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Foreword

I’ll give three different proofs of the bouquet structure of the Milnor fibre, the
main interest being that these proofs use a variety of tools which are interesting in
themselves.
The first is the original one by Milnor.
The second uses a Morsification and is due to Brieskorn. At the level of homology,
it may be extended over a singular space.
The third proof is based on a geometric monodromy and works for any function
with isolated singularity on a singular space.

These lectures are extracted from a monograph in preparation. The main part is
based on the paper [Ti2]. See also [Ti1] for details.
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Introduction

Let g : (Cn, 0) −→ (C, 0), for n ≥ 2, be the germ of a holomorphic function with
isolated singularity.

This means that the Jacobian ideal:

Jac(g) = (
∂g

∂x1
, . . . ,

∂g

∂xn
)

has finite codimension.
Equivalently, that the zero locus Z (Jac(g)) is {0}. If this zero locus is empty one
says that g is non-singular.
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We have already seen in the previous lectures several results issued from the study
of singular functions and maps. One of the analytic invariants attached to g is its
local Milnor number [Mi]:

µ(g) = dimC C{x1, . . . , xn}/Jac(g).

It is possible to compute µ(g) from a Gröbner base. For instance, such a
computation has been one of the original motivations to develop the computer
algebra system Singular.
Let us point out that, by definition, the Milnor number µ(g) does not depend on
g but on the zero locus Z (g), which is a hypersurface. (More precisely, if we
replace g by ug where u is a holomorphic germ and u(0) 6= 0 then Z (ug) = Z (g)
and µ(ug) = µ(g)). One speaks about the Milnor number of a hypersurface germ.
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Possibility of a fibration

One associates to the holomorphic germ g a local fibration, called Milnor
fibration. Then µ(g) gets a topological interpretation as the rank of the (n − 1)th
homology group of the Milnor fibre; it is therefore a topological invariant. This is
what we will show here in particular.

More generally, we shall give a geometric description of the monodromy and
several of its consequences.

We start by reviewing the main lines of Milnor’s proof of his fibration result. We
explain two other different methods of proof which enable one to extend this
result to a larger class of functions. The general Bouquet Theorem based on the
controlled attaching via a geometric monodromy is the main part of this lecture.
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Let g : (Cn, 0)→ (C, 0), n ≥ 2, be a non-constant holomorphic germ, and let
Bε ⊂ Cn denote the closed ball of radius ε > 0, S2n−1

ε := ∂Bε, and Dδ ⊂ C a disk
of radius δ > 0.

Theorem (Milnor)

For any sufficiently small ε > 0 and any 0 < δ � ε, the following restriction:

g| : Bε ∩ g−1(Dδ\{0})→ Dδ\{0} (1)

is a locally trivial C∞ fibration. Its fibre is called Milnor fibre.
The isotopy type of the fibration does not depend on the choice of the radii ε and
δ.
In case g has an isolated singularity, its Milnor fibre Fg is homotopy equivalent to
a bouquet of spheres:

Fg
ht' Sn−1 ∨ · · · ∨ Sn−1,

the number of which is called “Milnor number” and is denoted by µ(g).
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For any g (without any restriction on the singular locus), there is a second
fibration:

g/‖g‖ : S2n−1
ε \g−1(0)→ S1. (2)

Its isotopy type does not depend on the choice of the radius ε, provided ε > 0 is
small enough.
Moreover, the fibration (2) is isotopic to the fibration (1).

The fibration (1) has been proved by Milnor for g with isolated singularity, and
later Lê extended it for g with any singular locus by using the existence of a Thom
stratification for g−1(0).

We will give a more precise meaning of the ε and δ in the above statement.
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The tube fibration

In the tube fibration (1) proved by Milnor [Mi] in case of isolated singularities, i.e.
Sing g = {0}, the name “tube” comes from the fact that this locally trivial
fibration retracts to a sub-fibration over some circle S included in Dδ\{0} and
centred at 0:

g| : Bε ∩ g−1(S)→ S (3)

Milnor proves first that the zero locus V := {g = 0} is transversal to all spheres
S2n−1
ε provided that the radius ε > 0 is small enough. This amounts to showing

that there exists ε0 > 0 such that V t S2n−1
ε for any positive ε < ε0.

