Polar degree of projective hypersurfaces - Part 1 -

Mihai Tibăr

Equivalent definitions, and a couple of conjectures

Polar degree and topology

Polar degree and topology

Let $V \subset \mathbb{P}^{n}$ be a complex projective hypersurface of degree $d \geq 2$, with arbitrary singularity set $\operatorname{Sing} V$. It is defined by a homogeneous polynomial $f \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right], n \geq 2$, of degree d.

Polar degree and topology

Let $V \subset \mathbb{P}^{n}$ be a complex projective hypersurface of degree $d \geq 2$, with arbitrary singularity set $\operatorname{Sing} V$. It is defined by a homogeneous polynomial $f \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right], n \geq 2$, of degree d.

The polar degree $\operatorname{pol}(V)$ is defined as the topological degree of the gradient mapping:

$$
\begin{equation*}
\operatorname{grad} f: \mathbb{P}^{n} \backslash \text { Sing } V \rightarrow \mathbb{P}^{n} . \tag{1}
\end{equation*}
$$

Polar degree and topology

Let $V \subset \mathbb{P}^{n}$ be a complex projective hypersurface of degree $d \geq 2$, with arbitrary singularity set $\operatorname{Sing} V$. It is defined by a homogeneous polynomial $f \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right], n \geq 2$, of degree d.

The polar degree $\operatorname{pol}(V)$ is defined as the topological degree of the gradient mapping:

$$
\begin{equation*}
\operatorname{grad} f: \mathbb{P}^{n} \backslash \text { Sing } V \rightarrow \mathbb{P}^{n} \tag{1}
\end{equation*}
$$

It has been conjectured by Dolgachev [?, 2000] that it depends only on the reduced structure of V (and not on the defining function f) thus the notation $\operatorname{pol}(V)$ makes sense.

Polar degree and topology

Let $V \subset \mathbb{P}^{n}$ be a complex projective hypersurface of degree $d \geq 2$, with arbitrary singularity set $\operatorname{Sing} V$. It is defined by a homogeneous polynomial $f \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right], n \geq 2$, of degree d.

The polar degree $\operatorname{pol}(V)$ is defined as the topological degree of the gradient mapping:

$$
\begin{equation*}
\operatorname{grad} f: \mathbb{P}^{n} \backslash \text { Sing } V \rightarrow \mathbb{P}^{n} \tag{1}
\end{equation*}
$$

It has been conjectured by Dolgachev [?, 2000] that it depends only on the reduced structure of V (and not on the defining function f) thus the notation pol (V) makes sense.
This has been proved by Dimca and Papadima [?, 2003].

Proof of Dolgachev's conjecture

Theorem (Equivalent definitions for pol (V))

Proof of Dolgachev's conjecture

Theorem (Equivalent definitions for pol (V))

$\ell: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ linear function, identified to a point in \mathbb{P}^{n}. Let ℓ be general, in the sense that it is stratified-transversal to V after endowing V with a Whitney stratification. Then:

1. $\operatorname{pol}(V):=\#(\operatorname{grad} f)^{-1}(\ell), \quad$ This is just the definition.

Proof of Dolgachev's conjecture

Theorem (Equivalent definitions for pol (V))

$\ell: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ linear function, identified to a point in \mathbb{P}^{n}. Let ℓ be general, in the sense that it is stratified-transversal to V after endowing V with a Whitney stratification. Then:

1. $\operatorname{pol}(V):=\#(\operatorname{grad} f)^{-1}(\ell), \quad$ This is just the definition.
2. $\operatorname{pol}(V)=\operatorname{mult}_{0} \Gamma(\ell, f)$, the multiplicity of the polar locus of the map $(I, f):\left(\mathbb{C}^{n+1}, 0\right) \rightarrow\left(\mathbb{C}^{2}, 0\right)$.

Proof of Dolgachev's conjecture

Theorem (Equivalent definitions for pol (V))

$\ell: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ linear function, identified to a point in \mathbb{P}^{n}. Let ℓ be general, in the sense that it is stratified-transversal to V after endowing V with a Whitney stratification. Then:

1. $\operatorname{pol}(V):=\#(\operatorname{grad} f)^{-1}(\ell), \quad$ This is just the definition.
2. $\operatorname{pol}(V)=\operatorname{mult}_{0} \Gamma(\ell, f)$, the multiplicity of the polar locus of the map $(I, f):\left(\mathbb{C}^{n+1}, 0\right) \rightarrow\left(\mathbb{C}^{2}, 0\right)$.

