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The bouquet theorem in the singular setting
We present here the third proof of the bouquet theorem, which is based on polar
curves and monodromy.
Let (X , 0) denote the germ of a singular complex analytic space, embedded in
(CN , 0) for some N > 0, with dim(X , 0) = n, n ≥ 2. The existence of
Thom-Whitney stratifications on singular analytic spaces allows one to prove local
fibration results where the fibres are no more smooth. Historically, the first such
result seems to have been the following:

Theorem (Lê D.T.)

Let g : (X , 0)→ (C, 0) be a holomorphic function germ. For any sufficiently small
radius ε > 0, and any 0 < δ � ε, the restriction:

g| : Bε ∩ g−1(Dδ\{0})→ Dδ\{0} (1)

is a locally trivial stratified C 0-fibration. The isotopy type of the fibration does
not depend on the choice of the radii ε and δ.

The above fibration is called Milnor-Lê (tube) fibration, and its fibre is the
Milnor-Lê fibre.
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We shall explain the structure of the Milnor-Lê fibre Fg in case g defines an
isolated singularity in the stratified sense.
Let (X , 0), with dim(X , 0) = n, n ≥ 2, be a reduced, irreducible complex analytic
germ. We fix some Whitney stratification S := {Si}i∈R on (X , 0), and assume
that {0} is a point-stratum, denoted by S0.

Definition

Let g : (X , 0)→ (C, 0) be a holomorphic function germ, and let
SingS g := ∪i∈R Sing g|Si be its stratified singular locus. It is a closed set, due to
the Whitney regularity of S.
One says that g has an isolated singularity with respect to the stratification S iff

SingS g = {0}.

Let N be a linear normal slice to Si at x ∈ Si (i.e. N ⊂ CN is the germ of a
manifold transversal to Si and N ∩ Si = {x}). For a general linear form
l : N → C, the restriction l|X∩N has an isolated stratified critical point at x , and
it has a local Milnor-Lê fibration. One calls complex link of the stratum S the
Milnor-Lê fibre of the function germ l|X∩N at x , namely:

ClkX (S) := X ∩N ∩ Bε′(x) ∩ {l = u} for 0 < |u| � ε′ � 1.
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Let Sk(Y ) denote the k-times repeated suspension of some space Y , where k the
complex dimension of Y . By convention, the suspension of the empty set is S0,
the 0-sphere. Let also define S0(Y ) := Y .

Theorem (T, 1994)

Let g : (X , 0)→ (C, 0) be a holomorphic function with a stratified isolated
singularity on a complex analytic germ (X , 0) without 1-dimensional components.
Then the Milnor fibre Fg is homotopy equivalent to a bouquet, namely:

Fg
ht'
∨
i∈R

∨
#Mi times

Ski (ClkX (Si ))

where the last wedge is taken #Mi times, for some integer #Mi ≥ 0 which
depends on the stratum and will be defined during the proof, with the convention
that #M0 = 1 for the zero-dimensional stratum S0.
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The above theorem excepts the case of curve components of the space germ
(X , 0) from the hypotheses because these 1-dimensional components just
contribute to the Milnor fibre by discrete points1. In particular, the Milnor fibre
would not be connected in such a case.

In the above statement, the convention tells that, if {0} is a point-stratum, then
the complex link of X at 0 occurs precisely one time in this bouquet.

The complex link of the maximal dimensional stratum is empty, the suspension of
the empty set is the 0-sphere, and so its n-th suspension is Sn−1. Therefore the
maximal dimensional stratum contribution in the Milnor fibre Fg is by a bouquet
of spheres Sn−1. In particular if X\{0} is nonsingular, like in the cases (a) and (e)
of the following Corollary, we get this contribution ∨Sn−1.

1The Milnor fibre of any analytic function g with isolated singularity on an analytic variety of
complex dimension 1 is a finite number of points.
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Several remarkable classical results which become particular cases of the above
theorem.

Corollary

(a) J. Milnor: if (X , 0) = (Cn, 0), then Fg
ht' ∨µSn−1.

(b) H. Hamm: if (X , 0) is an isolated complete intersection singularity

(abbreviated ICIS), then Fg
ht' ∨µSn−1.

