}}^{-1}(D_0)$ and the fibre $P_{\mathcal{H}}^{-1}(0)$ have the same Euler characteristic, we have:

$$(-1)^n \operatorname{rank} \, H_n(\mathbb{C}^n, \mathcal{P}_{\mathcal{H}}^{-1}(D_0)) = \chi(\mathbb{C}^n, \mathcal{P}_{\mathcal{H}}^{-1}(D_0)) = 1 - \chi(\mathcal{P}_{\mathcal{H}}^{-1}(D_0)) = 1 - \chi(\mathcal{V} \setminus \mathcal{H}).$$

EN 4 EN

- 31

Proof of the theorem

As a general fact, the bifurcation set $\mathcal{B}_P \subset \mathbb{C}$ of any polynomial function $P : \mathbb{C}^n \to \mathbb{C}$ is finite. Let then $D_0 \subset \mathbb{C}$ be some disk such that $\mathcal{B}_{P_{\mathcal{H}}} \cap D_0 = \{0\}$. By using that $P_{\mathcal{H}}$ has isolated singularities outside the fibre over 0, including at infinity, it follows that the relative homology $H_*(\mathbb{C}^n, P_{\mathcal{H}}^{-1}(D_0))$ is concentrated in dimension *n*. Moreover:

the top Betti number $b_{n-1}(P_{\mathcal{H}}^{-1}(D_0)) = b_n(\mathbb{C}^n, P_{\mathcal{H}}^{-1}(D_0))$ is precisely $\beta(V, \mathcal{H})$.

Since the tube $P_{\mathcal{H}}^{-1}(D_0)$ and the fibre $P_{\mathcal{H}}^{-1}(0)$ have the same Euler characteristic, we have:

$$(-1)^n \operatorname{rank} H_n(\mathbb{C}^n, \mathcal{P}_{\mathcal{H}}^{-1}(D_0)) = \chi(\mathbb{C}^n, \mathcal{P}_{\mathcal{H}}^{-1}(D_0)) = 1 - \chi(\mathcal{P}_{\mathcal{H}}^{-1}(D_0)) = 1 - \chi(\mathcal{V} \setminus \mathcal{H}).$$

Exercice. Why $\chi(P_{\mathcal{H}}^{-1}(D_0)) = \chi(P_{\mathcal{H}}^{-1}(0))$?

EN 4 EN

3

Consider the germ of a pencil \mathcal{P}_{δ} of hyperplanes of \mathbb{P}^n which contains our admissible hyperplane \mathcal{H} , parametrised by an arbitrarily small disk $\delta \subset \mathbb{C} \subset \mathbb{P}^1$ centred at 0, where $\pi : \mathcal{P}_{\delta} \setminus A \to \delta$ is the projection to the parameter, such that $\pi(\mathcal{H}) = 0$.

イロト イポト イラト イラト

Consider the germ of a pencil \mathcal{P}_{δ} of hyperplanes of \mathbb{P}^n which contains our admissible hyperplane \mathcal{H} , parametrised by an arbitrarily small disk $\delta \subset \mathbb{C} \subset \mathbb{P}^1$ centred at 0, where $\pi : \mathcal{P}_{\delta} \setminus A \to \delta$ is the projection to the parameter, such that $\pi(\mathcal{H}) = 0$.

We require that \mathcal{P}_{δ} is generic with respect to V, in the sense that the base locus A of this pencil \mathcal{P}_{δ} (which is of dimension n-2) is transversal to the Whitney stratification \mathcal{W} of $V \subset \mathbb{P}^n$, and more precisely transversal to the induced stratification \mathcal{W}_H on the slice $V \cap \mathcal{H}$. The choice of the axis A covers a Zariski-open subset of all hyperplane slices of $V \cap \mathcal{H}$.

A (2) A (2) A (2) A

Consider the germ of a pencil \mathcal{P}_{δ} of hyperplanes of \mathbb{P}^n which contains our admissible hyperplane \mathcal{H} , parametrised by an arbitrarily small disk $\delta \subset \mathbb{C} \subset \mathbb{P}^1$ centred at 0, where $\pi : \mathcal{P}_{\delta} \setminus A \to \delta$ is the projection to the parameter, such that $\pi(\mathcal{H}) = 0$.

We require that \mathcal{P}_{δ} is generic with respect to V, in the sense that the base locus A of this pencil \mathcal{P}_{δ} (which is of dimension n-2) is transversal to the Whitney stratification \mathcal{W} of $V \subset \mathbb{P}^n$, and more precisely transversal to the induced stratification \mathcal{W}_H on the slice $V \cap \mathcal{H}$. The choice of the axis A covers a Zariski-open subset of all hyperplane slices of $V \cap \mathcal{H}$.