The polar curve $\Gamma(\ell, f)$ is here a homogeneous subset of $\mathbb{C}^{n+1} \Rightarrow$ union of lines, thus mult $\Gamma(\ell, f)=$ the number of these lines. This is also the number of points $x \in V \cap\{I \neq 0\}$ such that $\operatorname{grad} f(x) \in \mathbb{P}^{n}$ coincides with $\ell \in \mathbb{P}^{n}$, and this number is equal to $\#(\operatorname{grad} f)^{-1}(\ell)$.

Proof of Dolgachev's conjecture

Theorem (Equivalent definitions for pol (V))

$\ell: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ linear function, identified to a point in \mathbb{P}^{n}. Let ℓ be general, in the sense that it is stratified-transversal to V after endowing V with a Whitney stratification. Then:

1. $\operatorname{pol}(V):=\#(\operatorname{grad} f)^{-1}(\ell), \quad$ This is just the definition.
2. $\operatorname{pol}(V)=\operatorname{mult}_{0} \Gamma(\ell, f)$, the multiplicity of the polar locus of the map $(I, f):\left(\mathbb{C}^{n+1}, 0\right) \rightarrow\left(\mathbb{C}^{2}, 0\right)$.

The polar curve $\Gamma(\ell, f)$ is here a homogeneous subset of $\mathbb{C}^{n+1} \Rightarrow$ union of lines, thus mult $\Gamma \Gamma(\ell, f)=$ the number of these lines. This is also the number of points $x \in V \cap\{I \neq 0\}$ such that $\operatorname{grad} f(x) \in \mathbb{P}^{n}$ coincides with $\ell \in \mathbb{P}^{n}$, and this number is equal to $\#(\operatorname{grad} f)^{-1}(\ell)$.

Exercice. Explain the role of the genericity of ℓ in the definition 2 .
3. $\operatorname{pol}(V)=\operatorname{rank} H_{n-1}\left(\mathbb{C l k}_{\{f=0\}}(\{0\})\right)$ where $\mathbb{C l}_{\{f=0\}}(\{0\})$ denotes the complex link ${ }^{1}$ of the stratum $\{0\}$ of the hypersurface $\{f=0\} \subset \mathbb{C}^{n+1}$. This is the local Milnor fibre of the function $\ell_{1}:(\{f=0\}, 0) \rightarrow(\mathbb{C}, 0)$. See next page \longrightarrow
${ }^{1}$ See lecture B1 for more on complex links.
3. $\operatorname{pol}(V)=\operatorname{rank} H_{n-1}\left(\mathbb{C l k}_{\{f=0\}}(\{0\})\right)$ where $\mathbb{C l k}_{\{f=0\}}(\{0\})$ denotes the complex link ${ }^{1}$ of the stratum $\{0\}$ of the hypersurface $\{f=0\} \subset \mathbb{C}^{n+1}$. This is the local Milnor fibre of the function $\ell_{I}:(\{f=0\}, 0) \rightarrow(\mathbb{C}, 0)$. See next page \longrightarrow

Since f is homogeneous, this complex link is homeomorphic to the affine subset $\{f=0\} \cap\{\ell=1\} \subset \mathbb{C}^{n+1}$. Denoting $H:=\{\ell=0\} \subset \mathbb{P}^{n}$, we thus have $\{f=0\} \cap\{\ell=1\} \stackrel{\text { homeo }}{\sim} V \backslash H$, and we get:
${ }^{1}$ See lecture B1 for more on complex links.
3. $\operatorname{pol}(V)=\operatorname{rank} H_{n-1}\left(\mathbb{C l k}_{\{f=0\}}(\{0\})\right)$ where $\mathbb{C l k}_{\{f=0\}}(\{0\})$ denotes the complex link ${ }^{1}$ of the stratum $\{0\}$ of the hypersurface $\{f=0\} \subset \mathbb{C}^{n+1}$. This is the local Milnor fibre of the function $\ell_{\mid}:(\{f=0\}, 0) \rightarrow(\mathbb{C}, 0)$. See next page \longrightarrow