(c) Lê D.T. : if (X , 0) is a complete intersection, then Fg
ht' ∨µSn−1.

(d) Lê D.T.: if (X , 0) is an equidimensional analytic germ with

rhd (X ) = dim0 X = n, then Fg
ht' ∨µSn−1, where rhd (X ) is the rectified

homotopical depth.
The same statement holds for the rectified homological depth rHd(X ;Q)
instead of rhda.

(e) D. Siersm If (X , 0) is isolated (i.e. X \ {0} is nonsingular) and dim0 X 6= 3,

then Fg
ht' ClkX ({0}) ∨

∨
Sn−1.

aidem.
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Proof.
(a). The minimal Whitney stratification is trivial (since X is smooth), hence the
complex link of the unique stratum is empty, and we can have a certain number of
spheres Sn−1 = Sn(∅) in the wedge.
(b). X has only two strata: {0} and X \ {0}. The complex link ClkX ({0}) turns
out to have the homotopy typea of a bouquet of spheres Sn−1. Besides that, the
wedge may also contain spheres Sn−1 = Sn(∅) from the smooth stratum X \ {0}.
Hamm also proved that a map germ G : (Cn+p−1, 0)→ (Cp, 0) defining an ICIS
has a fibration and its Milnor fibre is homotopy equivalent to a bouquet of spheres
Sn−1. This result can be reduced to the above by a coordinate change in Cp such
that X := Z (f1, . . . , fp−1) and fp : (X , 0)→ (C, 0) has an isolated singularity.

(d). Lê proved that rhd (X ) = dim0 X is equivalent to ClkX (Si )
ht' ∨ScodimXSi−1,

∀i ∈ R.
(c). Lê also proved that a complete intersection (X , 0) satisfies
rhd (X ) = dim0 X , thus (c) follows from (d).
(e). Like the proof of (b), but here the complex link of the singular stratum {0}
may not have a particular structure, so this complex link is part of the wedge
formula.

aExercise. Prove this by induction.
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The proof of Theorem 3 will follow from the next handlebody statement.

Theorem

The Milnor fibre Fg is obtained from the complex link ClkX ({0}) to which one
attaches thimbles over local Milnor fibres of stratified Morse singularities, such
that the image in ClkX ({0}) of each such attaching map is contractible within
ClkX ({0}).

In order to obtain the control over the attaching, one uses a special geometric
monodromy which has been introduced by Lê D.T. under the name carrousel
monodromy. We introduce it below.
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We use the following fundamental result of Bertini-Sard type which goes back to
Hamm-Lê, Kleiman and Teissier; we send to [Ti2, Theorem 7.1.2] for proofs and
for more ample discussions:

Lemma

[Polar Curve Lemma]
There is a Zariski open dense subset Ω′ := Ω′g ⊂ P̌N−1 such that Γ(l , g) is either
a curve germ for all l ∈ Ω′, or is empty for all l ∈ Ω′.

In the case Γ(l , g) 6= ∅, there is a Zariski open subset of Ω ⊂ Ω′ such that Γ(l , f )
is reduced, and that the restriction (l , g)|Γ(l,g) is one-to-one.

The linear forms l ∈ Ω have the property that the hyperplane {l = 0} is transverse
to all strata of X \ {0}, and thus to all strata of g−1(0) \ {0}, in some
neighbourhood of 0. The strata of dimension 1 in S are, by definition,
components of the polar curve.

Saying that l is generic with respect to g relatively to the stratification S, means
l ∈ Ω as in the above Lemma.
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The polar neighbourhood

If l ∈ Ω, then Γ(l , g) intersects the fibre (l , g)−1(0, 0) at the origin only. In turn,
this implies that the map germ (l , g) is open at the origin of the target, and that
there exists a fibration outside the discriminant:

∆ := (l , g)(Γ(l , g) ∪ SingS g), (2)

in the following sense:

