Polar degree of projective hypersurfaces - Part 1 -

Mihai Tibăr

Equivalent definitions, and a couple of conjectures

э

Let $V \subset \mathbb{P}^n$ be a complex projective hypersurface of degree $d \geq 2$, with arbitrary singularity set Sing V. It is defined by a homogeneous polynomial $f \in \mathbb{C}[x_0, \ldots, x_n]$, $n \geq 2$, of degree d.

- **A P N A P N**

Let $V \subset \mathbb{P}^n$ be a complex projective hypersurface of degree $d \ge 2$, with arbitrary singularity set Sing V. It is defined by a homogeneous polynomial $f \in \mathbb{C}[x_0, \ldots, x_n]$, $n \ge 2$, of degree d.

The *polar degree* pol(V) is defined as the *topological degree* of the gradient mapping:

$$\operatorname{grad} f: \mathbb{P}^n \setminus \operatorname{Sing} V \to \mathbb{P}^n.$$
 (1)

- 4 E N 4 E N

Let $V \subset \mathbb{P}^n$ be a complex projective hypersurface of degree $d \ge 2$, with arbitrary singularity set Sing V. It is defined by a homogeneous polynomial $f \in \mathbb{C}[x_0, \ldots, x_n]$, $n \ge 2$, of degree d.

The *polar degree* pol(V) is defined as the *topological degree* of the gradient mapping:

$$\operatorname{grad} f: \mathbb{P}^n \setminus \operatorname{Sing} V \to \mathbb{P}^n.$$
 (1)

A (1) > A (2) > A (2) >

3

It has been conjectured by Dolgachev [?, 2000] that it depends only on the *reduced structure* of V (and not on the defining function f) thus the notation pol(V) makes sense.

Let $V \subset \mathbb{P}^n$ be a complex projective hypersurface of degree $d \ge 2$, with arbitrary singularity set Sing V. It is defined by a homogeneous polynomial $f \in \mathbb{C}[x_0, \ldots, x_n]$, $n \ge 2$, of degree d.

The *polar degree* pol(V) is defined as the *topological degree* of the gradient mapping:

$$\operatorname{grad} f: \mathbb{P}^n \setminus \operatorname{Sing} V \to \mathbb{P}^n.$$
 (1)

3

It has been conjectured by Dolgachev [?, 2000] that it depends only on the *reduced structure* of V (and not on the defining function f) thus the notation pol(V) makes sense. This has been proved by Dimca and Papadima [?, 2003].

Theorem (Equivalent definitions for pol(V))

- 4 E N 4 E N

Theorem (Equivalent definitions for pol(V))

 $\ell : \mathbb{C}^{n+1} \to \mathbb{C}$ linear function, identified to a point in \mathbb{P}^n . Let ℓ be general, in the sense that it is stratified-transversal to V after endowing V with a Whitney stratification. Then:

1. $pol(V) := #(grad f)^{-1}(\ell)$, This is just the definition.

伺い イヨト イヨト

Theorem (Equivalent definitions for pol(V))

 $\ell : \mathbb{C}^{n+1} \to \mathbb{C}$ linear function, identified to a point in \mathbb{P}^n . Let ℓ be general, in the sense that it is stratified-transversal to V after endowing V with a Whitney stratification. Then:

1.
$$\operatorname{pol}(V) := \#(\operatorname{grad} f)^{-1}(\ell)$$
, This is just the definition.

2. $pol(V) = mult_0\Gamma(\ell, f)$, the multiplicity of the polar locus of the map $(I, f) : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}^2, 0)$.

Theorem (Equivalent definitions for pol(V))

 $\ell : \mathbb{C}^{n+1} \to \mathbb{C}$ linear function, identified to a point in \mathbb{P}^n . Let ℓ be general, in the sense that it is stratified-transversal to V after endowing V with a Whitney stratification. Then:

1.
$$\operatorname{pol}(V) := \#(\operatorname{grad} f)^{-1}(\ell)$$
, This is just the definition.

2. $pol(V) = mult_0 \Gamma(\ell, f)$, the multiplicity of the polar locus of the map $(l, f) : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}^2, 0)$.