Since f is homogeneous, this complex link is homeomorphic to the affine subset $\{f=0\} \cap\{\ell=1\} \subset \mathbb{C}^{n+1}$. Denoting $H:=\{\ell=0\} \subset \mathbb{P}^{n}$, we thus have $\{f=0\} \cap\{\ell=1\} \stackrel{\text { homeo }}{\sim} V \backslash H$, and we get:
4. $\operatorname{pol}(V)=\operatorname{rank} H_{n-1}(V \backslash H)$, [Dimca-Papadima, 2003]
${ }^{1}$ See lecture B1 for more on complex links.
3. $\operatorname{pol}(V)=\operatorname{rank} H_{n-1}\left(\mathbb{C l k}_{\{f=0\}}(\{0\})\right)$ where $\mathbb{C l k}_{\{f=0\}}(\{0\})$ denotes the complex link ${ }^{1}$ of the stratum $\{0\}$ of the hypersurface $\{f=0\} \subset \mathbb{C}^{n+1}$. This is the local Milnor fibre of the function $\ell_{\mid}:(\{f=0\}, 0) \rightarrow(\mathbb{C}, 0)$. See next page \longrightarrow

Since f is homogeneous, this complex link is homeomorphic to the affine subset $\{f=0\} \cap\{\ell=1\} \subset \mathbb{C}^{n+1}$. Denoting $H:=\{\ell=0\} \subset \mathbb{P}^{n}$, we thus have $\{f=0\} \cap\{\ell=1\} \stackrel{\text { homeo }}{\sim} V \backslash H$, and we get:
4. $\operatorname{pol}(V)=\operatorname{rank} H_{n-1}(V \backslash H)$, [Dimca-Papadima, 2003]

This shows that pol (V) is topological, and hence proves Dolgachev's conjecture.
${ }^{1}$ See lecture B1 for more on complex links.
3. $\operatorname{pol}(V)=\operatorname{rank} H_{n-1}\left(\mathbb{C l k}_{\{f=0\}}(\{0\})\right)$
where $\mathbb{C l k}_{\{f=0\}}(\{0\})$ denotes the complex link ${ }^{1}$ of the stratum $\{0\}$ of the hypersurface $\{f=0\} \subset \mathbb{C}^{n+1}$. This is the local Milnor fibre of the function $\ell_{\mid}:(\{f=0\}, 0) \rightarrow(\mathbb{C}, 0)$. See next page \longrightarrow

Since f is homogeneous, this complex link is homeomorphic to the affine subset $\{f=0\} \cap\{\ell=1\} \subset \mathbb{C}^{n+1}$. Denoting $H:=\{\ell=0\} \subset \mathbb{P}^{n}$, we thus have $\{f=0\} \cap\{\ell=1\} \stackrel{\text { homeo }}{\sim} V \backslash H$, and we get:
4. $\operatorname{pol}(V)=\operatorname{rank} H_{n-1}(V \backslash H)$, [Dimca-Papadima, 2003]

This shows that pol (V) is topological, and hence proves Dolgachev's conjecture. But already the definition 3. shows the same thing.
${ }^{1}$ See lecture B1 for more on complex links.

Mruse
 singularities ont
Morse polint \longleftrightarrow line of $\Gamma(l, f)$ $\{l=1\} \stackrel{H}{\Delta}(\forall=\eta\} \cap\{l=1\}) \cup n$ - cells \longrightarrow ingulan points on V $\{y=\eta\} \cap\{l=0\}=$ Minur fithe of f on $\{l=0\} \cong \mathbb{C}^{n}$. $f \mid e=0: x_{1}^{d}+\cdots+x_{n}^{d} \xrightarrow{d} \mu=(d-1)^{n}$

Hypersurfaces with at most isolated singularities

Dimca and Papadima proved the formula:

$$
\begin{equation*}
\operatorname{pol}(V)=(d-1)^{n}-\sum_{p \in \operatorname{Sing} V} \mu_{p}(V) \geq 0 \tag{2}
\end{equation*}
$$

