Abstract

We show how the polar degree of an arbitrarily singular projective hypersurface can be decomposed as a sum of non-negative numbers which represent local vanishing cycles.

Polar degree of projective hypersurfaces
 - Part 4 -

Mihai Tibăr

Polar degree and vanishing cycles

Lat us remember from Part 1 the statement of Huh's breakthrough result in [Huh, Theorem 2 and its Proof]:

Theorem (Huh, 2013)

Let $V \subset \mathbb{P}^{n}$ be a hypersurface with isolated singularities. For any general hyperplane \mathcal{H}_{p} passing through some singular point $p \in \operatorname{Sing}(V)$, such that V is not a cone of apex p, one has:

$$
\begin{equation*}
\operatorname{pol}(V)=\mu_{\rho}^{\langle n-2\rangle}(V)+\operatorname{rank} H_{n}\left(\mathbb{P}^{n} \backslash V,\left(\mathbb{P}^{n} \backslash V\right) \cap \mathcal{H}_{p}\right) \tag{1}
\end{equation*}
$$

Lat us remember from Part 1 the statement of Huh's breakthrough result in [Huh, Theorem 2 and its Proof]:

Theorem (Huh, 2013)

Let $V \subset \mathbb{P}^{n}$ be a hypersurface with isolated singularities. For any general hyperplane \mathcal{H}_{p} passing through some singular point $p \in \operatorname{Sing}(V)$, such that V is not a cone of apex p, one has:

$$
\begin{equation*}
\operatorname{pol}(V)=\mu_{\rho}^{\langle n-2\rangle}(V)+\operatorname{rank} H_{n}\left(\mathbb{P}^{n} \backslash V,\left(\mathbb{P}^{n} \backslash V\right) \cap \mathcal{H}_{p}\right) \tag{1}
\end{equation*}
$$

The first term is the local invariant $\mu_{\rho}^{\langle n-2\rangle}(V) \geq 0$ counting a certain type of vanishing cycles, but the second term rank $H_{n}\left(\mathbb{P}^{n} \backslash V,\left(\mathbb{P}^{n} \backslash V\right) \cap \mathcal{H}_{p}\right)$ is a global invariant.

Lat us remember from Part 1 the statement of Huh's breakthrough result in [Huh, Theorem 2 and its Proof]:

Theorem (Huh, 2013)

Let $V \subset \mathbb{P}^{n}$ be a hypersurface with isolated singularities. For any general hyperplane \mathcal{H}_{p} passing through some singular point $p \in \operatorname{Sing}(V)$, such that V is not a cone of apex p, one has:

$$
\begin{equation*}
\operatorname{pol}(V)=\mu_{\rho}^{\langle n-2\rangle}(V)+\operatorname{rank} H_{n}\left(\mathbb{P}^{n} \backslash V,\left(\mathbb{P}^{n} \backslash V\right) \cap \mathcal{H}_{p}\right) \tag{1}
\end{equation*}
$$

The first term is the local invariant $\mu_{\rho}^{\langle n-2\rangle}(V) \geq 0$ counting a certain type of vanishing cycles, but the second term rank $H_{n}\left(\mathbb{P}^{n} \backslash V,\left(\mathbb{P}^{n} \backslash V\right) \cap \mathcal{H}_{p}\right)$ is a global invariant.

There is the following challenge:
Express pol (V) as a sum of non-negative local invariants.

Admissible hyperplanes

Let $f: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ is some non-constant homogeneous polynomial function, and $V:=\{f=0\} \subset \mathbb{P}^{n}$ be endowed with a Whitney stratification \mathcal{W}. Let also $\hat{\ell}: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ be a linear function defining a hyperplane $H \in \mathbb{C}^{n+1}$ and let $\mathcal{H} \subset \mathbb{P}^{n}$ denote its corresponding projective hyperplane.

Admissible hyperplanes

Let $f: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ is some non-constant homogeneous polynomial function, and $V:=\{f=0\} \subset \mathbb{P}^{n}$ be endowed with a Whitney stratification \mathcal{W}. Let also $\hat{\ell}: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ be a linear function defining a hyperplane $H \in \mathbb{C}^{n+1}$ and let $\mathcal{H} \subset \mathbb{P}^{n}$ denote its corresponding projective hyperplane.

Definition

We say that the affine hyperplane $H \subset \mathbb{C}^{n+1}$ through 0 (or that the projective hyperplane $\mathcal{H} \subset \mathbb{P}^{n}$) is admissible for f if:
(i) \mathcal{H} is transversal to all strata of \mathcal{W} except at finitely many points.
(ii) the polar locus $\Gamma(\hat{\ell}, f) \subset \mathbb{C}^{n+1}$ is either of dimension 1 , or it is empty.

Admissible hyperplanes

Let $f: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ is some non-constant homogeneous polynomial function, and $V:=\{f=0\} \subset \mathbb{P}^{n}$ be endowed with a Whitney stratification \mathcal{W}. Let also $\hat{\ell}: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ be a linear function defining a hyperplane $H \in \mathbb{C}^{n+1}$ and let $\mathcal{H} \subset \mathbb{P}^{n}$ denote its corresponding projective hyperplane.

