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Abstract

In this paper, after recalling the two definitions of the generalizations of the Padé approx-
imants to orthogonal series, we will define the Padé-Legendre approximants of a Legendre
series. We will propose two algorithms for the recursive computation of some sequences
of these approximants. We will also estimate the speed of convergence of the columns of
the Padé-Legendre table from the asymptotic behaviour of the coefficients of the Legendre
series. Finally we will illustrate these results with some numerical examples.
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1 Introduction

Let us consider a function f given by an orthogonal series in a domain D
f(z) =3 fiPu(2) 2z €D, (1)
k=0

where { Py} is a family of orthogonal polynomials in the interval [a, b] with respect to the weight
function w(z) > 0 and

1 b
fo = co(f) = W/a (@) Py(2)w(x)dz,

that is, (1) is the Fourier expansion of f with respect to the system {Py}.



The generalization of the concept of Padé approximant to an orthogonal series leads to the
construction of two essentially different classes of rational approximants:

1) The nonlinear Padé approrimant ®y, pr of order (L, M) of the series (1) is a rational function
(numerator of degree L, denominator of degree M) whose Fourier expansion with respect to the
system {Py},

Prm(2) = dolo(2) + d1Pi(2) + -+ dnPr(z) + -+

satisfies

In other words, the approximant ®;, 5s is determined by the system of nonlinear equations
Ck((I)L,M)ZCk(f) k=0,1,"',L+M. (2)

This system does not have always a solution. In the case of the Legendre polynomials, a method
for solving (2) is given in [4].

2) The Frobenius—Padé approzimant [L/M]} = X (or linear Padé approximant) of order (L, M)
of the series (1) is a rational function of type (L, M), where the numerator and denominator

polynomials satisfy
c(Df —=N)=0 k=0,---,L+ M,

which gives a linear system of equations for computing the coefficients of the polynomials. The
case of the Tchebyshev polynomials is studied in [1] and [2].

The nonlinear approximants have some advantages over the Frobenius-Padé approximants
with respect to the degree of approximation. In fact, it is easy to see that to achieve the order of
approximation of L+ M, we need to know the first L+2M +1 coeflicients of the series to construct
[L/M]7 and only L+ M +1 coefficients to construct ® 5. But they have some drawbacks: they
are much more difficult to compute and it is more difficult to show their existence.

Many results on the convergence of these approximants have been obtain. In [6], the authors
have compared and obtained bounds on the speed of convergence of diagonal sequences of these
approximants , (®n4jn)n and ([n + j/n]f), for functions of Markov type. The problems of
convergence of the columns of the generalized Padé table have been studied in [8], [9] and [10],
where an analog of the Montessus de Ballore’s theorem is proved for the nonlinear approximants.

In this paper, we will concentrate on the Frobenius-Padé approximants for the Legendre series.
We will develop two recursive algorithms for their computation (which are easily generalized to
other orthogonal series), and will estimate, from the asymptotic behaviour of the coefficient
sequence (fx ), the speed of convergence of the columns of the Padé-Legendre table.

Let us begin by some definitions.



2 Generalizations of the Padé approximants to orthogo-
nal series.

Let f be given in a domain D by its Fourier expansion (1). We want to compute a rational
approximation of f of the form

p/al
P/ ) = Dy vith

NP/(z) = SP  a;Py(2)

where NP/4l and DI?/4l satisfy the following property

DPIZ)f(2) = NPI(z) = S euPy(z) for zeD. (3)
k=p+q+1

p/q|¥ is called the Padé approximant of order (p, q) to the orthogonal series f.
We set
e se

1

Pi(z)f(z) = Ig)hijk(z) where hy; = m/ﬂ f(x)Pj(x) Pe(z)w(z)dz.

Inserting this in (3) we get

5 (Z bjhkj) Py(z) - Z 0Pi(2) = O(Pyogin(2),

k=0 \j=0

(where the notation O(P,;,+1(2)) means that the first term in the orthogonal expansion of the
function which is non-zero has index at least p+ ¢ + 1), so the coefficients (a;) and (b;) must be
a solution of the two following linear systems:

Zgzobjhkj:ak ]{I:O,"',p.

We see that once the (b;) computed, the computation of the (a;) follows immediately. The (b,)
are the solution of an homogeneous system of ¢ equations in ¢ + 1 unknowns. So there is always
a non-trivial solution. We will be interested in a solution with b, # 0.