Let Bε denote a Milnor ball for g , that is the intersection of a small enough ball at
the origin of the ambient space with a suitable representative of the germ (X , 0).
As shown already by Lê, one can use a “box neighbourhood”
B := Bε ∩ l−1(D)∩ g−1(D ′) and the map (l , g) : B → C2 in order to describe the
local Milnor fibration of g and its relation to the Milnor fibration of the slice g|l=0.
Here follows the detailed setting.
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Let l ∈ Ωg . There exist small enough radii 0 < r ′ � r � ε such that
∆(l , g) ∩ ∂Dr × Dr ′ = ∅, and such that the map (l , g) : B → Dr × Dr ′ , with
B := Bε ∩ l−1(Dr ) ∩ g−1(Dr ′), restricts to a locally trivial fibration:

(l , g)| : B \ (l , g)−1(∆)→ (Dr × Dr ′) \∆. (3)

and moreover, that g induces a locally trivial topological fibration

g| : B ∩ g−1(Dr ′ \ {0})→ Dr ′ \ {0}

which is homeomorphic to the Milnor fibration of g , and a locally trivial
topological fibration

g| : B ∩ g−1(Dr ′ \ {0}) ∩ {l = 0} → Dr ′ \ {0},

which is homeomorphic to the Milnor fibration of g|{l=0}.
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Symmetrically, the following restriction of (3):

l| : B ∩ l−1(Dr \ {0})→ Dr \ {0} (4)

is homeomorphic to the Milnor fibration of l , which in particular implies the
following homeomorphism:

Fl
homeo' B ∩ l−1(ξ) (5)

for any small enough |ξ| > 0.

BOUQUET DECOMPOSITION OF THE MILNOR FIBRE 235 

2.10. AttdGg the “cells” C(@i,,) to FI, 

THEOREM. The Milnor jibre Ff is homotopy equivalent to 

@3w/ v V SfFi,k) 
isI ke(l,...,m,} SE{l,. .r,.d 

where S( -) means suspension. 

Proof. The Milnor fibre  F, is  homotopy equivalent to the  union FI, ui,k,,ei,k,,, where  
iEI,kE{l,. . . ,mi},sE{O,. . . , ri,k}. The definition of privileged thimbles  shows tha t we 
have a  good control over the  a ttaching map. Namely, by Proposition 2.6, we have the  
equality e i,k,s+r n  F; = Qs n F;, which shows tha t, SO to say, the  cone C(Fi,k,s+i) iS  
a ttached to Fj, exactly “a t the  same place” a s  the  cone C(Fi,k,s ). It follows tha t, for fixed i E I 
and k E { 1, . . . , mi} such tha t ri,k > 0, the  a ttaching 

Ft u e i, k, o u e i, k, I 

is  homotopy equivalent to 

(J ’I, Uei,k,o) v s(gi,k) 

hence f’I,uU,,~o,~ ,.... r,,t~ei,k,s ~(F~u%k,o)  v Vse(l  , . . . ,  ,,,,)s(~i,k). 
To conclude, we jus t have to notice  tha t 

a,,‘(W)% F;U u ei.k.0. 
iel ke{l....,m,) 

Cl 

3. SLIDING ALONG A 

The Bouquet Theorem will follow as  soon a s  we prove the  homotopy equivalence 
Q; 1 ( W) “A F,, where  F[ is  the  Milnor fibre  of our 1 E Cl, hence the  complex link of X a t x. 

We firs t prove tha t FI % @; ’ ({ <} x DL), which is  easy (Proposition 3.2). We then prove 
the  remaining homotopy equivalence @; ‘(IV) % 0, ‘({t } x Di). The idea  of the  proof 
comes from L& and Perron’s  technique used in [12], the  so-called “rabattement dans  la  
diagramme de Cerf”. 

3.1. Let {Da x D;}aeA be our privileged family of 2-discs . Let <, E D, with I(, 1 small enough 
such tha t, for any 5 > 0 with I< 1 I I&I, the  intersection I, i(r) n Ai n D, x 0: cons is ts  of 
exactly mi s imple  points , for any i E I. 

With these  nota tions , we have the  following proposition. 

Fig. 3. 
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The carrousel disk

Step 1. Let Sr ′ := ∂Dr ′ . We construct a special vector field on Dr × Sr ′ . Namely,
there exists an integrable smooth vector field on Dr × Sr ′ which is a lift of the unit
tangent vector field on the circle Sr ′ by the projection

Dr × Sr ′ → Sr ′

and such that it is tangent to the circles ∆(l , g) ∩ (Dr × Sr ′). In addition, one
may impose to this vector field to be the unit vector field on the circles {0} × Sr ′
and {p} × Sr ′ , ∀p ∈ ∂Dr .