Question: How to prove this fact?
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In particular this defines the link Kg := V ∩ S2n−1
ε of the hypersurface singularity

as a topological invariant, thus independent of ε < ε0.
Milnor also proves that the link Kg is (n − 3)-connected, by using Morse theory.

Except of {g = 0}, the nearby fibres of g are all non-singular. This fact follows
from the Curve Selection Lemma, see [Mi, §3]. The transversality of V to Sε
insures that Sε is also transversal to all nearby fibres. More precisely, this means
that, for each fixed 0 < ε ≤ ε0, there exists some δε > 0 such that
g−1(a) t S2n−1

ε for any a ∈ C with 0 < ‖a‖ ≤ δε.

This shows that the map (3) is proper submersion. Then Ehresmann theorem for
manifolds with boundary1 applies to this situation and yields that (3) is a locally
trivial fibration, hence (1) too.

1See [Eh, Wo, Eb].
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Milnor fibration
From the independency of ε and δ it follows that the total space of the “tube”
Bε ∩ g−1(Dδ) is contractible.
This is the picture of the “tube fibration” that we see usually.

D

B

0

δ

ε

Fg

g

But why this picture is “cheating”, and by far?
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The sphere fibration and the bouquet structure

The map (2) holds an important place in the monograph [Mi].
To show that (2) is a locally trivial fibration, Milnor starts by proving that the
map g/‖g‖ : B2n

ε \V → S1 is transversal to all small enough spheres.

One cannot apply here Ehresmann Theorem because the map (2) is not proper
(because of removing the link Kg . Milnor constructs an explicit trivialisation of
the map (2) by developing a technically beautiful method which uses the
holomorphy of g in an essential way, and which applies to any singular g , not only
with isolated singularity. In particular, the existence of a fibration structure in the
neighbourhood of the link Kg is shown by constructing a special vector field which
yields an “open book structure” with binding Kg .

One can lookup Jacquemard’s extension [Ja] of this method to certain real
analytic map germs F : (Rn, 0)→ (R2, 0).

It appears that this construction can be replaced by an argument based on the
existence of a stratification of V satisfying the Thom (a)g -regularity condition.

Mihai Tibăr (Lille, France) Milnor fibrations CIMPA Research School, 2021 11 / 20



The sphere fibration and the bouquet structure

The map (2) holds an important place in the monograph [Mi].
To show that (2) is a locally trivial fibration, Milnor starts by proving that the
map g/‖g‖ : B2n

ε \V → S1 is transversal to all small enough spheres.

One cannot apply here Ehresmann Theorem because the map (2) is not proper
(because of removing the link Kg . Milnor constructs an explicit trivialisation of
the map (2) by developing a technically beautiful method which uses the
holomorphy of g in an essential way, and which applies to any singular g , not only
with isolated singularity. In particular, the existence of a fibration structure in the
neighbourhood of the link Kg is shown by constructing a special vector field which
yields an “open book structure” with binding Kg .

One can lookup Jacquemard’s extension [Ja] of this method to certain real
analytic map germs F : (Rn, 0)→ (R2, 0).

It appears that this construction can be replaced by an argument based on the
existence of a stratification of V satisfying the Thom (a)g -regularity condition.

Mihai Tibăr (Lille, France) Milnor fibrations CIMPA Research School, 2021 11 / 20



The sphere fibration and the bouquet structure

The map (2) holds an important place in the monograph [Mi].
To show that (2) is a locally trivial fibration, Milnor starts by proving that the
map g/‖g‖ : B2n

ε \V → S1 is transversal to all small enough spheres.

One cannot apply here Ehresmann Theorem because the map (2) is not proper
(because of removing the link Kg . Milnor constructs an explicit trivialisation of
the map (2) by developing a technically beautiful method which uses the
holomorphy of g in an essential way, and which applies to any singular g , not only
with isolated singularity. In particular, the existence of a fibration structure in the
neighbourhood of the link Kg is shown by constructing a special vector field which
yields an “open book structure” with binding Kg .

One can lookup Jacquemard’s extension [Ja] of this method to certain real
analytic map germs F : (Rn, 0)→ (R2, 0).

It appears that this construction can be replaced by an argument based on the
existence of a stratification of V satisfying the Thom (a)g -regularity condition.