Definition

We say that the affine hyperplane $H \subset \mathbb{C}^{n+1}$ through 0 (or that the projective hyperplane $\mathcal{H} \subset \mathbb{P}^{n}$) is admissible for f if:
(i) \mathcal{H} is transversal to all strata of \mathcal{W} except at finitely many points.
(ii) the polar locus $\Gamma(\hat{\ell}, f) \subset \mathbb{C}^{n+1}$ is either of dimension 1 , or it is empty.

A hyperplane \mathcal{H} which is admissible for f and contains a certain point $p \in V$ will be called admissible for f at p.

Admissible hyperplanes

Let $f: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ is some non-constant homogeneous polynomial function, and $V:=\{f=0\} \subset \mathbb{P}^{n}$ be endowed with a Whitney stratification \mathcal{W}. Let also $\hat{\ell}: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ be a linear function defining a hyperplane $H \in \mathbb{C}^{n+1}$ and let $\mathcal{H} \subset \mathbb{P}^{n}$ denote its corresponding projective hyperplane.

Definition

We say that the affine hyperplane $H \subset \mathbb{C}^{n+1}$ through 0 (or that the projective hyperplane $\mathcal{H} \subset \mathbb{P}^{n}$) is admissible for f if:
(i) \mathcal{H} is transversal to all strata of \mathcal{W} except at finitely many points.
(ii) the polar locus $\Gamma(\hat{\ell}, f) \subset \mathbb{C}^{n+1}$ is either of dimension 1 , or it is empty.

A hyperplane \mathcal{H} which is admissible for f and contains a certain point $p \in V$ will be called admissible for f at p.

By a linear change of coordinates, we may and will assume that $p=[1 ; 0 ; \cdots ; 0]$.

Let us remind the definition of the polar locus:

$$
\Gamma(\hat{\ell}, f):=\left\{x \in \mathbb{C}^{n+1} \left\lvert\, \operatorname{rank}\left[\begin{array}{cccc}
\frac{\partial f}{\partial x_{0}}(x) & \frac{\partial f}{\partial x_{1}}(x) & \cdots & \frac{\partial f}{\partial x_{n}}(x) \tag{2}\\
0 & a_{1} & \cdots & a_{n}
\end{array}\right]<2\right.\right\} \backslash\{f=0\}
$$

Let us remind the definition of the polar locus:

$$
\Gamma(\hat{\ell}, f):=\left\{x \in \mathbb{C}^{n+1} \left\lvert\, \operatorname{rank}\left[\begin{array}{cccc}
\frac{\partial f}{\partial x_{0}}(x) & \frac{\partial f}{\partial x_{1}}(x) & \cdots & \frac{\partial f}{\partial x_{n}}(x) \tag{2}\\
0 & a_{1} & \cdots & a_{n}
\end{array}\right]<2\right.\right\} \backslash\{f=0\}
$$

Remark on generic hyperplanes
The set of admissible hyperplanes contains by definition the set of generic hyperplanes \mathcal{H} relative to V, namely hyperplanes which are transversal to all strata of the stratification $\mathbb{P W}$ of V, since in this case:

- the non-transversality locus is empty, thus condition (i) is fulfilled,
- the polar locus $\Gamma(\hat{\ell}, f)$ is 1-dimensional or empty by the Generic Polar Curve Lemma, thus condition (ii) is fulfilled too.
And we remind (from Part 1 of the lecture) that in this case we have the equality:

$$
\operatorname{mult}_{0} \Gamma(\hat{\ell}, f)=\operatorname{pol}(V)
$$

Here we do not work with transversal hyperplanes, but with admissible ones. For them, we have the following fundamental result telling that the hyperplanes admissible for f at some singular point p, even if they are non-generic, they have a genericity property:

Here we do not work with transversal hyperplanes, but with admissible ones. For them, we have the following fundamental result telling that the hyperplanes admissible for f at some singular point p, even if they are non-generic, they have a genericity property:

Theorem (Constrained polar curve theorem, [Siersma-Tibăr])

Let $f: \mathbb{C}^{n+1} \rightarrow \mathbb{C}, n \geq 2$, be a homogeneous polynomial with $\operatorname{dim} \operatorname{Sing} f>0$. Let $p \in \operatorname{Sing} V$ such that $V:=\{f=0\} \subset \mathbb{P}^{n}$ is not a cone of apex p.
Then there is a Zariski open dense subset $\hat{\Omega}_{p}$ of the set of hyperplanes through p such that the polar locus $\Gamma(\hat{\ell}, f) \subset \mathbb{C}^{n+1}$ is either a curve for all $\hat{\ell} \in \hat{\Omega}_{p}$, or it is empty for all $\hat{\ell} \in \hat{\Omega}_{p}$.

The local Milnor-Lê number $\alpha_{p}(V, \mathcal{H})$.

