Publications de Ana C. Matos

Go to Homepage Ana C. Matos
Go to Laboratoire Paul Painlevé
Go to Homepage USTL

Published in Mathematical Journals (with referee):

  1. B.Beckermann, G. Labahn, Ana C. Matos: On rational functions without Froissart doublets (submitted) (pdf file)

  2. B.Beckermann, Ana C. Matos, : Algebraic properties of robust Pad\'e approximants, Journal of Approximation Theory 190 (2015), 91-115 (pdf file)

  3. B. Beckermann, V. Kalyagin, Ana C. Matos, F. Wielonsky: Equilibrium Problems for Vector Potentials with semidefinite interaction matrices and constrained masses, Constructive Approximation 37 (2013) , 101-134  (pdf file)

  4.  B. Beckermann, V. Kalyagin, Ana C. Matos, F. Wielonsky: How well do Hermite-Padé approximants reduce the Gibbs phenomenon?, Mathematics of Computation 80 (2011), 931-958. (pdf file)

  5. B. Beckermann, Ana C. Matos, F. Wielonsky: Reduction of the Gibbs phenomenon for smooth functions with jumps by the epsilon-algorithm, J. Comput. Appl. Math, 219 (2008), 329-349. (pdf file)

  6. Ana C. Matos:  Multivariate Frobenius Padé Approximants, J. Comput. Appl. Math, 202 (2007), 548-572.  (pdf file)

  7. Ana C. Matos, J. Van Iseghem: Simultaneous Frobenius-Padé approximants, J. Comput. Appl. Math, 176 (2005), 231-258. (pdf file)

  8.  Ana C. Matos: Recursive Computation of Padé--Legendre Approximants and Some Acceleration Properties, Numerische Mathematik 89 (2001), 535-560. (pdf file)

  9. C. Brezinski, Ana C. Matos: Least Squares Orthogonal Polynomials and Applications, in Encyclopedia of Optimization, C.A. Floudas and P.M. Pardalos Editors, Kluwer (2001).

  10. Ana C. Matos: Linear Difference Operators and Acceleration Methods IMA Journal of Numerical Analysis 20 (2000), 359-388. (pdf file)

  11. Ana C. Matos: Integral Representation of the Error and Asymptotic Error Bounds for the Generalized Padé Type Approximants, J. Comp. andAppl. Math. 77 (1997), 239-254. (pdf file)

  12. Ana C. Matos: Some Convergence results for the generalized Padé-Type Approximants, Numerical Algorithms 11 (1996) 255-269. (pdf file)

  13. Jean-Marie Chesneaux, Ana C. Matos: Breakdown and Near-Breakdown control in the CGS algorithm using stochastic arithmetic, Numerical Algorithms 11 (1996) 99-116. (pdf file)

  14. C. Brezinski, Ana C. Matos: A Derivation of Extrapolation Algorithms Based on Error Estimates, J. Comput. Appl. Math. 66 (1996) 5-26. (pdf file)

  15. C. Brezinski, Ana C. Matos: Least Squares Orthogonal Polynomials, J. Comput. Appl. Math. 46 (1993) 229-240. (pdf file)

  16. Ana C. Matos: Convergence and Acceleration Properties for the Vector $\epsilon$ - Algorithm, Numerical Algorithms 3 (1992) 313-320.

  17. Ana C. Matos, Marc Prevost: Acceleration Property for the E-Algorithm, Numerical Algorithms 2 (1992) 393-408.

  18. Ana C. Matos: Some New Acceleration Methods for Periodic-Linearly Convergent Power Series, BIT 31 (1991) 686-696.

  19. Filomena d'Almeida, Ana C. Matos, M. J. Rodrigues: The Least Squares Problem and Orthogonal Polynomials, in Orthogonal Polynomials and Their Applications. C.Brezinski, L.Gori and A. Ronveaux (editors), J.C. Baltzer AG, IMACS (1991) 217-222.

  20. Ana C. Matos: On the Choice of the Denominator in Padé and Cauchy-Type Approximation, in Orthogonal Polynomials and Their Applications. C.Brezinski, L.Gori and A. Ronveaux (editors), J.C. Baltzer AG, IMACS (1991) 347-352.

  21. Ana C. Matos: Construction of New Transformations for Lacunary Power Series Based on the Cauchy -Type Approximants, Applied Numerical Mathematics 7 (1991) 493-507.

  22. Ana C. Matos: Acceleration Results for the Vector E-Algorithm, Numerical Algorithms 1 (1991) 237-260.

  23. Ana C. Matos: Extrapolation Algorithms Based on the Asymptotic Expansion of the Inverse of the Error. Application to Continued Fractions, J. Comput. Appl. Math. 32 (1990) 179-190.

  24. Ana C. Matos: A Convergence Acceleration Method Based On a Good Estimation of the Absolute Value of the Error, IMA J. of Numerical Analysis 10 (1990) 243-251.

  25. Ana C. Matos: Acceleration Methods Based On Convergence Tests, Numerische Mathematik 58 (1990),329-340.

  26. Ana C. Matos: Acceleration Methods For Sequences such that $\Delta S_n =\sum_{i=1}^{\infty}a_ig_i(n)$, IMACS Transactions on Scientific Computing -'88, Vol. 1.2. Numerical and Applied Mathematics (1989), 447-451, Volume Editor C. Brezinski, J.C. Baltzer.