Hypersurfaces with at most isolated singularities

Dimca and Papadima proved the formula:

$$
\begin{equation*}
\operatorname{pol}(V)=(d-1)^{n}-\sum_{p \in \operatorname{Sing} V} \mu_{p}(V) \geq 0 . \tag{2}
\end{equation*}
$$

The smooth hypersurface $V_{n, d}$ defined by the equation

$$
x_{0}^{d}+\cdots+x_{n}^{d}=0
$$

realises the maximum polar number $\operatorname{pol}\left(V_{n, d}\right)=(d-1)^{n}$ for fixed n, in this category of "hypersurfaces with at most isolated singularities".

Hypersurfaces with at most isolated singularities

Dimca and Papadima proved the formula:

$$
\begin{equation*}
\operatorname{pol}(V)=(d-1)^{n}-\sum_{p \in \operatorname{Sing} V} \mu_{p}(V) \geq 0 . \tag{2}
\end{equation*}
$$

The smooth hypersurface $V_{n, d}$ defined by the equation

$$
x_{0}^{d}+\cdots+x_{n}^{d}=0
$$

realises the maximum polar number $\operatorname{pol}\left(V_{n, d}\right)=(d-1)^{n}$ for fixed n, in this category of "hypersurfaces with at most isolated singularities".

What are the hypersurfaces with $\operatorname{pol}(V)=1$, called "homaloidal"?

Hypersurfaces with at most isolated singularities

Dimca and Papadima proved the formula:

$$
\begin{equation*}
\operatorname{pol}(V)=(d-1)^{n}-\sum_{p \in \operatorname{Sing} V} \mu_{p}(V) \geq 0 . \tag{2}
\end{equation*}
$$

The smooth hypersurface $V_{n, d}$ defined by the equation

$$
x_{0}^{d}+\cdots+x_{n}^{d}=0
$$

realises the maximum polar number $\operatorname{pol}\left(V_{n, d}\right)=(d-1)^{n}$ for fixed n, in this category of "hypersurfaces with at most isolated singularities".

What are the hypersurfaces with $\operatorname{pol}(V)=1$, called "homaloidal"? The above formula shows in particular that the smooth quadratic hypersurface $V_{n, 2}$ is the only smooth V which is homaloidal.

For any $V \subset \mathbb{P}^{n}$, with possibly nonisolated singularities, let us denote by $D(f):=\mathbb{P}^{n} \backslash V$ the complement, and let $H \subset \mathbb{P}^{n}$ denote a general hyperplane.

For any $V \subset \mathbb{P}^{n}$, with possibly nonisolated singularities, let us denote by $D(f):=\mathbb{P}^{n} \backslash V$ the complement, and let $H \subset \mathbb{P}^{n}$ denote a general hyperplane.

Proposition (Dimca and Papadima, 2003)

The relative homology $H_{*}(D(f), D(f) \cap H)$ is concentrated in dimension n, and

$$
\operatorname{pol}(V)=\operatorname{rank} H_{n}(D(f), D(f) \cap H) .
$$

For any $V \subset \mathbb{P}^{n}$, with possibly nonisolated singularities, let us denote by $D(f):=\mathbb{P}^{n} \backslash V$ the complement, and let $H \subset \mathbb{P}^{n}$ denote a general hyperplane.

Proposition (Dimca and Papadima, 2003)

The relative homology $H_{*}(D(f), D(f) \cap H)$ is concentrated in dimension n, and

$$
\operatorname{pol}(V)=\operatorname{rank} H_{n}(D(f), D(f) \cap H) .
$$

The complement $D(f)$ is an affine manifold hence a CW-complex of $\operatorname{dim} \leq n$, and this upper bound gives its level of connectivity.

For any $V \subset \mathbb{P}^{n}$, with possibly nonisolated singularities, let us denote by $D(f):=\mathbb{P}^{n} \backslash V$ the complement, and let $H \subset \mathbb{P}^{n}$ denote a general hyperplane.