In some affine chart $\mathbb{C}^{n} \subset \mathbb{P}^{n}$ containing $p \in V$, let us consider a linear function $\ell: \mathbb{C}^{n} \rightarrow \mathbb{C}$ such that $\ell(p)=0$, and let $H_{s}:=\{\ell=s\}$ for $s \in \mathbb{C}$, where $H_{0}:=H$. Let $\mathcal{H} \in \mathbb{P}^{n}$ be the projective closure of H. It contains the point p.

The local Milnor-Lê number $\alpha_{p}(V, \mathcal{H})$.

In some affine chart $\mathbb{C}^{n} \subset \mathbb{P}^{n}$ containing $p \in V$, let us consider a linear function $\ell: \mathbb{C}^{n} \rightarrow \mathbb{C}$ such that $\ell(p)=0$, and let $H_{s}:=\{\ell=s\}$ for $s \in \mathbb{C}$, where $H_{0}:=H$. Let $\mathcal{H} \in \mathbb{P}^{n}$ be the projective closure of H. It contains the point p.

We assume that \mathcal{H} is transversal to all the strata of the stratification \mathcal{W} of V in the neighbourhood of p, except at the point p itself. This is equivalent to saying that the restriction of the function ℓ to some small neighbourhood B_{ε} of p in \mathbb{P}^{n} has a stratified isolated singularity at p with respect to \mathcal{W}. Consequently, it's local Milnor-Lê fibre $B_{\varepsilon} \cap\left(V \cap H_{s}\right)$, for some s close enough to 0 , has the homotopy type of a bouquet of spheres ${ }^{1}$ of dimension $n-2$.
${ }^{1}$ See the general Bouquet theorem in Lecture B1.

The local Milnor-Lê number $\alpha_{p}(V, \mathcal{H})$.

In some affine chart $\mathbb{C}^{n} \subset \mathbb{P}^{n}$ containing $p \in V$, let us consider a linear function $\ell: \mathbb{C}^{n} \rightarrow \mathbb{C}$ such that $\ell(p)=0$, and let $H_{s}:=\{\ell=s\}$ for $s \in \mathbb{C}$, where $H_{0}:=H$. Let $\mathcal{H} \in \mathbb{P}^{n}$ be the projective closure of H. It contains the point p.

We assume that \mathcal{H} is transversal to all the strata of the stratification \mathcal{W} of V in the neighbourhood of p, except at the point p itself. This is equivalent to saying that the restriction of the function ℓ to some small neighbourhood B_{ε} of p in \mathbb{P}^{n} has a stratified isolated singularity at p with respect to \mathcal{W}. Consequently, it's local Milnor-Lê fibre $B_{\varepsilon} \cap\left(V \cap H_{s}\right)$, for some s close enough to 0 , has the homotopy type of a bouquet of spheres ${ }^{1}$ of dimension $n-2$.

We denote it's Milnor-Lê number by $\alpha_{p}(V, \mathcal{H})$.
${ }^{1}$ See the general Bouquet theorem in Lecture B1.

The local Milnor-Lê number $\alpha_{p}(V, \mathcal{H})$.

In some affine chart $\mathbb{C}^{n} \subset \mathbb{P}^{n}$ containing $p \in V$, let us consider a linear function $\ell: \mathbb{C}^{n} \rightarrow \mathbb{C}$ such that $\ell(p)=0$, and let $H_{s}:=\{\ell=s\}$ for $s \in \mathbb{C}$, where $H_{0}:=H$. Let $\mathcal{H} \in \mathbb{P}^{n}$ be the projective closure of H. It contains the point p.

We assume that \mathcal{H} is transversal to all the strata of the stratification \mathcal{W} of V in the neighbourhood of p, except at the point p itself. This is equivalent to saying that the restriction of the function ℓ to some small neighbourhood B_{ε} of p in \mathbb{P}^{n} has a stratified isolated singularity at p with respect to \mathcal{W}. Consequently, it's local Milnor-Lê fibre $B_{\varepsilon} \cap\left(V \cap H_{s}\right)$, for some s close enough to 0 , has the homotopy type of a bouquet of spheres ${ }^{1}$ of dimension $n-2$.

We denote it's Milnor-Lê number by $\alpha_{p}(V, \mathcal{H})$.
If $\mathcal{H}_{\text {gen }}$ is a general hyperplane through p, then $\alpha_{p}\left(V, \mathcal{H}_{\text {gen }}\right)$ is the Milnor number of the complex link of V at p. We will denote it by $\alpha_{p}(V)$.
${ }^{1}$ See the general Bouquet theorem in Lecture B1.

By its definition, the integer $\alpha_{p}(V, \mathcal{H})$ is non-negative. It depends only on the reduced structure of V at p, and on the chosen hyperplane \mathcal{H}.

By its definition, the integer $\alpha_{p}(V, \mathcal{H})$ is non-negative. It depends only on the reduced structure of V at p, and on the chosen hyperplane \mathcal{H}.