Let us fix some η ∈ Sr ′ . The integration of the vector field on Dr × Sr ′ produces a
homeomorphism

h : Dr × {η} → Dr × {η} (6)

which one calls carrousel.

Some point a of the carrousel disk Dr × {η} has a trajectory inside Dr × Sr ′ such
that, after one turn around Sr ′ , it arrives at the point a′ := h(a) ∈ Dr × {η}.
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Step 2. The vector field that we have constructed at Step 1 will be lifted through
the map (l , g) to a controlled continuous, more precisely “rugueux” vector field (in
Verdier’s terminology [Verdier]) on X\{0} which lifts our carrousel vector field.

By the Thom’s Second Isotopy Lemma (see e.g. Mather, [GLPW], [Verdier,
Theorem 4.14]), one may integrate the latter vector field and obtain a
characteristic homeomorphism of the fibration induced by g over Sr ′ , and thus a
geometric monodromy hg of the Milnor fibre Fg of g . This is called the carrousel
monodromy.
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Puiseux expansions of the discriminant ∆(l , g), and the
decomposition of the carrousel disk2

The discriminant ∆(l , g) is a plane curve. By construction, the centre (0, η) of
the carrousel disk is fixed, and the circle ∂Dr × {η} is pointwisely fixed too. But
each point a ∈ ∆(l , g) ∩ Dr × {η} is moved by the carrousel h around (0, η). Its
new position h(a) is called carrousel motion and depends on the Puiseux
parametrizations of the branches of ∆. These Puiseux expansions determine also
the motion of the points in the carrousel which are in the neighbourhood of
∆(l , g) ∩ Dr × {η}.

The carrousel construction works for holomorphic function germs
g : (X , 0)→ (C, 0), with any singular locus. In case SingS g is a positive
dimensional set, it is mapped by (l , g) to the u-axis, and in this case we denote by
∆0 the irreducible component of ∆ which coincides to the u-axis. We this write
∆′(l , g) for the union of the branches of ∆ which are not contained in the u-axis.

2For more details one may consult [Ti1].
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Let ∆′ = ∪i∈I∆i , where I := {1, . . . , r}, be the decomposition into irreducible
components. Since the polar curve Γ(l , g) projects one-to-one to ∆′, this yields a
one-to-one correspondence among the components of Γ(l , g) = ∪i∈IΓi and those
of ∆′. For any i ∈ I , we then consider a Puiseux parametrisation (u(t), λ(t)) of
∆i , namely:

u =
∑
j≥mi

ci,j t
j , λ = tni ,

where

mi := mult0∆i = mult0Γi

ni := mult0(∆i , {λ = 0}) = mult0(Γi , {g = 0}).

where the multiplicity mult0 is defined in each ambient space, C2 or CN ,
respectively.

Denote by (mi,k , ni,k), for 1 ≤ k ≤ gi the kth Puiseux pair of ∆i , where gi is the
genus of the iterated toric knot which is the link of ∆i .

Mihai Tibăr (Lille, France) Milnor fibrations CIMPA Research School, 2021 17 / 34



Let ∆′ = ∪i∈I∆i , where I := {1, . . . , r}, be the decomposition into irreducible
components. Since the polar curve Γ(l , g) projects one-to-one to ∆′, this yields a
one-to-one correspondence among the components of Γ(l , g) = ∪i∈IΓi and those
of ∆′. For any i ∈ I , we then consider a Puiseux parametrisation (u(t), λ(t)) of
∆i , namely:

u =
∑
j≥mi

ci,j t
j , λ = tni ,

where

mi := mult0∆i = mult0Γi

ni := mult0(∆i , {λ = 0}) = mult0(Γi , {g = 0}).

where the multiplicity mult0 is defined in each ambient space, C2 or CN ,
respectively.

Denote by (mi,k , ni,k), for 1 ≤ k ≤ gi the kth Puiseux pair of ∆i , where gi is the
genus of the iterated toric knot which is the link of ∆i .