Proposition (Dimca and Papadima, 2003)

The relative homology $H_{*}(D(f), D(f) \cap H)$ is concentrated in dimension n, and

$$
\operatorname{pol}(V)=\operatorname{rank} H_{n}(D(f), D(f) \cap H) .
$$

The complement $D(f)$ is an affine manifold hence a CW-complex of $\operatorname{dim} \leq n$, and this upper bound gives its level of connectivity.

The triviality of the relative homology $H_{j}(D(f), D(f) \cap H)$ for $j \leq n-1$ follows from the Lefschetz Hyperplane Theorem.

For any $V \subset \mathbb{P}^{n}$, with possibly nonisolated singularities, let us denote by $D(f):=\mathbb{P}^{n} \backslash V$ the complement, and let $H \subset \mathbb{P}^{n}$ denote a general hyperplane.

Proposition (Dimca and Papadima, 2003)

The relative homology $H_{*}(D(f), D(f) \cap H)$ is concentrated in dimension n, and

$$
\operatorname{pol}(V)=\operatorname{rank} H_{n}(D(f), D(f) \cap H) .
$$

The complement $D(f)$ is an affine manifold hence a CW-complex of $\operatorname{dim} \leq n$, and this upper bound gives its level of connectivity.

The triviality of the relative homology $H_{j}(D(f), D(f) \cap H)$ for $j \leq n-1$ follows from the Lefschetz Hyperplane Theorem.

More precisely, at the homotopy type level, $D(f)$ is obtained from the generic slice $D(f) \cap H$ by attaching cells of dimension n only.

For any $V \subset \mathbb{P}^{n}$, with possibly nonisolated singularities, let us denote by $D(f):=\mathbb{P}^{n} \backslash V$ the complement, and let $H \subset \mathbb{P}^{n}$ denote a general hyperplane.

Proposition (Dimca and Papadima, 2003)

The relative homology $H_{*}(D(f), D(f) \cap H)$ is concentrated in dimension n, and

$$
\operatorname{pol}(V)=\operatorname{rank} H_{n}(D(f), D(f) \cap H) .
$$

The complement $D(f)$ is an affine manifold hence a CW-complex of $\operatorname{dim} \leq n$, and this upper bound gives its level of connectivity.

The triviality of the relative homology $H_{j}(D(f), D(f) \cap H)$ for $j \leq n-1$ follows from the Lefschetz Hyperplane Theorem.

More precisely, at the homotopy type level, $D(f)$ is obtained from the generic slice $D(f) \cap H$ by attaching cells of dimension n only.
\rightarrow Yet this does not help for bounding $\operatorname{pol}(V)$ from below.

Huh's extension

Let V have isolated singularities. Let $\mu_{\rho}^{\langle n-2\rangle}$ be the Milnor number of a hyperplane section ${ }^{2} H_{p} \cap V$ through p.

Huh's extension

Let V have isolated singularities. Let $\mu_{p}^{\langle n-2\rangle}$ be the Milnor number of a hyperplane section ${ }^{2} H_{p} \cap V$ through p.
If V is not a cone of vertex p, then:
Theorem (Huh, 2014)

$$
\operatorname{rank} H_{n}\left(D(f), D(f) \cap H_{p}\right)=\operatorname{pol}(V)-\mu_{p}^{\langle n-2\rangle}(V) .
$$

${ }^{2}$ Notation introduced by Teissier.

Huh's extension

Let V have isolated singularities. Let $\mu_{\rho}^{\langle n-2\rangle}$ be the Milnor number of a hyperplane section ${ }^{2} H_{p} \cap V$ through p.
If V is not a cone of vertex p, then:

Theorem (Huh, 2014)

$$
\operatorname{rank} H_{n}\left(D(f), D(f) \cap H_{p}\right)=\operatorname{pol}(V)-\mu_{p}^{\langle n-2\rangle}(V) .
$$

This extends the preceding Dimca-Papadima result to hyperplanes H_{p} passing through a singular point $p \in \operatorname{Sing} V$.

Huh's extension

Let V have isolated singularities. Let $\mu_{\rho}^{\langle n-2\rangle}$ be the Milnor number of a hyperplane section ${ }^{2} H_{p} \cap V$ through p.
If V is not a cone of vertex p, then:

Theorem (Huh, 2014)

$$
\operatorname{rank} H_{n}\left(D(f), D(f) \cap H_{p}\right)=\operatorname{pol}(V)-\mu_{p}^{\langle n-2\rangle}(V) .
$$

This extends the preceding Dimca-Papadima result to hyperplanes H_{p} passing through a singular point $p \in \operatorname{Sing} V$.