Let $f_{p}=0$ be a local equation of the reduced hypersurface germ (V, p). Then $\alpha_{p}(V, \mathcal{H})$ equals the polar multiplicity of f_{p} with respect to ℓ at p, namely:

$$
\begin{equation*}
\alpha_{p}(V, \mathcal{H})=\operatorname{mult}_{p}\left(H_{0}, \Gamma\left(\ell, f_{p}\right)\right), \tag{3}
\end{equation*}
$$

By its definition, the integer $\alpha_{p}(V, \mathcal{H})$ is non-negative. It depends only on the reduced structure of V at p, and on the chosen hyperplane \mathcal{H}.

Let $f_{p}=0$ be a local equation of the reduced hypersurface germ (V, p). Then $\alpha_{p}(V, \mathcal{H})$ equals the polar multiplicity of f_{p} with respect to ℓ at p, namely:

$$
\begin{equation*}
\alpha_{p}(V, \mathcal{H})=\operatorname{mult}_{p}\left(H_{0}, \Gamma\left(\ell, f_{p}\right)\right), \tag{3}
\end{equation*}
$$

This polar intersection multiplicity might be higher than the generic polar number $\operatorname{mult}_{p} \Gamma\left(\ell_{\text {gen }}, f_{p}\right)=\alpha_{p}(V)$.

By its definition, the integer $\alpha_{p}(V, \mathcal{H})$ is non-negative. It depends only on the reduced structure of V at p, and on the chosen hyperplane \mathcal{H}.

Let $f_{p}=0$ be a local equation of the reduced hypersurface germ (V, p). Then $\alpha_{p}(V, \mathcal{H})$ equals the polar multiplicity of f_{p} with respect to ℓ at p, namely:

$$
\begin{equation*}
\alpha_{p}(V, \mathcal{H})=\operatorname{mult}_{p}\left(H_{0}, \Gamma\left(\ell, f_{p}\right)\right), \tag{3}
\end{equation*}
$$

This polar intersection multiplicity might be higher than the generic polar number $\operatorname{mult}_{p} \Gamma\left(\ell_{\text {gen }}, f_{p}\right)=\alpha_{p}(V)$.

Exercice. Prove that $\alpha_{p}(V)=0$ except of finitely many points $p \in V$, for any projective hypersurface V.

Lemma

Let \mathcal{H} be admissible for f. Then $\alpha_{p}(V, \mathcal{H})>0 \Longrightarrow V \oiint_{p} \mathcal{H}$.

Proof.

Our claim is equivalent to the following: $V \pitchfork_{p} \mathcal{H} \Longrightarrow \Gamma_{p}\left(\ell, f_{p}\right)=\emptyset$ and $V \not \pitchfork_{p} \mathcal{H} \Longrightarrow \operatorname{dim}_{p} \Gamma_{p}\left(\ell, f_{p}\right) \leq 1$.
If p is a point of stratified transversal intersection $V \pitchfork_{p} \mathcal{H}$, then the polar locus $\Gamma_{p}\left(\ell, f_{p}\right)$ is empty as a direct consequence of its definition.
Let now $V \pitchfork_{p} \mathcal{H}$. Since p is an isolated non-transversality, the polar locus $\Gamma_{p}\left(\ell, f_{p}\right)$ intersects $B_{p} \cap V$ at most at p, for some small enough ball B_{p} centred at p. Thus $\operatorname{dim} \Gamma_{p}\left(\ell, f_{p}\right) \leq 1$.

The above lemma shows in particular that $\alpha(V, \mathcal{H})$ is a well-defined non-negative integer.

Definition

Let \mathcal{H} be an admissible hyperplane for V. We define:

$$
\begin{equation*}
\alpha(V, \mathcal{H}):=\sum_{p \in V \cap \mathcal{H}} \alpha_{p}(V, \mathcal{H}) \tag{4}
\end{equation*}
$$

Local vanishing cycles of a polynomial $\mathbb{C}^{n} \rightarrow \mathbb{C}$

By some linear change of coordinates, one may assume that the admissible hyperplane \mathcal{H} has equation $x_{n}=0$. We consider it as the hyperplane at infinity for the coordinate system on $\mathbb{C}^{n}=\mathbb{P}^{n} \backslash \mathcal{H}$.
We then consider the polynomial:

$$
P_{\mathcal{H}}: \mathbb{C}^{n} \rightarrow \mathbb{C}, \quad P_{\mathcal{H}}\left(x_{0}, \ldots, x_{n-1}\right):=f\left(x_{0}, \ldots, x_{n-1}, 1\right) .
$$

Local vanishing cycles of a polynomial $\mathbb{C}^{n} \rightarrow \mathbb{C}$

By some linear change of coordinates, one may assume that the admissible hyperplane \mathcal{H} has equation $x_{n}=0$. We consider it as the hyperplane at infinity for the coordinate system on $\mathbb{C}^{n}=\mathbb{P}^{n} \backslash \mathcal{H}$.
We then consider the polynomial:

$$
P_{\mathcal{H}}: \mathbb{C}^{n} \rightarrow \mathbb{C}, \quad P_{\mathcal{H}}\left(x_{0}, \ldots, x_{n-1}\right):=f\left(x_{0}, \ldots, x_{n-1}, 1\right) .
$$

Exercice. Show that if \mathcal{H} is admissible then $\operatorname{deg} P_{\mathcal{H}}=\operatorname{deg} f=d$.