The polar curve $\Gamma(\ell, f)$ is here a homogeneous subset of $\mathbb{C}^{n+1} \Rightarrow$ union of lines, thus $\operatorname{mult}_0\Gamma(\ell, f) =$ the number of these lines. This is also the number of points $x \in V \cap \{l \neq 0\}$ such that $\operatorname{grad} f(x) \in \mathbb{P}^n$ coincides with $\ell \in \mathbb{P}^n$, and this number is equal to $\#(\operatorname{grad} f)^{-1}(\ell)$.

(人間) シスヨン スヨン

-

Theorem (Equivalent definitions for pol(V))

 $\ell : \mathbb{C}^{n+1} \to \mathbb{C}$ linear function, identified to a point in \mathbb{P}^n . Let ℓ be general, in the sense that it is stratified-transversal to V after endowing V with a Whitney stratification. Then:

1.
$$\operatorname{pol}(V) := \#(\operatorname{grad} f)^{-1}(\ell)$$
, This is just the definition.

2. $\operatorname{pol}(V) = \operatorname{mult}_0 \Gamma(\ell, f)$, the multiplicity of the polar locus of the map $(l, f) : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}^2, 0)$.

The polar curve $\Gamma(\ell, f)$ is here a homogeneous subset of $\mathbb{C}^{n+1} \Rightarrow$ union of lines, thus $\operatorname{mult}_0\Gamma(\ell, f) =$ the number of these lines. This is also the number of points $x \in V \cap \{l \neq 0\}$ such that $\operatorname{grad} f(x) \in \mathbb{P}^n$ coincides with $\ell \in \mathbb{P}^n$, and this number is equal to $\#(\operatorname{grad} f)^{-1}(\ell)$.

Exercice. Explain the role of the genericity of ℓ in the definition 2.

-

・ 同 ト ・ ヨ ト ・ ヨ ト

3. $\operatorname{pol}(V) = \operatorname{rank} H_{n-1}(\operatorname{Clk}_{\{f=0\}}(\{0\}))$ where $\operatorname{Clk}_{\{f=0\}}(\{0\})$ denotes the *complex link*¹ of the stratum $\{0\}$ of the hypersurface $\{f=0\} \subset \mathbb{C}^{n+1}$. This is the local Milnor fibre of the function $\ell_{|}: (\{f=0\}, 0) \to (\mathbb{C}, 0)$. See next page \longrightarrow

¹See lecture B1 for more on complex links.

4 m b 4 m b 4 m b 4 m b

3. $\operatorname{pol}(V) = \operatorname{rank} H_{n-1}(\mathbb{Clk}_{\{f=0\}}(\{0\}))$ where $\mathbb{Clk}_{\{f=0\}}(\{0\})$ denotes the *complex link*¹ of the stratum $\{0\}$ of the hypersurface $\{f=0\} \subset \mathbb{C}^{n+1}$. This is the local Milnor fibre of the function $\ell_{|}: (\{f=0\}, 0) \to (\mathbb{C}, 0)$. See next page \longrightarrow

Since *f* is homogeneous, this complex link is homeomorphic to the affine subset $\{f = 0\} \cap \{\ell = 1\} \subset \mathbb{C}^{n+1}$. Denoting $H := \{\ell = 0\} \subset \mathbb{P}^n$, we thus have $\{f = 0\} \cap \{\ell = 1\} \stackrel{\text{homeo}}{\simeq} V \setminus H$, and we get:

イロト イポト イモト イモト・モー

¹See lecture B1 for more on complex links.

3. $pol(V) = rank H_{n-1}(\mathbb{Clk}_{\{f=0\}}(\{0\}))$ where $\mathbb{Clk}_{\{f=0\}}(\{0\})$ denotes the *complex link*¹ of the stratum $\{0\}$ of the hypersurface $\{f = 0\} \subset \mathbb{C}^{n+1}$. This is the local Milnor fibre of the function $\ell_{|}: (\{f = 0\}, 0) \to (\mathbb{C}, 0)$. See next page \longrightarrow

Since *f* is homogeneous, this complex link is homeomorphic to the affine subset $\{f = 0\} \cap \{\ell = 1\} \subset \mathbb{C}^{n+1}$. Denoting $H := \{\ell = 0\} \subset \mathbb{P}^n$, we thus have $\{f = 0\} \cap \{\ell = 1\} \stackrel{\text{homeo}}{\simeq} V \setminus H$, and we get:

4. $pol(V) = rank H_{n-1}(V \setminus H)$, [Dimca-Papadima, 2003]

¹See lecture B1 for more on complex links.