Mihai Tibăr (Lille, France) Milnor fibrations CIMPA Research School, 2021 17 / 34



Let ∆′ = ∪i∈I∆i , where I := {1, . . . , r}, be the decomposition into irreducible
components. Since the polar curve Γ(l , g) projects one-to-one to ∆′, this yields a
one-to-one correspondence among the components of Γ(l , g) = ∪i∈IΓi and those
of ∆′. For any i ∈ I , we then consider a Puiseux parametrisation (u(t), λ(t)) of
∆i , namely:

u =
∑
j≥mi

ci,j t
j , λ = tni ,

where

mi := mult0∆i = mult0Γi

ni := mult0(∆i , {λ = 0}) = mult0(Γi , {g = 0}).

where the multiplicity mult0 is defined in each ambient space, C2 or CN ,
respectively.

Denote by (mi,k , ni,k), for 1 ≤ k ≤ gi the kth Puiseux pair of ∆i , where gi is the
genus of the iterated toric knot which is the link of ∆i .

Mihai Tibăr (Lille, France) Milnor fibrations CIMPA Research School, 2021 17 / 34



Denote by ρi :=
mi,1
ni,1

= mi

ni
the Puiseux ratios and notice that ρi ≤ 1, since l ∈ Ωg

is general.

Each ∆i has a Puiseux series expansion with rational exponents, of which we
consider here only the essential terms:

u = ai,1λ
mi,1/ni,1 +

l1∑
l=1

bi,1,lλ
(mi,1+l)/ni,1 + ai,2λ

mi,2/ni,1ni,2+

+
l2∑
l=1

bi,2,lλ
(mi,2+l)/ni,1ni,2 + · · ·+ ai,giλ

mi,gi
/ni,1···ni,gi +

∑
l>0

bi,gi ,lλ
(mi,gi

+l)/ni,1···ni,gi ,

The roots of unity of order ni = ni,1 · · · ni,gi act on the coefficients, and each of
the resulting expansion is called a Puiseux-conjugated expansion.
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The curve Ci : u = ai,1λ
mi,1/ni,1 is the first truncation of ∆i .

Then Ci intersects the carrousel disk D := Dr × {η} at ni,1 points situated on a
circle and their carrousel motion is a rotation of angle 2πρi .

Definition

We consider ni,1 disjoint small disks δi,j , j ∈ {1, . . . , ni,1}, of the same radius,
centred at the points Ci ∩ (Dr × {η}), such that each disk contains
ni,2 · · · ni,gi = ni/ni,1 points of the set ∆i ∩ (Dr × {η}) such that, if Ci1 = Ci2 ,
then the corresponding smaller carrousel disks coincide, but if Ci1 6= Ci2 , then their
smaller carrousel disks are totally disjoint.
We say that they are smaller carrousel disks of ∆i .
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Annuli, transition zones and rotation speeds

We call annulus the difference of two different disks centred at the origin of the
carrousel disk D := Dr × {η}, and denote by ex(A) the circle boundary of the
largest disk of such an annulus A. To each branch ∆i there corresponds an
annulus Ai of the carrousel disk Dr × {η}, such that Ai contains ∆i ∩ (Dr × {η}),
that Ai1 = Ai2 if and only if ρi1 = ρi2 , and that different annuli are totally disjoint.
The disjoint annuli are ordered according to the radius of their exterior circle ex,
in such a way that if 1 > ρi1 > ρi2 then the radius of ex(Ai1) is smaller than the
radius of ex(Ai2).
We shall say that the polar ratio ρi is the rotation speed of Ai .
We denote by Ai0 the annulus corresponding to the polar ratio ρ = 1 (and which
is the closest to the origin), if this polar ratio exists, and we denote by A0 an
arbitrarily small open disk centred in (0, η), not intersecting ∆′, and disjoint from
all other annuli.