Local vanishing cycles of a polynomial $\mathbb{C}^{n} \rightarrow \mathbb{C}$

By some linear change of coordinates, one may assume that the admissible hyperplane \mathcal{H} has equation $x_{n}=0$. We consider it as the hyperplane at infinity for the coordinate system on $\mathbb{C}^{n}=\mathbb{P}^{n} \backslash \mathcal{H}$.
We then consider the polynomial:

$$
P_{\mathcal{H}}: \mathbb{C}^{n} \rightarrow \mathbb{C}, \quad P_{\mathcal{H}}\left(x_{0}, \ldots, x_{n-1}\right):=f\left(x_{0}, \ldots, x_{n-1}, 1\right) .
$$

Exercice. Show that if \mathcal{H} is admissible then $\operatorname{deg} P_{\mathcal{H}}=\operatorname{deg} f=d$.
Let $\mathbb{X}:=\left\{f\left(x_{0}, \ldots, x_{n}\right)-t x_{n}^{d}=0\right\} \subset \mathbb{P}^{n} \times \mathbb{C}$. Let

$$
\tau: \mathbb{X} \rightarrow \mathbb{C}
$$

be the projection on the second factor, and let us denote by $\mathbb{X}_{t}:=\tau^{-1}(t)$ its fibres. The set \mathbb{X} is precisely the closure in $\mathbb{P}^{n} \times \mathbb{C}$ of the graph of $P_{\mathcal{H}}$ and

$$
\mathbb{X}^{\infty}:=\mathbb{X} \cap(\mathcal{H} \times \mathbb{C})=(V \cap \mathcal{H}) \times \mathbb{C}
$$

is the divisor at infinity.

The non-isolated singular locus of the fibre $\mathbb{X}_{0}=V$ (if there is any) intersects the hyperplane at infinity \mathcal{H}. We are interested in another type of singularities, the so-called singularities at infinity of the fibres \mathbb{X}_{t} for $t \neq 0$.

Definition (Partial Thom stratification at infinity, see e.g. [Ti3])

A locally finite stratification of \mathbb{X}^{∞} such that each stratum is Thom $\left(\mathrm{a}_{x_{n}}\right)$-regular with respect to the smooth stratum $\mathbb{X} \backslash \mathbb{X}^{\infty}$ is called a ∂-Thom stratification at infinity. This is independent on the affine chart.

Definition (t-singularities at infinity, [Ti3])

Let \mathcal{G} be a ∂-Thom stratification at infinity of \mathbb{X}, and let $\eta \in \mathbb{X}^{\infty}$. If the map $\tau: \mathbb{X} \rightarrow \mathbb{C}$ is transversal to the stratification \mathcal{G} at η then we say that $P_{\mathcal{H}}$ is t-regular at infinity at this point. Otherwise we say that $P_{\mathcal{H}}$ has a t-singularity at infinity at η.

The non-isolated singular locus of the fibre $\mathbb{X}_{0}=V$ (if there is any) intersects the hyperplane at infinity \mathcal{H}. We are interested in another type of singularities, the so-called singularities at infinity of the fibres \mathbb{X}_{t} for $t \neq 0$.

Definition (Partial Thom stratification at infinity, see e.g. [Ti3])

A locally finite stratification of \mathbb{X}^{∞} such that each stratum is Thom $\left(\mathrm{a}_{x_{n}}\right)$-regular with respect to the smooth stratum $\mathbb{X} \backslash \mathbb{X}^{\infty}$ is called a ∂-Thom stratification at infinity. This is independent on the affine chart.

Definition (t-singularities at infinity, [Ti3])

Let \mathcal{G} be a ∂-Thom stratification at infinity of \mathbb{X}, and let $\eta \in \mathbb{X}^{\infty}$. If the map $\tau: \mathbb{X} \rightarrow \mathbb{C}$ is transversal to the stratification \mathcal{G} at η then we say that $P_{\mathcal{H}}$ is t-regular at infinity at this point. Otherwise we say that $P_{\mathcal{H}}$ has a t-singularity at infinity at η.

We say that η is an isolated t-singularity at infinity of $P_{\mathcal{H}}$ if the map $\tau: \mathbb{X} \rightarrow \mathbb{C}$ has an isolated non-transversality at η with respect to \mathcal{G}, and if moreover the map τ has no other singularity on $\mathbb{X} \backslash \mathbb{X}^{\infty}$ in the neighbourhood of η.

Theorem ([Siersma-Tibăr])

Let $V:=\{f=0\} \subset \mathbb{P}^{n}$. If the hyperplane $\mathcal{H}=\left\{x_{n}=0\right\}$ is admissible for f, then the polynomial $P_{\mathcal{H}}$ has, outside $P_{\mathcal{H}}^{-1}(0)$, only isolated t-singularities and only isolated affine singularities. The set of these singular points is finite.