In order to simplify notation, let us define the following determinants

Definition 1

h'n,O hn,l e h'n,lfl hn,p
h 1 h 1,1 °°° h 1,l—-1 h 1 .
Hiyyp=| 000 T T R withp > 1 (5)
hn—l—l,O hn—H,l e hn+l,l—1 hn—l—l,p



We easily see that if Hfl’ill,q # 0, then there is a solution of (4) with b, # 0. We can then write

the numerator and denominator of the approximant (which are defined up to a multiplicative
factor) in the determinantal form

hprio hpyia - 0 Pprig
DiP/dl() — ) .
( ) hp+q,0 hp+q,1 hp+q,q ( )
Py(z) Pi(z) --- Py(z)
and
hpt10 hpt1,1 e hpt1,
NP/ — ;
( ) hp-f—q,O h’p+q,1 h’p+q,q ( )
YhohioPi(2) Xi_ghiiPi(z) -+ XiohigPi(2)

If ng_’iq = 0, there is a solution of (4) with b, = 0 which means that the order condition (3)

is satisfied by some polynomials of degrees p; < p , ¢; < ¢ and so the approximant [p/q] coincides

We will be interested in constructing the approximants [p/q| for different values p > 0, > 0
and place them in a table (like in the classical Padé case).

Definition 2 The table of the Padé approximants to an orthogonal series is normal iﬁHg’;ﬁl #0
for allp>0,q > 1.

This implies that

e all the approximants in the table are different because, for each [p/q|, the denominator is
of exact degree ¢ and the numerator is of exact degree p;in fact

hpt10 hptin o0 hpyig
q
1 - ... - »
by = HYfY jag =Y bjhy; = = (-1)‘H?,,
q g+1,q%q J'psg q+1,q°
j=0 h;u+q,0 hp+q,1 hp-f—q,q
hp,O hp,l o hp,q

e the coeflicient of the first term in the error expansion (3), e,44+1, is non-zero; in fact

hpt10  Pprin o 0 hpiig
q
- - - 1
e =) bih ;= =HY #0.
g+l Z i lp+q+1,j . P
=0 hp+q,0 hp+q,1 hp+q,q
hp+q+1,0 hp+q+1,1 T hp+q+1,q

We are going to see how to compute recursively some sequences of these approximants in the
case of a normal table. But let us begin by the recursive computation of the quantities hy;.



3 Recursive computation of Ay

In this section we will proceed as Holdeman in [5]. It is well-known (see [11] for instance) that
the family {P;} of orthogonal polynomials satisfies a recurrence relation of the form:

Pk+1(x) = (akx + ﬁk)Pk(l‘) - ’YkPk_1($), k=0,1,---.

We can then write

Pppi(z)Pi(z) = agzPji(2)Py(z) + BpPr(z) Pj(x) — Y6 Pr—1(z) Pj(2) (8)
he) = P20 D)+ 1p ) )

Replacing (9) in (8) we get

Poii(2)Py(a) = Z—P (2) Py (@) — Z—';ﬁij (z)Py(z) +
+ %Vjpk(x)Pj—l(ﬂﬁ) + Bk Py () Pj(x) — v Pr—1(z) Pj(z).

If we set py, =|| Py ||? for all k, multiply both sides of the equality by f(x)w(z), and integrate
from a to b, we get

Hk+1 (077 Oy (077 HE—1 .
P b1y = —hpan + ﬂk——ﬁ-) hig + — g1 — by g, 5> 1,k> 0. (10
1y k+1,5 a; k,j+1 ( a; J »J a; Jjlok,j—1 L1 1,j ( )

This enables us to compute recursively the quantities hy; after providing the appropriate initial-
ization. We will use this recurrence relation for the case of a Legendre series.

4 Definition of the Padé—Legendre approximants

We are going to consider the particular case of a Legendre series, that is P, = Lj, where {L}
are the Legendre polynomials: they are orthogonal in [—1, 1] with respect to the weight function
w(z) = 1. These polynomials {L;} satisfy the recurrence relationship [11]

2k +1 k
L = L — Ly k>1 11
pila) = S eL@) - L@, k2 (1)
Lo(z) = 1, Li(z) = =x. (12)
So, in this case, we have
2k + 1 B =0 k 2
o = — = = — = .
k k+1 y Mk y Yk k + 13 HE 2%k + 1
Inserting this into (10), we obtain
2j+1 k+1 j 2j+1 k

Pk Rl S Sy NS o L W 13
s Wy (L ¥ s L 1+j+12k_1k1,] (13)
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The quantities hy; can belisted in a double-entry table and computed recursively if we initialize
the recursions by providing the first two columns and the first row in the following way:

th = f] .7:07]-:
1 1 1

i :
hoy; = — L.(x)L de=—=f;i=——f 5>0.
07 o J-1 f(m) ](‘/E) 0(1') T ,UOf] 2] + 1f.7 JzZ