3. $pol(V) = rank H_{n-1}(\mathbb{Clk}_{\{f=0\}}(\{0\}))$ where $\mathbb{Clk}_{\{f=0\}}(\{0\})$ denotes the *complex link*¹ of the stratum $\{0\}$ of the hypersurface $\{f = 0\} \subset \mathbb{C}^{n+1}$. This is the local Milnor fibre of the function $\ell_{|}: (\{f = 0\}, 0) \to (\mathbb{C}, 0)$. See next page \longrightarrow

Since *f* is homogeneous, this complex link is homeomorphic to the affine subset $\{f = 0\} \cap \{\ell = 1\} \subset \mathbb{C}^{n+1}$. Denoting $H := \{\ell = 0\} \subset \mathbb{P}^n$, we thus have $\{f = 0\} \cap \{\ell = 1\} \stackrel{\text{homeo}}{\simeq} V \setminus H$, and we get:

4. $pol(V) = rank H_{n-1}(V \setminus H)$, [Dimca-Papadima, 2003]

This shows that pol(V) is topological, and hence proves Dolgachev's conjecture.

¹See lecture B1 for more on complex links.

3. $pol(V) = rank H_{n-1}(\mathbb{Clk}_{\{f=0\}}(\{0\}))$ where $\mathbb{Clk}_{\{f=0\}}(\{0\})$ denotes the *complex link*¹ of the stratum $\{0\}$ of the hypersurface $\{f = 0\} \subset \mathbb{C}^{n+1}$. This is the local Milnor fibre of the function $\ell_{|}: (\{f = 0\}, 0) \to (\mathbb{C}, 0)$. See next page \longrightarrow

Since *f* is homogeneous, this complex link is homeomorphic to the affine subset $\{f = 0\} \cap \{\ell = 1\} \subset \mathbb{C}^{n+1}$. Denoting $H := \{\ell = 0\} \subset \mathbb{P}^n$, we thus have $\{f = 0\} \cap \{\ell = 1\} \stackrel{\text{homeo}}{\simeq} V \setminus H$, and we get:

4. $pol(V) = rank H_{n-1}(V \setminus H)$, [Dimca-Papadima, 2003]

This shows that pol(V) is topological, and hence proves Dolgachev's conjecture. But already the definition 3. shows the same thing.

¹See lecture B1 for more on complex links.

With
$$C^{m+1}$$
 C^{m+1} C is general.
 $C^{m+1} \supset \{l=1\} \simeq C^{n}$ intractible
 $C^{m+1} \supset \{l=1\} \simeq C^{n}$.
 $C^{m} \land \{l=1\} \simeq C^{n}$.
Hence
 $f = n \land \{l=1\} \simeq C^{n}$.
 $C^{m} \land \{l=1\} \supseteq C^{n}$.
 $C^{m} \land (l=1) \supseteq C^{m}$.
 $C^{m} \land (l=1) \supseteq C$

E 990

イロン イロン イヨン イヨン

Dimca and Papadima proved the formula:

$$pol(V) = (d-1)^n - \sum_{p \in Sing V} \mu_p(V) \ge 0.$$
 (2)

Dimca and Papadima proved the formula:

$$pol(V) = (d-1)^n - \sum_{\rho \in Sing V} \mu_{\rho}(V) \ge 0.$$
 (2)

4 AR 1 4 E 1 4 E 1

The smooth hypersurface $V_{n,d}$ defined by the equation

$$x_0^d + \dots + x_n^d = 0$$

realises the maximum polar number $pol(V_{n,d}) = (d-1)^n$ for fixed *n*, in this category of "hypersurfaces with at most isolated singularities".

Dimca and Papadima proved the formula:

$$pol(V) = (d-1)^n - \sum_{\rho \in Sing V} \mu_{\rho}(V) \ge 0.$$
 (2)

4 **A** N A **B** N A **B** N

The smooth hypersurface $V_{n,d}$ defined by the equation

$$x_0^d + \dots + x_n^d = 0$$

realises the maximum polar number $pol(V_{n,d}) = (d-1)^n$ for fixed *n*, in this category of "hypersurfaces with at most isolated singularities".

What are the hypersurfaces with pol(V) = 1, called "homaloidal"?