Theorem ([Siersma-Tibăr])

Let $V:=\{f=0\} \subset \mathbb{P}^{n}$. If the hyperplane $\mathcal{H}=\left\{x_{n}=0\right\}$ is admissible for f, then the polynomial $P_{\mathcal{H}}$ has, outside $\overline{P_{\mathcal{H}}^{-1}(0)}$, only isolated t-singularities and only isolated affine singularities. The set of these singular points is finite.

Let

$$
\beta^{\mathrm{aff}}(V, \mathcal{H}):=\sum_{v \in\left(\text { Sing } P_{\mathcal{H}}\right) \backslash V} \mu_{v}\left(P_{\mathcal{H}}\right)
$$

be the total Milnor number of $P_{\mathcal{H}}$ outside its fibre over 0 .

Theorem ([Siersma-Tibăr])

Let $V:=\{f=0\} \subset \mathbb{P}^{n}$. If the hyperplane $\mathcal{H}=\left\{x_{n}=0\right\}$ is admissible for f, then the polynomial $P_{\mathcal{H}}$ has, outside $\overline{P_{\mathcal{H}}^{-1}(0)}$, only isolated t-singularities and only isolated affine singularities. The set of these singular points is finite.

Let

$$
\beta^{\mathrm{aff}}(V, \mathcal{H}):=\sum_{v \in\left(\text { Sing } P_{\mathcal{H}}\right) \backslash V} \mu_{v}\left(P_{\mathcal{H}}\right)
$$

be the total Milnor number of $P_{\mathcal{H}}$ outside its fibre over 0 .

At each point $(q, t) \in \mathbb{X}^{\infty}$ which is an isolated t-singularity at infinity, one may define a number of "vanishing cycles at infinity" $\lambda(q, t)$ (see [Ti3]). Let then

$$
\beta^{\infty}(V, \mathcal{H}):=\sum_{t \neq 0, q \in V \cap \mathcal{H}} \lambda(q, t)
$$

denote the sum of the numbers of vanishing cycles at infinity $\lambda(q, t)$ of the isolated t-singularities at infinity outside the fibre $\mathbb{X}_{0}=V$.

We may then define the non-negative finite integer :

$$
\begin{equation*}
\beta(V, \mathcal{H}):=\beta^{\mathrm{aff}}(V, \mathcal{H})+\beta^{\infty}(V, \mathcal{H}), \tag{5}
\end{equation*}
$$

We may then define the non-negative finite integer :

$$
\begin{equation*}
\beta(V, \mathcal{H}):=\beta^{\mathrm{aff}}(V, \mathcal{H})+\beta^{\infty}(V, \mathcal{H}), \tag{5}
\end{equation*}
$$

The quantisation theorem for the polar degree may be stated as follows:

Theorem ([Siersma-Tibăr])

Let $V:=\{f=0\} \subset \mathbb{P}^{n}$ be a projective hypersurface and let \mathcal{H} be an admissible hyperplane for V. Then:

$$
\begin{equation*}
\operatorname{pol}(V)=\alpha(V, \mathcal{H})+\beta(V, \mathcal{H}) . \tag{6}
\end{equation*}
$$

We may then define the non-negative finite integer :

$$
\begin{equation*}
\beta(V, \mathcal{H}):=\beta^{\mathrm{aff}}(V, \mathcal{H})+\beta^{\infty}(V, \mathcal{H}), \tag{5}
\end{equation*}
$$

The quantisation theorem for the polar degree may be stated as follows:

Theorem ([Siersma-Tibăr])

Let $V:=\{f=0\} \subset \mathbb{P}^{n}$ be a projective hypersurface and let \mathcal{H} be an admissible hyperplane for V. Then:

$$
\begin{equation*}
\operatorname{pol}(V)=\alpha(V, \mathcal{H})+\beta(V, \mathcal{H}) . \tag{6}
\end{equation*}
$$

This formula is a sum of non-negative numbers representing local vanishing cycles. It yields lower bounds for the polar degree, actually any of the terms is a lower bound. This recovers in particular Huh's lower bound.

Proof of the theorem

As a general fact, the bifurcation set $\mathcal{B}_{P} \subset \mathbb{C}$ of any polynomial function $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is finite. Let then $D_{0} \subset \mathbb{C}$ be some disk such that $\mathcal{B}_{P_{\mathcal{H}}} \cap D_{0}=\{0\}$. By using that $P_{\mathcal{H}}$ has isolated singularities outside the fibre over 0 , including at infinity, it follows that the relative homology $H_{*}\left(\mathbb{C}^{n}, P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)$ is concentrated in dimension n. Moreover:
the top Betti number $b_{n-1}\left(P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)=b_{n}\left(\mathbb{C}^{n}, P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)$ is precisely $\beta(V, \mathcal{H})$.