By using the recurrence relation for the {L;}, we obtain

kE+1

—~—h —~
ok 13 k0T op L

]_ 1
= [ @)L (@) L) da =

which corresponds to the relation (13) for j = 0 if we set hy_; =0 (Vk > 1).
With these initializations, the quantities in this table can be computed progressing from left
to right and from the top to the bottom, each quantity being as indicated:

ho~1 hoo -+ -+ hoj ho; hoj41
hi_1 hig

hk:—l,j—l hk—l,j \(

) ‘ hkzj_l ‘ hka] ‘ hkaj+1 ‘ T
hi41,-1 P14 a :

Furthermore, as

1 F(@)L; (@) Ly(a)dz = Bhyy, = 2% + 1

hos — — _ T
ST ok 27+1

hj, (Vj,k > 1),
we only need to compute the upper triangular part of this table.

As we have seen in the previous section, if we want to compute the coefficients of one particular
Padé-Legendre approximant denoted by [p/q]%, then the (b;) are the solution of the linear system

hprio hpyin o0 o hpyig bo 0
hpioo hpi21 o0 oo hpyag by 0

. . . ) . . = )
hp+q,0 hp+q,1 hp+q,q bq 0

and the coefficients (a;) are then given by
a; = hjobo + hjiby + -+ hjgby, 7=0,1,---,p.

It is easy to see that for computing all the h; ; appearing in the previous systems, we need to
know the quantities f;,7 = 0,1,---p + 2¢, the first p + 2¢ + 1 coeflicients of the series.

If we want to compute these coefficients (a;, b;) for a sequence of Padé-Legendre approximants,
then it is better to compute them recursively. We will develop two algorithms in the next section.
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5 Recursive algorithms

5.1 Frobenius type algorithms

In this section, we will suppose that the normality condition Hg;;il #0 Vp > 0,q > 1issatisfied.
We will begin by giving the recurrence relations satisfied by the quantities H,. For this, we need

the following result (Sylvester’s theorem)( see for instance, [1]):

Theorem 1 Let A be a matriz, and let A,, denote the matriz with row r and column p deleted.
Also let A, p, denote the matriz A with rows r and s and columns p and g deleted. Provided
r<sandp<aq,

det(A)det(Ays pg) = det(A,p)det(As,) — det(A,,)det(Asp)-

Theorem 2 " "
n n n n
_ Hl,p Hl,lfl - Hl,l—lHl,p

Hln-l-l,p - Hn+1 1, P 2 l; nenN (14)
1-1,0-2

with the initializations
HYY =1, HI'=hppy, 1>0, Vp>0.

Proof: Let us apply to HJ,, , the Sylvester’s theorem with the values r = 1,s = [+ 1 and
p=ILlg=1+1:
Hiyyp X Hy o = Hyp x Hpy g — HYy' H,

and the result follows. A

We will now introduce auxiliary quantities D/% and N/% in which the last column of DI/d
and NP/4 respectively, is replaced.

Definition 3

hpi10 Ppt11 0 Pprig-1 Ppiag
D[p/q] Z _ - o e . s e . e o . e o . e = ’ l > ’ and
! ( ) hp+q,0 hp+q,1 e hp+q,q—1 hp+q,l =1
Py(z) Pi(z) -+ Ppa(z) PBiz)
hp11,0 hpt1,1 e hpt1,4-1 hpt14
N[p/q]z — L) L) L) L) ’ l> ‘
0) hpiq0 Ppiq T hptgq-1 hpiq =1
ShoohioPi(2) Yi_oghiiPi(z) --- Xiphig1Pi(2) i hiiPi(2)



We remark that D/9(z) = DIP/9(z) and N/%(z) = N/9(z) for all p,q > 0. Applying again

the Sylvester’s theorem to the quantities Dl[p /4 (2) and Nl[p/ q](z) with the choice of the two last
rows and the two last columns we get the

Frobenius-type identities:

-1 1
Dth/q ]( )Hp+1 _Dbl/q ]( )H(I;jl

1

Dl[p/Q](z) = q;’_{pﬂ p>0,g>1 (15)
q—1,9—2

N[p/qfl]( )Hp+1 N[P/q 1]( )Hp+1

NPI(z) = = q;[;ﬂ = p>0,g>1 (16)

q—1,q—2
with the initializations
D (z) = P(2), NP2 Z hiyPi(z

We now use these identities to derive an algorithm for the computation of all the Legendre—
Padé approximants that can be computed from the first 2M + 1 coefficients of the series. So let
us suppose that we know f;, i =0,---,2M. We can then compute the approximants [p/q| with
p+ 2qg < 2M, which are represented in the following table:

[0/0] [0/1] [0/2] - [0/M —1] [0/M]
[1/0] [1/1] [1/2] e [1/M —1]
2/0] 2/1] 2/2] e [2/M 1]
2M — 4/2]

2M — 3/1]
: 2M — 2/1]
[2M —1/0]
[2M /0]

We are going to propose an algorithm to compute this table by columns. From the Frobenius
type identities, we see that the recurrence relations for the computation of numerators and
denommators of these approximants are the same, only the initializations are different. We
denote by Sz ( ) either D[ i J}( ) or N, [/ ]]( ). It’s easy to determine which auxiliary quantities
we need in order to compute the previous table. For this we construct the following table where

in each place,
[2/4]
k..l

denotes that in the position (7, ) of the table we will compute the quantities SI/7)(z) for n =
k,k+1,---,1 with S = D and S = N using the recurrence relations (16) and (15).

8



col.0 col.1 col.j col,.M —1 col. M
[0/0] [0/1] [0/(M —1)] [0/M]
0. M (M—1).M | M.M
[1/0] [1/1] [1/(M —1)]
0.(M—=1) | 1.(M —1) (M —1).(M —1)
2/0] [2/1] [2/(M —1)]
0.(M—=1) | 1.(M —1) (M —1).(M —1)
@i = 1/0] | [2i = 1/1] i = 1/]]
0.(M —4) | 1..(M — ) jo(M =)
[24/0] [2i/1] [24/7]
0.(M —1) | 1..(M — 1) (M =)
[2M — 2j/j]
: : j.-J
23 —3/0] [ 20 —3/1]
0..1 1..1
207 — 2/0] | |23 = 2/1]
0..1 1..1
2 — 1/0]
0.0
M)
0.0

For the computation of S,[f/j], the coefficients of the recurrence relations are the quantities Hf e
which are also computed recursively using the relation (14). Let us put, in the following table,
the quantities Hj; we need to compute:



col.1 col.2 . col.g . colM —1 col. M

H%,J .H21,‘7 . .. Hi];j . .. H]1\4_1,‘7 H]1\4,‘]
j=0.M j=1.M j=1—1.M =M —2..M j=M-1.M
H12,j H22,] HZ2,] HJQV[—LJ
j=0.M j=1.M j=1—1.M j=M-2.M
Hij Hg,j Hi?:j HJ?(/[*LJ
j=0.M j=1.M j=1—1.M j=M-2.M—-1
Hj Hyj
j=0.M j=1.(M-1)
Hf\’/"j+1 Hé\’/fjﬂ—l
j=0.M—-1| 7=1.M -2
j=1—1l.a+1
Hiz,;.v[f%ﬂ
: : j=1—1.1
HT
j=0.4 7=1.3
le,zy—s Hilj\d—&
7 =0.3 j=1.2
7
7 =0.2
A
7 =0.1

Using the information of the two tables, we are now able to give the pseudo—code of the algorithm.

Algorithm
{initializations}
{recursive computations}
fori=1to M do
{computation of column i}
fork=1to M —i+1do
for j=4—1to M do
compute Hf; using relations (14)
end do
end do
fork=M—i+2to2M —2i+1do
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forj=1—1to2M —i+1—k do
compute H}; using relations (14)
end do
end do
fork=0to M —ido
forl =4to M -k do o
compute D (z), NPV (5) using (15) and (16)
end do
end do
end do

5.2 Kronecker-type algorithm

We are going to propose an algorithm for the computation of the sequence of the approximants
in an anti-diagonal [N — m/m]’;:, m = 0,1,---, N (with N fixed) of the Padé-Legendre table.
We let

[N —m/ml{(2) = pm(2)/gm(z) m=0,1,---N,

where the polynomials p,, and g, satisfy

{ deg(pm) =N — m, deg(Qm) =Tm; (17)
Gm(2) f(2) = Pm(2) = emnv+1Ln11(2) + O(Ly12(2)).