Mihai Tibăr (Lille, France) Milnor fibrations CIMPA Research School, 2021 11 / 20



The sphere fibration and the bouquet structure

The map (2) holds an important place in the monograph [Mi].
To show that (2) is a locally trivial fibration, Milnor starts by proving that the
map g/‖g‖ : B2n

ε \V → S1 is transversal to all small enough spheres.

One cannot apply here Ehresmann Theorem because the map (2) is not proper
(because of removing the link Kg . Milnor constructs an explicit trivialisation of
the map (2) by developing a technically beautiful method which uses the
holomorphy of g in an essential way, and which applies to any singular g , not only
with isolated singularity. In particular, the existence of a fibration structure in the
neighbourhood of the link Kg is shown by constructing a special vector field which
yields an “open book structure” with binding Kg .

One can lookup Jacquemard’s extension [Ja] of this method to certain real
analytic map germs F : (Rn, 0)→ (R2, 0).

It appears that this construction can be replaced by an argument based on the
existence of a stratification of V satisfying the Thom (a)g -regularity condition.

Mihai Tibăr (Lille, France) Milnor fibrations CIMPA Research School, 2021 11 / 20



Milnor uses the sphere fibration (2) (which is isotopic to the fibration (1)), in
order to find the bouquet structure of its fibre Fθ, where θ denotes the angle
corresponding to some point on the circle S1.
His proof consists in the following steps:

1). Fθ is a CW-complex of dimension ≤ n − 1, using Morse theory for the
function |g | on the manifold Fθ.

2). H̃ i (F̄θ′) ' H̃2n−2−i (Sε\F̄θ′) ' H̃2n−2−i (Fθ), for any θ′ 6= θ, where the first
isomorphism is by the Alexander duality, and the second is due to the
homeomorphism Sε\F̄θ′ ' Fθ × (S1\θ′) wich is a consequence of the
fibration (2).
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3). Fθ is (n − 2)-connected. Indeed, Hi (Fθ) = 0 for i ≥ n by step 1, and
H̃i (Fθ) = 0 for i ≤ n − 2 by step 2.
Therefore the reduced homology of Fθ is concentrated in dimension n − 1. It
remains to show that Fθ is simply connected for n ≥ 3 (since for n = 2 the
fibre is a Riemann surface with holes, hence simply connected). This is done
by Milnor by using the Morse function |g | on the manifold Sε\N(Kε), where
N(Kε) denotes some small tubular neighbourhood of the link
Kε := g−1(0) ∩ Sε. Then apply Hurewicz theorem.

4). Hurewicz theorem also yields πn−1(Fθ) ' Hn−1(Fθ), which is a free abelian
group. One may further construct a map Sn−1 ∨ · · · ∨ Sn−1 → Fθ which
induces an isomorphism at the level of homology groups. By Whitehead’s
theorem, this is a homotopy equivalence.
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Definition (Milnor number)

The rank of Hn−1(Fθ) is denoted by µg and this is called the Milnor number of g .

By its definition, the Milnor number is a topological invariant of g .

The isotopy between the tube fibration and the sphere fibration is proved by
Milnor through an ingenious procedure of “blowing away the tube to the sphere”.

In particular, the Milnor fibre Fθ is diffeomorphic to the Milnor fibre Fg of the
tube fibration (3) and of the fibration (1), they have the same homology and the
same homotopy type.
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Monodromy
The Milnor fibration has a monodromy, defined as the characteristic map of the
tube fibration (3) over the circle.

By integrating a lift of the unit vector field on the directly oriented circle S , one
obtains a geometric monodromy. In case g has isolated singularity, this can be
done such that it is the identity on the boundary ∂Fg , due to the triviality of the
fibration

g| : S2n−1
ε ∩ g−1(Dδ)→ Dδ (4)

and thus we get an isotopy of the pair:

hγ : (Fg , ∂Fg )→ (Fg , ∂Fg ).

which induces the algebraic monodromy :

h∗ : H̃i (Fg ,Z)→ H̃i (Fg ,Z) (5)

and, since h|∂Fg
= id by (4), the variation map of h:

varh : Hi (Fg , ∂Fg )→ H̃i (Fg )

and similarly in co-homology, where the only non-trivial groups are in dimension
i = n − 1 in case of isolated singularity.
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varh : Hi (Fg , ∂Fg )→ H̃i (Fg )

and similarly in co-homology, where the only non-trivial groups are in dimension
i = n − 1 in case of isolated singularity.
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Details about these objects can be found e.g. in the monographs by Arnold,
Gusein-Zade and Varchenko, Ebeling, and many other sources. In case g has
non-isolated singularities, there is no more triviality at the whole boundary but one
can still construct geometric variation maps (see Siersma’s paper in Topology
1991).