Proof of the theorem

As a general fact, the bifurcation set $\mathcal{B}_{P} \subset \mathbb{C}$ of any polynomial function $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is finite. Let then $D_{0} \subset \mathbb{C}$ be some disk such that $\mathcal{B}_{P_{\mathcal{H}}} \cap D_{0}=\{0\}$. By using that $P_{\mathcal{H}}$ has isolated singularities outside the fibre over 0 , including at infinity, it follows that the relative homology $H_{*}\left(\mathbb{C}^{n}, P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)$ is concentrated in dimension n. Moreover:
the top Betti number $b_{n-1}\left(P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)=b_{n}\left(\mathbb{C}^{n}, P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)$ is precisely $\beta(V, \mathcal{H})$.
Since the tube $P_{\mathcal{H}}^{-1}\left(D_{0}\right)$ and the fibre $P_{\mathcal{H}}^{-1}(0)$ have the same Euler characteristic, we have:

$$
(-1)^{n} \operatorname{rank} H_{n}\left(\mathbb{C}^{n}, P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)=\chi\left(\mathbb{C}^{n}, P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)=1-\chi\left(P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)=1-\chi(V \backslash \mathcal{H}) .
$$

Proof of the theorem

As a general fact, the bifurcation set $\mathcal{B}_{P} \subset \mathbb{C}$ of any polynomial function $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is finite. Let then $D_{0} \subset \mathbb{C}$ be some disk such that $\mathcal{B}_{P_{\mathcal{H}}} \cap D_{0}=\{0\}$. By using that $P_{\mathcal{H}}$ has isolated singularities outside the fibre over 0 , including at infinity, it follows that the relative homology $H_{*}\left(\mathbb{C}^{n}, P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)$ is concentrated in dimension n. Moreover:
the top Betti number $b_{n-1}\left(P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)=b_{n}\left(\mathbb{C}^{n}, P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)$ is precisely $\beta(V, \mathcal{H})$.
Since the tube $P_{\mathcal{H}}^{-1}\left(D_{0}\right)$ and the fibre $P_{\mathcal{H}}^{-1}(0)$ have the same Euler characteristic, we have:
$(-1)^{n} \operatorname{rank} H_{n}\left(\mathbb{C}^{n}, P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)=\chi\left(\mathbb{C}^{n}, P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)=1-\chi\left(P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)=1-\chi(V \backslash \mathcal{H})$.

Exercice. Why $\chi\left(P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)=\chi\left(P_{\mathcal{H}}^{-1}(0)\right)$?

Consider the germ of a pencil \mathcal{P}_{δ} of hyperplanes of \mathbb{P}^{n} which contains our admissible hyperplane \mathcal{H}, parametrised by an arbitrarily small disk $\delta \subset \mathbb{C} \subset \mathbb{P}^{1}$ centred at 0 , where $\pi: \mathcal{P}_{\delta} \backslash A \rightarrow \delta$ is the projection to the parameter, such that $\pi(\mathcal{H})=0$.

Consider the germ of a pencil \mathcal{P}_{δ} of hyperplanes of \mathbb{P}^{n} which contains our admissible hyperplane \mathcal{H}, parametrised by an arbitrarily small disk $\delta \subset \mathbb{C} \subset \mathbb{P}^{1}$ centred at 0 , where $\pi: \mathcal{P}_{\delta} \backslash A \rightarrow \delta$ is the projection to the parameter, such that $\pi(\mathcal{H})=0$.

We require that \mathcal{P}_{δ} is generic with respect to V, in the sense that the base locus A of this pencil \mathcal{P}_{δ} (which is of dimension $n-2$) is transversal to the Whitney stratification \mathcal{W} of $V \subset \mathbb{P}^{n}$, and more precisely transversal to the induced stratification \mathcal{W}_{H} on the slice $V \cap \mathcal{H}$. The choice of the axis A covers a Zariski-open subset of all hyperplane slices of $V \cap \mathcal{H}$.

Consider the germ of a pencil \mathcal{P}_{δ} of hyperplanes of \mathbb{P}^{n} which contains our admissible hyperplane \mathcal{H}, parametrised by an arbitrarily small disk $\delta \subset \mathbb{C} \subset \mathbb{P}^{1}$ centred at 0 , where $\pi: \mathcal{P}_{\delta} \backslash A \rightarrow \delta$ is the projection to the parameter, such that $\pi(\mathcal{H})=0$.

We require that \mathcal{P}_{δ} is generic with respect to V, in the sense that the base locus A of this pencil \mathcal{P}_{δ} (which is of dimension $n-2$) is transversal to the Whitney stratification \mathcal{W} of $V \subset \mathbb{P}^{n}$, and more precisely transversal to the induced stratification \mathcal{W}_{H} on the slice $V \cap \mathcal{H}$. The choice of the axis A covers a Zariski-open subset of all hyperplane slices of $V \cap \mathcal{H}$.