Dimca and Papadima proved the formula:

$$pol(V) = (d-1)^n - \sum_{\rho \in Sing V} \mu_{\rho}(V) \ge 0.$$
 (2)

イロト イポト イモト イモト ニモー

The smooth hypersurface $V_{n,d}$ defined by the equation

$$x_0^d + \dots + x_n^d = 0$$

realises the maximum polar number $pol(V_{n,d}) = (d-1)^n$ for fixed *n*, in this category of "hypersurfaces with at most isolated singularities".

What are the hypersurfaces with pol(V) = 1, called "homaloidal"? The above formula shows in particular that the smooth quadratic hypersurface $V_{n,2}$ is the only smooth V which is homaloidal.

イロト イヨト イヨト

Proposition (Dimca and Papadima, 2003)

The relative homology $H_*(D(f), D(f) \cap H)$ is concentrated in dimension n, and

 $pol(V) = rank H_n(D(f), D(f) \cap H).$

イベト イモト イモト

Proposition (Dimca and Papadima, 2003)

The relative homology $H_*(D(f), D(f) \cap H)$ is concentrated in dimension n, and

 $pol(V) = rank H_n(D(f), D(f) \cap H).$

The complement D(f) is an affine manifold hence a CW-complex of dim $\leq n$, and this upper bound gives its level of connectivity.

4 **A** N A **A** N A **A** N

Proposition (Dimca and Papadima, 2003)

The relative homology $H_*(D(f), D(f) \cap H)$ is concentrated in dimension n, and

 $pol(V) = rank H_n(D(f), D(f) \cap H).$

The complement D(f) is an affine manifold hence a CW-complex of dim $\leq n$, and this upper bound gives its level of connectivity.

The triviality of the relative homology $H_j(D(f), D(f) \cap H)$ for $j \le n-1$ follows from the Lefschetz Hyperplane Theorem.

A (1) × A (2) × A (2) ×

Proposition (Dimca and Papadima, 2003)

The relative homology $H_*(D(f), D(f) \cap H)$ is concentrated in dimension n, and

 $pol(V) = rank H_n(D(f), D(f) \cap H).$

The complement D(f) is an affine manifold hence a CW-complex of dim $\leq n$, and this upper bound gives its level of connectivity.

The triviality of the relative homology $H_j(D(f), D(f) \cap H)$ for $j \le n-1$ follows from the Lefschetz Hyperplane Theorem.

More precisely, at the homotopy type level, D(f) is obtained from the generic slice $D(f) \cap H$ by attaching cells of dimension n only.

イロト イボト イヨト イヨト

-

Proposition (Dimca and Papadima, 2003)

The relative homology $H_*(D(f), D(f) \cap H)$ is concentrated in dimension n, and

 $pol(V) = rank H_n(D(f), D(f) \cap H).$

The complement D(f) is an affine manifold hence a CW-complex of dim $\leq n$, and this upper bound gives its level of connectivity.

The triviality of the relative homology $H_j(D(f), D(f) \cap H)$ for $j \le n-1$ follows from the Lefschetz Hyperplane Theorem.

More precisely, at the homotopy type level, D(f) is obtained from the generic slice $D(f) \cap H$ by attaching cells of dimension n only.

 \rightarrow Yet this does not help for bounding pol(V) from below.

-

Let V have isolated singularities. Let $\mu_p^{\langle n-2\rangle}$ be the Milnor number of a hyperplane section² $H_p \cap V$ through p.

²Notation introduced by Teissier.

Mihai Tibăr (CIMPA Research School)

Polar degree - lecture B3 - Part 1

□ › < @ › < ≧ › < ≧ › E · ⊙ Q (~ Equivalent definitions, and a couple of conjec

Let V have isolated singularities. Let $\mu_p^{\langle n-2 \rangle}$ be the Milnor number of a hyperplane section² $H_p \cap V$ through p.

If V is not a cone of vertex p, then:

Theorem (Huh, 2014)

rank $H_n(D(f), D(f) \cap H_p) = \operatorname{pol}(V) - \mu_p^{\langle n-2 \rangle}(V).$

²Notation introduced by Teissier.

Mihai Tibăr (CIMPA Research School)

Polar degree - lecture B3 - Part 1

Let V have isolated singularities. Let $\mu_p^{\langle n-2\rangle}$ be the Milnor number of a hyperplane section² $H_p \cap V$ through p.