The proof relies on the theory of slicing by pencils with singularities in the axis from [?, ?, ?].

* If V is a cone of vertex p then pol $V=0$.
${ }^{2}$ Notation introduced by Teissier.

Huh's inequality

This gives the first result providing bounds from below for $\operatorname{pol}(V)$:

Huh's inequality

This gives the first result providing bounds from below for $\operatorname{pol}(V)$:
Corollary (Huh)

$$
\operatorname{pol}(V) \geq \mu_{\rho}^{\langle n-2\rangle}(V)
$$

Huh's inequality

This gives the first result providing bounds from below for pol (V) :

Corollary (Huh)

$$
\operatorname{pol}(V) \geq \mu_{\rho}^{\langle n-2\rangle}(V)
$$

This bound enables Huh to initiate the proof of a Dimca-Papadima conjecture:

Huh's inequality

This gives the first result providing bounds from below for $\operatorname{pol}(V)$:

Corollary (Huh)

$$
\operatorname{pol}(V) \geq \mu_{\rho}^{\langle n-2\rangle}(V)
$$

This bound enables Huh to initiate the proof of a Dimca-Papadima conjecture:

Theorem (Huh)

A projective hypersurface $V \subset \mathbb{P}^{n}$ with only isolated singularities and $\operatorname{pol}(V)=1$ is one of the following, after a linear change of homogeneous coordinates:

List of homaloidal hypersurfaces

List of homaloidal hypersurfaces

$$
\begin{equation*}
\text { (} n \geq 2, d=2 \text {) a smooth quadric: } \tag{i}
\end{equation*}
$$

$$
f=x_{0}^{2}+\cdots+x_{n}^{2}=0 .
$$

List of homaloidal hypersurfaces

$$
\begin{equation*}
(n \geq 2, d=2) \text { a smooth quadric: } \tag{i}
\end{equation*}
$$

$$
f=x_{0}^{2}+\cdots+x_{n}^{2}=0 .
$$

$$
\begin{equation*}
\text { (} n=2, d=3 \text {) the union of three non-concurrent lines: } \tag{ii}
\end{equation*}
$$

$$
f=x_{0} x_{1} x_{2}=0, \quad\left(3 A_{1}\right) .
$$

List of homaloidal hypersurfaces

$$
\begin{equation*}
(n \geq 2, d=2) \text { a smooth quadric: } \tag{i}
\end{equation*}
$$

$$
f=x_{0}^{2}+\cdots+x_{n}^{2}=0
$$

$$
\begin{equation*}
\text { (} n=2, d=3 \text {) the union of three non-concurrent lines: } \tag{ii}
\end{equation*}
$$

$$
f=x_{0} x_{1} x_{2}=0, \quad\left(3 A_{1}\right) .
$$

($n=2, d=3$) the union of a smooth conic and one of its tangents:

$$
\begin{equation*}
f=x_{0}\left(x_{1}^{2}+x_{0} x_{2}\right)=0, \quad\left(A_{3}\right) . \tag{iii}
\end{equation*}
$$

This list contains the homaloidal plane curves found by Dolgachev.
A. Dimca, S. Papadima, Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements. Ann. of Math. (2) 158 (2003), no. 2, 473-507.
I. Dolgachev, Polar Cremona transformations. Michigan Math. J. 48 (2000), 191-202.
J. Huh, Milnor numbers of projective hypersurfaces with isolated singularities. Duke Math. J. 163 (2014), no. 8, 1525-1548.
M. Tibăr, Connectivity via nongeneric pencils, Internat. J. Math. 13 (2002), no. 2, 111-123.
M. Tibăr, Vanishing cycles of pencils of hypersurfaces, Topology 43 (2004), no. 3, 619-633.
M. Tibăr, Polynomials and vanishing cycles. Cambridge Tracts in Mathematics, 170. Cambridge University Press, Cambridge, 2007. xii+253 pp.