The general member $\mathcal{H}_{\text {gen }}$ of this pencil germ is a general hyperplane with respect to V. By definition 4 of the polar degree, we therefore have:

$$
(-1)^{n} \operatorname{pol}(V)=1-\chi\left(V \backslash \mathcal{H}_{\text {gen }}\right) .
$$

Taking the difference, we obtain:

$$
\begin{aligned}
(-1)^{n}[\operatorname{pol}(V) & \left.-\operatorname{rank} H_{n}\left(\mathbb{C}^{n}, P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)\right]= \\
& =\chi(V \backslash \mathcal{H})-\chi\left(V \backslash \mathcal{H}_{\text {gen }}\right)=\chi\left(V \cap \mathcal{H}_{\text {gen }}\right)-\chi(V \cap \mathcal{H}) .
\end{aligned}
$$

Taking the difference, we obtain:

$$
\begin{aligned}
(-1)^{n}[\operatorname{pol}(V) & \left.-\operatorname{rank} H_{n}\left(\mathbb{C}^{n}, P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)\right]= \\
& =\chi(V \backslash \mathcal{H})-\chi\left(V \backslash \mathcal{H}_{\text {gen }}\right)=\chi\left(V \cap \mathcal{H}_{\text {gen }}\right)-\chi(V \cap \mathcal{H}) .
\end{aligned}
$$

Since the axis A of the pencil \mathcal{P}_{δ} is stratified-transversal to \mathcal{W} and the stratified singularities of the pencil \mathcal{P}_{δ} outside A are precisely the set of points of non-transversality $\operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})$, it follows that the variation of the topology of the pencil \mathcal{P}_{δ} at its fibre \mathcal{H} is localisable, by excision, at the points $q \in \operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})$.

Taking the difference, we obtain:

$$
\begin{aligned}
(-1)^{n}[\operatorname{pol}(V) & \left.-\operatorname{rank} H_{n}\left(\mathbb{C}^{n}, P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)\right]= \\
& =\chi(V \backslash \mathcal{H})-\chi\left(V \backslash \mathcal{H}_{\text {gen }}\right)=\chi\left(V \cap \mathcal{H}_{\text {gen }}\right)-\chi(V \cap \mathcal{H}) .
\end{aligned}
$$

Since the axis A of the pencil \mathcal{P}_{δ} is stratified-transversal to \mathcal{W} and the stratified singularities of the pencil \mathcal{P}_{δ} outside A are precisely the set of points of non-transversality $\operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})$, it follows that the variation of the topology of the pencil \mathcal{P}_{δ} at its fibre \mathcal{H} is localisable, by excision, at the points $q \in \operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})$.

In homology, this variation is concentrated in dimension $n-1$, and its contribution is the number $\alpha_{q}(V, \mathcal{H})$ defined at (6).

$$
\begin{array}{r}
\chi\left(V \cap \mathcal{H}_{\text {gen }}\right)-\chi(V \cap \mathcal{H})=-\sum_{q \in \operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})} \chi\left(B_{q} \cap V \cap \mathcal{P}_{\delta}, B_{q} \cap V \cap \mathcal{H}_{\text {gen }}\right) \\
=(-1)^{n} \sum_{q \in \operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})} \alpha_{q}(V, \mathcal{H})
\end{array}
$$

for some small enough balls B_{q} at $q \in V \cap \mathcal{H}$

$$
\begin{array}{r}
\chi\left(V \cap \mathcal{H}_{\text {gen }}\right)-\chi(V \cap \mathcal{H})=-\sum_{q \in \operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})} \chi\left(B_{q} \cap V \cap \mathcal{P}_{\delta}, B_{q} \cap V \cap \mathcal{H}_{\text {gen }}\right) \\
=(-1)^{n} \sum_{q \in \operatorname{Sing}_{\mathcal{W}}(V \cap \mathcal{H})} \alpha_{q}(V, \mathcal{H})
\end{array}
$$

for some small enough balls B_{q} at $q \in V \cap \mathcal{H}$
From this we obtain:

$$
\beta(V, \mathcal{H})=\operatorname{rank} H_{n}\left(\mathbb{C}^{n}, P_{\mathcal{H}}^{-1}\left(D_{0}\right)\right)=\operatorname{pol}(V)-\alpha(V, \mathcal{H})
$$

which ends the proof of our formula.
A. Dimca, S. Papadima, Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements. Ann. of Math. (2) 158 (2003), no. 2, 473-507.
I. Dolgachev, Polar Cremona transformations. Michigan Math. J. 48 (2000), 191-202.
J. Huh, Milnor numbers of projective hypersurfaces with isolated singularities. Duke Math. J. 163 (2014), no. 8, 1525-1548.
D. Siersma, M. Tibăr, Polar degree and vanishing cycles. arXiv:2103.04402
M. Tibăr, Vanishing cycles of pencils of hypersurfaces, Topology 43 (2004), no. 3, 619-633.
M. Tibăr, Polynomials and vanishing cycles. Cambridge Tracts in Mathematics, 170. Cambridge University Press, Cambridge, 2007. xii+253 pp.