If V is not a cone of vertex p, then:

Theorem (Huh, 2014)

rank $H_n(D(f), D(f) \cap H_p) = \operatorname{pol}(V) - \mu_p^{\langle n-2 \rangle}(V).$

This extends the preceding Dimca-Papadima result to hyperplanes H_p passing through a singular point $p \in \text{Sing } V$.

²Notation introduced by Teissier.

Mihai Tibăr (CIMPA Research School)

Polar degree - lecture B3 - Part 1

- A TE N - A TE N

Let V have isolated singularities. Let $\mu_p^{\langle n-2\rangle}$ be the Milnor number of a hyperplane section² $H_p \cap V$ through p.

If V is not a cone of vertex p, then:

Theorem (Huh, 2014)

rank $H_n(D(f), D(f) \cap H_p) = \operatorname{pol}(V) - \mu_p^{\langle n-2 \rangle}(V).$

This extends the preceding Dimca-Papadima result to hyperplanes H_p passing through a singular point $p \in \text{Sing } V$.

The proof relies on *the theory of slicing by pencils with singularities in the axis* from [?, ?, ?].

* If V is a cone of vertex p then pol V = 0.

4 AB 1 4 B 1 4 B 1

²Notation introduced by Teissier.

This gives the first result providing **bounds from below** for pol(V):

э

This gives the first result providing **bounds from below** for pol(V):

Corollary (Huh)

 $\operatorname{\mathsf{pol}}(V) \ge \mu_p^{\langle n-2 \rangle}(V).$

イロト イロト イヨト イヨト

Corollary (Huh)

This gives the first result providing **bounds from below** for pol(V):

This bound enables Huh to initiate the proof of a Dimca-Papadima conjecture:

 $\operatorname{pol}(V) \ge \mu_p^{\langle n-2 \rangle}(V).$

イロト イボト イヨト イヨト

э

This gives the first result providing **bounds from below** for pol(V):

Corollary (Huh)

$$\operatorname{pol}(V) \geq \mu_p^{\langle n-2 \rangle}(V).$$

This bound enables Huh to initiate the proof of a Dimca-Papadima conjecture:

Theorem (Huh)

A projective hypersurface $V \subset \mathbb{P}^n$ with only isolated singularities and pol(V) = 1 is one of the following, after a linear change of homogeneous coordinates:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

(i)
$$(n \ge 2, d = 2)$$
 a smooth quadric:

$$f = x_0^2 + \dots + x_n^2 = 0.$$

Mihai Tibăr (CIMPA Research School) Polar degree - lecture B3 - Part 1 Equivalent definitions, and a couple of conject

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

(i)
$$(n \ge 2, d = 2)$$
 a smooth quadric:
 $f = x_0^2 + \dots + x_n^2 = 0.$

(ii)
$$(n = 2, d = 3)$$
 the union of three non-concurrent lines:

$$f = x_0 x_1 x_2 = 0,$$
 (3A₁).

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

(i)
$$(n \ge 2, d = 2)$$
 a smooth quadric:
 $f = x_0^2 + \dots + x_n^2 = 0.$

(ii)
$$(n = 2, d = 3)$$
 the union of three non-concurrent lines:

$$f = x_0 x_1 x_2 = 0,$$
 (3A₁).

(iii) (n = 2, d = 3) the union of a smooth conic and one of its tangents:

$$f = x_0(x_1^2 + x_0x_2) = 0,$$
 (A₃).

This list contains the homaloidal plane curves found by Dolgachev.

イロト イポト イヨト イヨト

- A. Dimca, S. Papadima, *Hypersurface complements, Milnor fibers and higher homotopy* groups of arrangements. Ann. of Math. (2) 158 (2003), no. 2, 473-507.
- I. Dolgachev, *Polar Cremona transformations*. Michigan Math. J. 48 (2000), 191-202.
- J. Huh, *Milnor numbers of projective hypersurfaces with isolated singularities.* Duke Math. J. 163 (2014), no. 8, 1525-1548.
- M. Tibăr, Connectivity via nongeneric pencils, Internat. J. Math. 13 (2002), no. 2, 111-123.
 - M. Tibăr, Vanishing cycles of pencils of hypersurfaces, Topology 43 (2004), no. 3, 619-633.
- M. Tibăr, Polynomials and vanishing cycles. Cambridge Tracts in Mathematics, 170. Cambridge University Press, Cambridge, 2007. xii+253 pp.

(日) (同) (日) (日)