For any i ∈ I , there are ni,1 smaller carrousel disks δi,j , j ∈ {1, . . . , ni,1}, centred
at the ni,1 points Ci ∩ (Dr × {η}), and thus contained in Ai . The centres of the
disks δi,j , as well as the points of Ai which are outside any disk δi,j , have a
carrousel motion which is, by definition, a rotation of angle 2πρi .
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One defines a smooth transition between the angular speeds corresponding to
successive annuli. This transition zone is a sufficiently thin annulus which we
squeeze between Ai and Ai+1, in such a way that the collection of annuli and the
transition zones defines a partition of the carrousel disk. The disk A0 is by
definition a transition zone and its centre is fixed by the carrousel motion. In each
transition zone, the rotation speed depends continuously on the distance to the
origin, and it is constant on each circle centred at the origin contained in
Dr × {η}. Altogether, this partition into annuli defines a filtration by disks of the
carrousel disk D, which we call polar filtration.

Recursively, each carrousel disk δi,j decomposes into annuli which contain 2nd
level smaller carrousel disks, and so on, in a number of gi steps for each ∆i . We
refer to [Ti1] for this iterated carrousel decomposition and for applications to the
computation of the zeta function of the monodromy.
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Generalised thimbles via the carrousel

The construction of thimbles is done, starting with a smooth space B and a C∞

trivial fibration β : B → [0, 1] with smooth fibre, is classical, see e.g. [AGV1] and
[Ebeling1]. Here we have to deal with a singular space, but the definition is
analogous.

Definition

Let B be a singular space endowed with a Whitney stratification, and let us
assume that one can define a stratified C0 trivial fibration β : B → [0, 1] by lifting
the unit vector field on [0, 1] into a continuous and integrable vector field tangent
to the strata of B. Let S be a subset of β−1(1) and denote by Tβ(S) the
associated tube, which is homeomorphic to S × [0, 1].

The set Tβ(S) ∪ Cone(S) is called a (generalised) thimble on β−1(0) along β.
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A privileged system of paths in the carrousel disk D

We define a “good” system of paths in the carrousel disk D by using the carrousel
motion. Let γ := (ε, η) ∈ ∂D (thus |ε| is the radius of D) and denote
F ′γ := B ∩ (l , g)−1(γ). By definition, the carrousel h fixes the boundary ∂D
pointwisely. In case g has an isolated singularity, the restriction
g| : B ∩ (l , g)−1({ε} × Dr ′)→ {ε} × Dr ′ is a trivial fibration, since
∆ ∩ {ε} ×Dr ′ = ∅, and therefore the geometric monodromy h acts trivially on F ′γ .

Let us fix some simple path w : [0, 1]→ D from γ to the centre (0, η) ∈ D which
avoids any smaller carrousel disk and intersects at only one point any circle
centred at the origin of D. For each i , the annulus Ai contains ni,1 smaller
carrousel disks corresponding to the approximation Ci , and one can order them
counter-clockwisely by starting from the path Imw .
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We define a connected open subset W ⊂ D, as follows. If ρi < 1, we consider an
angular sector Vi ⊂ Ai bounded by the path w , such that Vi contains precisely
mi,1 consecutive order smaller carrousel disks δi,j associated to Ci , counted from
Imw ∩ Ai . In case Ai = Aj , we may also consider that the sectors are equal,
Vi = Vj .
Let then W be the union of all these sectors together with the small disk A0.

We now define ordered paths wi ⊂W such that the initial speeds are clockwisely
ordered, from γ to the point di := Imw ∩ ex(Āi ), where ex(Āi ) denotes the
exterior circle of the annulus Āi , such that each wi is therefore a slight alteration
of the piece of the path w between γ and di .
Let then pick up a point ai,j on the boundary δ̄i,j of some smaller carrousel disk
associated to Ci and define a path ui,j from di to ai,j such that Imui,j ⊂ Ai ∩W
and that the non-intersecting paths {ui,j}j have clockwisely ordered initial speeds.
Then the path vi,j is defined as the composition of ui,j with wi,j .
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For each smaller carrousel disk δi,j ⊂W and the point ai,j on its boundary, we
reproduce the above construction for the second level smaller carrousel disks in
place of the carrousel disk D, and we iterate this procedure the total number of gi
times for each ∆i . The last gi th level smaller carrousel disks contain, each of
them, a single point of ∆i .