Still in this general case of non-isolated singularity, the famous monodromy
theorem asserts that the algebraic monodromy (5) has only roots of unity as
eigenvalues (one says that the monodromy is quasi-unipotent). This was
conjectured by Milnor and proved by Grothendieck, Landman, Clemens, Brieskorn,
and a bunch of other authors, by different means. There are also several
important refinements and extensions of this theorem in different other categories.

The study of the monodromy engendered a lot of interesting results, with special
emphasis in case of curves and surfaces, essentially in two ways: using a blow-up
of the singular locus of the function g (e.g. Deligne, A’Campo, Brieskorn,
Steenbrink, etc) or by constructing geometric monodromies (A’Campo, Gabrielov,
Ebeling, Lê D.T., Perron, Siersma, etc).
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Bouquet theorem via Morsification

We present a method due to Brieskorn and applies to holomorphic function germs
g with isolated singularity at the origin. One fixes a Milnor ball Bε and considers
the following deformation:

gt = g + tl

where l is a linear function, and t ∈ C. For l general enough, and for t close
enough to 0, the deformation gt has only complex Morse points (thus isolated)
and with different values. We say that gt is a Morsification of g .

During the deformation, the fibres of gt keep transverse to the boundary Sε for all
t close enough to 0. As the Milnor tube Bε ∩ g−1(Dδ) is contractible, the
deformed tube Bε ∩ g−1

t (Dδ) is contractible too, since homotopy equivalent to the
original one. By the same transversality reason, the nonsingular fibres of the
deformed tube are homotopy equivalent to the Milnor fibre of g .
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We consider the pair (Bε ∩ g−1(Dδ),Bε ∩ g−1(γ)), for some fixed γ ∈ ∂Dδ, and
compute its homology:

H∗(Bε ∩ g−1(Dδ),Bε ∩ g−1(γ)) ' H∗(Bε ∩ g−1
t (Dδ),Bε ∩ g−1

t (γ)) '

by Mayer-Vietoris:

' ⊕jH∗(Bε ∩ g−1
t (Dj),Bε ∩ g−1

t (γj))
excision' ⊕jH∗(Bj ∩ g−1

t (Dj),Bj ∩ g−1
t (γj))

where the pair (Bj ∩ g−1
t (Dj),Bj ∩ g−1

t (γj)) is the local Milnor data for some
Morse singularity in the deformation gt , i.e. Bj is a Milnor ball at this singular
point, Dj is a small enough disk and γj ∈ ∂Dj .

In case of a complex Morse singularity (also denoted by A1), the homology of
(Bj ∩ g−1

t (Dj),Bj ∩ g−1
t (γj)) is Z in dimension n, and 0 in any other dimension.

We get that H∗(Bε ∩ g−1(Dδ),Bε ∩ g−1(γ)) is concentrated in degree n, and:

Hn(Bε ∩ g−1(Dδ),Bε ∩ g−1(γ)) ' Zµ,

where µ is the number of Morse points in the Morsification of g .
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Mayer-Vietoris, and direct sum splitting of relative homology
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We then obtain the following “bouquet theorem” in homology:

H∗(Bε ∩ g−1(γ)) ' H∗(∨Sn−1).

It remains to show this isomorphism at the level of homotopy type. This is done
like in the proof by Milnor, last part (see Proof 1), namely one has to prove that
π1(Bε ∩ g−1(γ)) = 1, and then apply Whitehead’s argument.

Remark
This proof shows in particular that the number of spheres in the bouquet is equal
to the number of Morse points in some Morsification of g . In particular this
number does not depend on the chosen Morsification.

Exercise
Compute the index of the gradient vector field gradg at the origin and relate it to
the number of Morse points in a Morsification of g . (Source: Milnor’s topology
book – for how to compute the index and for this relation).
Then compare this index to the Milnor number defined algebraically as the
codimension of the Jacobian ideal.
Deduce that all these numbers are equal.
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