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Polar degree and topology

Let V ⊂ Pn be a complex projective hypersurface of degree d ≥ 2 , with arbitrary
singularity set SingV . It is defined by a homogeneous polynomial
f ∈ C[x0, . . . , xn], n ≥ 2, of degree d .

The polar degree pol(V ) is defined as the topological degree of the gradient
mapping:

gradf : Pn\ SingV → Pn. (1)

It has been conjectured by Dolgachev [?, 2000] that it depends only on the
reduced structure of V (and not on the defining function f ) thus the notation
pol(V ) makes sense.
This has been proved by Dimca and Papadima [?, 2003].
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Proof of Dolgachev’s conjecture

Theorem (Equivalent definitions for pol(V ))

` : Cn+1 → C linear function, identified to a point in Pn. Let ` be general, in the
sense that it is stratified-transversal to V after endowing V with a Whitney
stratification. Then:

1. pol(V ) := #(gradf )−1(`), This is just the definition.

2. pol(V ) = mult0Γ(`, f ), the multiplicity of the polar locus of the map
(l , f ) : (Cn+1, 0)→ (C2, 0).

The polar curve Γ(`, f ) is here a homogeneous subset of Cn+1 ⇒ union of lines,
thus mult0Γ(`, f ) = the number of these lines. This is also the number of points
x ∈ V ∩ {l 6= 0} such that gradf (x) ∈ Pn coincides with ` ∈ Pn, and this number
is equal to #(gradf )−1(`).

Exercice. Explain the role of the genericity of ` in the definition 2.
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3. pol(V ) = rank Hn−1(Clk{f=0}({0}))
where Clk{f=0}({0}) denotes the complex link1 of the stratum {0} of the
hypersurface {f = 0} ⊂ Cn+1. This is the local Milnor fibre of the function
`| : ({f = 0}, 0)→ (C, 0). See next page −→

Since f is homogeneous, this complex link is homeomorphic to the affine subset
{f = 0} ∩ {` = 1} ⊂ Cn+1. Denoting H := {` = 0} ⊂ Pn, we thus have

{f = 0} ∩ {` = 1} homeo' V \H, and we get:

4. pol(V ) = rank Hn−1(V \H), [Dimca-Papadima, 2003]

This shows that pol(V ) is topological, and hence proves Dolgachev’s conjecture.

But already the definition 3. shows the same thing.

1See lecture B1 for more on complex links.
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Hypersurfaces with at most isolated singularities

Dimca and Papadima proved the formula:

pol(V ) = (d − 1)n −
∑

p∈SingV

µp(V ) ≥ 0. (2)

The smooth hypersurface Vn,d defined by the equation

xd0 + · · ·+ xdn = 0

realises the maximum polar number pol(Vn,d) = (d − 1)n for fixed n, in this
category of “hypersurfaces with at most isolated singularities”.

What are the hypersurfaces with pol(V ) = 1, called “homaloidal”?
The above formula shows in particular that the smooth quadratic hypersurface
Vn,2 is the only smooth V which is homaloidal.
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For any V ⊂ Pn, with possibly nonisolated singularities, let us denote by
D(f ) := Pn\V the complement, and let H ⊂ Pn denote a general hyperplane.

Proposition (Dimca and Papadima, 2003)
The relative homology H∗(D(f ),D(f ) ∩ H) is concentrated in dimension n, and

pol(V ) = rank Hn(D(f ),D(f ) ∩ H).

The complement D(f ) is an affine manifold hence a CW-complex of dim ≤ n, and
this upper bound gives its level of connectivity.

The triviality of the relative homology Hj(D(f ),D(f ) ∩ H) for j ≤ n − 1 follows
from the Lefschetz Hyperplane Theorem.

More precisely, at the homotopy type level, D(f ) is obtained from the generic slice
D(f ) ∩ H by attaching cells of dimension n only.

→ Yet this does not help for bounding pol(V ) from below.
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Huh’s extension

Let V have isolated singularities. Let µ〈n−2〉
p be the Milnor number of a

hyperplane section2 Hp ∩ V through p.

If V is not a cone of vertex p, then:

Theorem (Huh, 2014)

rank Hn(D(f ),D(f ) ∩ Hp) = pol(V )− µ〈n−2〉
p (V ).

This extends the preceding Dimca-Papadima result to hyperplanes Hp passing
through a singular point p ∈ SingV .

The proof relies on the theory of slicing by pencils with singularities in the axis
from [?, ?, ?].

———————
* If V is a cone of vertex p then polV = 0.

2Notation introduced by Teissier.
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Huh’s inequality

This gives the first result providing bounds from below for pol(V ):

Corollary (Huh)

pol(V ) ≥ µ〈n−2〉
p (V ).

This bound enables Huh to initiate the proof of a Dimca-Papadima conjecture:

Theorem (Huh)
A projective hypersurface V ⊂ Pn with only isolated singularities and pol(V ) = 1
is one of the following, after a linear change of homogeneous coordinates:
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List of homaloidal hypersurfaces

(i) (n ≥ 2, d = 2) a smooth quadric:

f = x2
0 + · · ·+ x2

n = 0.

(ii) (n = 2, d = 3) the union of three non-concurrent lines:

f = x0x1x2 = 0, (3A1).

(iii) (n = 2, d = 3) the union of a smooth conic and one of its tangents:

f = x0(x2
1 + x0x2) = 0, (A3).

This list contains the homaloidal plane curves found by Dolgachev.
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