The general member \mathcal{H}_{gen} of this pencil germ is a general hyperplane with respect to *V*. By definition 4 of the polar degree, we therefore have:

$$(-1)^n \operatorname{\mathsf{pol}}(V) = 1 - \chi(V \setminus \mathcal{H}_{\operatorname{gen}}).$$

イロト イボト イヨト イヨト

- 31

Taking the difference, we obtain:

$$(-1)^n[\operatorname{pol}(V) - \operatorname{rank} H_n(\mathbb{C}^n, P_{\mathcal{H}}^{-1}(D_0))] =$$

= $\chi(V \setminus \mathcal{H}) - \chi(V \setminus \mathcal{H}_{\operatorname{gen}}) = \chi(V \cap \mathcal{H}_{\operatorname{gen}}) - \chi(V \cap \mathcal{H}).$

Mihai Tibăr (CIMPA Research School) Polar degree – lecture B3 - Part 4 Polar degree and vanishing cycles 15 / 16

メロト メタト メヨト メヨト

2

Taking the difference, we obtain:

$$(-1)^n [\operatorname{pol}(V) - \operatorname{rank} H_n(\mathbb{C}^n, P_{\mathcal{H}}^{-1}(D_0))] =$$

= $\chi(V \setminus \mathcal{H}) - \chi(V \setminus \mathcal{H}_{\operatorname{gen}}) = \chi(V \cap \mathcal{H}_{\operatorname{gen}}) - \chi(V \cap \mathcal{H}).$

Since the axis A of the pencil \mathcal{P}_{δ} is stratified-transversal to \mathcal{W} and the stratified singularities of the pencil \mathcal{P}_{δ} outside A are precisely the set of points of non-transversality $\operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})$, it follows that the variation of the topology of the pencil \mathcal{P}_{δ} at its fibre \mathcal{H} is localisable, by excision, at the points $q \in \operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})$.

4 D K 4 B K 4 B K 4 B K

Taking the difference, we obtain:

$$(-1)^n [\operatorname{pol}(V) - \operatorname{rank} H_n(\mathbb{C}^n, \mathcal{P}_{\mathcal{H}}^{-1}(D_0))] =$$

= $\chi(V \setminus \mathcal{H}) - \chi(V \setminus \mathcal{H}_{\operatorname{gen}}) = \chi(V \cap \mathcal{H}_{\operatorname{gen}}) - \chi(V \cap \mathcal{H}).$

Since the axis A of the pencil \mathcal{P}_{δ} is stratified-transversal to \mathcal{W} and the stratified singularities of the pencil \mathcal{P}_{δ} outside A are precisely the set of points of non-transversality $\operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})$, it follows that the variation of the topology of the pencil \mathcal{P}_{δ} at its fibre \mathcal{H} is localisable, by excision, at the points $q \in \operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})$.

In homology, this variation is concentrated in dimension n-1, and its contribution is the number $\alpha_q(V, \mathcal{H})$ defined at (6).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\chi(V \cap \mathcal{H}_{gen}) - \chi(V \cap \mathcal{H}) = -\sum_{q \in \operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})} \chi(B_q \cap V \cap \mathcal{P}_{\delta}, B_q \cap V \cap \mathcal{H}_{gen})$$
$$= (-1)^n \sum_{q \in \operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})} \alpha_q(V, \mathcal{H})$$

for some small enough balls B_q at $q \in V \cap \mathcal{H}$

Mihai Tibăr (CIMPA Research School) Polar degree – lecture B3 - Part 4 Polar degree and vanishing cycles 16 / 16

メロト メタト メヨト メヨト

2

$$\chi(V \cap \mathcal{H}_{gen}) - \chi(V \cap \mathcal{H}) = -\sum_{q \in \operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})} \chi(B_q \cap V \cap \mathcal{P}_{\delta}, B_q \cap V \cap \mathcal{H}_{gen})$$
$$= (-1)^n \sum_{q \in \operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})} \alpha_q(V, \mathcal{H})$$

for some small enough balls B_q at $q \in V \cap \mathcal{H}$

From this we obtain:

$$\beta(V,\mathcal{H}) = \operatorname{rank} \, H_n(\mathbb{C}^n, \mathcal{P}_{\mathcal{H}}^{-1}(D_0)) = \operatorname{pol}(V) - \alpha(V, \mathcal{H})$$

which ends the proof of our formula.

< 回 > < 三 > < 三 >

3

- A. Dimca, S. Papadima, *Hypersurface complements, Milnor fibers and higher homotopy* groups of arrangements. Ann. of Math. (2) 158 (2003), no. 2, 473-507.
- I. Dolgachev, Polar Cremona transformations. Michigan Math. J. 48 (2000), 191-202.
- J. Huh, *Milnor numbers of projective hypersurfaces with isolated singularities.* Duke Math. J. 163 (2014), no. 8, 1525-1548.
- D. Siersma, M. Tibăr, Polar degree and vanishing cycles. arXiv:2103.04402
- M. Tibăr, Vanishing cycles of pencils of hypersurfaces, Topology 43 (2004), no. 3, 619-633.
- M. Tibăr, Polynomials and vanishing cycles. Cambridge Tracts in Mathematics, 170. Cambridge University Press, Cambridge, 2007. xii+253 pp.

A (1) < A (1) < A (1) </p>