The result of this procedure is that in each 1st level smaller carrousel disk
δi,j ⊂W we have a number of ni/ni,1 non-intersecting paths, each of which
connecting the point ai,j on its boundary to some point bi,k very close to some
point b′i,k ∈ ∆ ∩W . We finally compose the path vi,j with some path inside δi,j
as defined just above, and the result is a path αi,k in W connecting γ to the point
bi,k ∈ δi,j , where k ∈ {1, . . . ,mi}:

αi,k : [0, 1]→W , αi,k(0) = γ, αi,k(1) = bi,k .
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as defined just above, and the result is a path αi,k in W connecting γ to the point
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αi,k : [0, 1]→W , αi,k(0) = γ, αi,k(1) = bi,k .
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Thimbles over W , and thimbles over D\W

For each path αi,k from γ to bi,k we may define a generalised thimble ei,k , in the
following concrete way.
Let pi,k ∈ B ∩ (l , g)−1(b′i,k) be the isolated critical point of the map l restricted
to the slice {g = η}, and consider a Milnor ball Bi,k at each such point pi,k .

We denote by F̂i,k the local Milnor fibre of l|{g=η} at pi,k and we identify it with
Bi,k ∩ (l , g)−1(bi,k). A fixed trivialisation of the trivial fibration

βi,k : B ∩ (l , g)−1(αi,k([0, 1]))→ [0, 1] (7)

enables one to define a subset F̃i,k ⊂ F ′γ = B ∩ (l , g)−1(γ), such that

F̃i,k
homeo' F̂i,k .
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Let then
ei,k := Tαi,k

(F̂i,k) ∪ Cone(F̂i,k)

be the generalised thimble on F̃i,k ⊂ F ′γ along βi,k as defined at (7).

We have defined the thimbles in W . Let us define the thimbles outside W , i.e.
inside D \W with help of the carrousel monodromy h. This is based on the
following observation:

Lemma

Let ei,k be a thimble on F̃i,k along βi,k . Then e′i,k := h(ei,k) is a thimble on F̃i,k

along βh
i,k : B ∩ (l , g)−1(h ◦ αi,k([0, 1]))→ [0, 1].

Proof.
Since the carrousel monodromy h is a homeomorphism, we have that e′i,k is
homeomorphic to ei,k . Moreover, e′i,k is a thimble on F̃i,k , along βh

i,k since the
restriction h′ : F ′γ → F ′γ of h is the identity, and therefore h(F̃i,k) = F̃i,k

pointwisely.
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Let {αi,k}i∈I , k∈{1,...,mi} be the above defined system of paths within W , and
define:

ri,k :=

{
max{s | hs(bi,k) ∩W = ∅}, if h(bi,k) 6∈W
0 , if h(bi,k) ∈W

Let us observe that ρi < 1 iff ∃k > 0 such that ri,k > 0.

Definition
For all i ∈ I , k ∈ {1, . . . ,mi} , and s ∈ {1, . . . , ri,k}, we define the paths

αi,k,s := hs(αi,k),

and if ri,k , then we set αi,k,0 := αi,k .

The set of these paths αi,k,s is a system of non-intersecting paths, each
connecting γ with a point near some ∆ ∩ D. The paths in D\W are precisely
those paths αi,k,s with s > 0.
This “good” system of paths defines our privileged system of generalised thimbles.
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Third proof of the Bouquet Theorem

We are now in position to prove the following bouquet statement:

Theorem

Fg
ht' B ∩ (l , g)−1(W ) ∨

∨
i∈I

∨
k∈{1,...,mi}

∨
s∈{1,...,ri,k}

S(F̂i,k).

Proof. The Milnor fibre Fg is homotopy equivalent to the attachment of all the
thimbles to the fibre F ′γ , namely it is homotopy equivalent to the union
F ′γ ∪i,k,s ei,k,s , for i ∈ I , k ∈ {1, . . . ,mi}, s ∈ {0, . . . , ri,k}. Let us show that we
have a good control of the attaching map for the “exterior” thimbles. Namely, by
Lemma 9 and the fact that h|F ′

γ
= id, we have the equality:

ei,k,s+1 ∩ F ′γ = ei,k,s ∩ F ′γ ,

which shows that the thimble ei,k,s+1 is attached to F ′γ exactly “at the same
place” where the cone ei,k,s is atached.
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It follows that, for fixed i ∈ I and k ∈ {1, . . . ,mi} such that ri,k > 0, we have the
homotopy equivalence:

F ′γ ∪ ei,k,0 ∪ ei,k,1
ht' (F ′γ ∪ ei,k,0) ∨ S(F̂i,k),

and therefore:

F ′γ ∪
⋃

s∈{0,1,...,ri,k}

ei,k,s
ht' (F ′γ ∪ ei,k,0) ∨

∨
s∈{1,...,ri,k}

S(F̂i,k).

Finally, by the definition of the zone W , we have that:

B ∩ (l , g)−1(W )
ht' F ′γ ∪i∈I ∪k∈{1,...,mi}ei,k,0,

which ends our proof.
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From the preceding Theorem one may deduce the general Bouquet Theorem if we
prove the homotopy equivalence

B ∩ (l , g)−1(W )
ht' ClkX (S0),

where S0 is the zero-dimensional stratum {0}, i.e. ClkX (S0) is the Milnor fibre of
our general linear function l ∈ Ω, that we shall denote it by Fl in the following.

We have by our identifications: Fl
ht' B ∩ (l , g)−1({ξ} × Dr ′), and we need one

more:

Theorem

B ∩ (l , g)−1({ξ} × Dr ′)
homeo' B ∩ (l , g)−1(W ).

This is a consequence of the procedure called “rabattement dans le diagramme de
Cerf” given in [Ti2]. Originally it was introduced by Lê and Perron in the case of a
smooth space germ (X , 0) = (Cn, 0). Their idea is to make the path Imαi,k slide
along a real surface, into a path included in the disk {ξ} × Dr ′ .
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End of the proofs
We have obtained the bouquet decomposition:

Fg
ht' Fl ∨

∨
i∈I

∨
k∈{1,...,mi}

∨
j∈{1,...,ri,k}

S(F̂i,k), (8)

where F̂i,k is the Milnor fibre of the stratified Morse singularity of lα at pi,k , and
where pi,k denotes some point of the set Γ(l , g) ∩ B ∩ (l , g)−1(W ).

If we denote by Si ⊂ S, where S := {Si}i∈R , the stratum which contains the
point pi,k then, by [Goresky-MacPherson, Main Theorem] we have the homotopy
equivalence:

F̂i,k
ht' Ski−1(ClkX (Si )),

where ClkX (Si ) denotes the complex link of the stratum Si , and where
ki := dimSi .

We recall that S0 denotes the stratum {0}. For each stratum Si 6= S0 (i.e. for
any i ∈ R\{0}), let Ii ⊂ I be the subset with the following property: “ j ∈ Ii if and
only if Γj ⊂ Si ”.
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We then define a finite set Mi , the number of elements of which is:

#Mi :=
∑
j∈Ii

∑
k∈{1,...,mj}

rj,k =
∑
j∈Ii

(nj −mj). (9)

In case all the numbers rj,k in the above double sum are zero, then Mi is the
empty set. This happens for instance whenever Ii = ∅. For i = 0 we set #M0 = 1.

With this last notations, one easily deduces from (8) the wedge decomposition of
Theorem 3 from a different partition of the sets of indices. Namely we have the
equality:

Fl ∨
∨
i∈I

∨
k∈{1,...,mi}

∨
j∈{1,...,ri,k}

S(F̂i,k) =
∨
i∈R

∨
#Mi times

Ski (ClkX (Si ))

where Fl on the left hand side corresponds to S0(ClkX (S0)) = ClkX (S0) in the
wedge of the right hand side.

The Handlebody Theorem is also a consequence of the above proofs.
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Theorem 3 from a different partition of the sets of indices. Namely we have the
equality:

Fl ∨
∨
i∈I

∨
k∈{1,...,mi}

∨
j∈{1,...,ri,k}

S(F̂i,k) =
∨
i∈R

∨
#Mi times

Ski (ClkX (Si ))

where Fl on the left hand side corresponds to S0(ClkX (S0)) = ClkX (S0) in the
wedge of the right hand side.

The Handlebody Theorem is also a consequence of the above proofs.
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