We know the initial values go(2) = 1, po(2) = ©X, fiLi(z). We will obtain a four—term recurrence

relation
{ pi+1(2) = pj—2(2) + a;(2)pj-1(2) + B;(2)p;(2) (18)
g+1(2) = gj2(2) + a;j(2)g;-1(2) + B;(2)q;(2)

with o;(2), B;(2) polynomials of degree 1:

ozj(z) = Qo,; + 1,52 1
. 9
{ ﬂ](z) = b(),j + b1,jz ( )

The quantities agj, a1,;, bo j, b1 ; are computed so that conditions (17) are satisfied. We set
N—1
m(z) = > aili(z) for 1=0,1,---N (co; = fi, i=0,---,N); (20)
i=0

q(z) = zdliLi(z) (doo = 1). (21)

Using the recurrence relation for the Legendre polynomials and (18), (20), the recurrence (18)
can be written

11



N—j+2
pi+1(z) = (Cj2,Nj+2 TG LNy 3> Ly jya(2) +
N—j+1
+ | G2 N—j+1+ mbl,jcj,zv—j + G0,jCj-1,N—j+1t

N—j+1

N—j
WG N-IGN i  ] Ly-j+1(2) + | ¢jm2,n—j + ¢j,n—jbo,j + Cjn—j1

_—  Jp,.
ON —2j—1
N N N—j+l . N—j Lni(2)
j—1,N—j%0,j Jl,NJ+12N_2j+3 1,5 2N_2j_191,N111,J N—j
N—j—1

+r;j(z) with r;(2) = Z r;iLi(2).

1=

As the polynomial p;;; must have a degree less or equal to N — j — 1, the coeflicients of Ly_;.o,
Ly_j+1 and Ly_; must be equal to zero and we get three linear equations in the unknowns
@o,j, 01,5, bo,j, b1,j. The fourth equation results from the accuracy to order condition. In fact we
have:

@1 f — pjr1 = (g5-of —pj—2) + o5(qi—1f —pj—1) + Bi(g; f — pj)- (22)
Setting
a(2)f(z) —m(z) =ent1Lnti(z) +--- forl=0,1,---, N, (23)

and inserting this in (22) we obtain

N+1

= 9N 13 (ej-1,n+101,; + €jn41D15) Ln(2) + O(Ln41(2)).

j+1(2)f(2) = pj+1(2)
Equating to zero the coefficient of Ly(z) we get the last equation. By a simple computation we
obtain the solution of the system which gives the coefficients of «;(z) and 3;(z). The results are
summarized in the following theorem.

Theorem 3 Let f be a function given by its expansion in a Legendre series f(z) = 332, fiLi(2)
for z € D, a domain in the complex plane. For N fixed, we want to compute the anti—diagonal of
the Padé-Legendre table containing [N — m/m]f form =0,---,N. Let us suppose the normality
condition

HNm™ 40 form=0,1,---

m—+1,m

N.

Y

Then the following recursive Kronecker-type algorithm can be used to compute this sequence:

{ pi+1(2) = pj-2(2) + (2)pj-1(2) + B;(2)p; (2) forj=0,---N —1,

g+1(2) = gj-2(2) + aj(2)g;-1(2) + B;(2)q;(2)

12



where [N — J/]]If(z) = p;(2)/q;(z) and , for j > 0, a;(2),B;(2) are defined by a;(z) = ag; +
a1z, Bj(z) = bo; — b1z where

'a 2N —2j+3c¢j oN ji2
o= -
J N—]+2 Cj—1,N—j+1
- _%-1,N+1 b _ %10
1,5 - e ala] I 170 -
7,N+1 Co,n+1
0,7 Cj—l,N—j—|—1 2N _ 2.7 + 1 3,N—3jY1,3 2N _ 2.7 + 1 j—1,N—j%1,5 j—2,N—j+1
\ 1 N—j
bo;, = — - Cj—1,N—j00,; T m(bl,j%‘w—j—l + a15¢i-1,v—j-1)+
N—j+1
T ON —gj 3Nt TG
€jti = €24+ 0o €1+ bojejit
\ + ay; [iei-vict T aaseiotit1] +bus [5ir€iict + aayesist] 1> N+1

(24)
For the initialization of this algorithm we let:

{ p-2(2) = Lys2(2) p-1(2) = Lyv41(2) polz) = i fili(2)
g 2(2)=0 q1(2)=0 q0(z) = 1.

Remark: under the normality condition, we can see that this algorithm cannot break down. In
fact, the denominators which appear in the computations of the coefficients of «;(z) and §;(2)
are

e the coefficient of the first term in the expansion of the error

J
N—j+1
€j,N+1 = E :dj,ihN—j,i #0& HJHJJ #£0;
i=0

o for each value of j, the coefficient of the term of degree N —j of the numerator of [N —75/;1¥

i
ciN—j =D diihn_ji = (=1 H\7% #0.

1=0

We will next be concerned with some convergence properties of these approximants.

6 Some results on the speed of convergence of the columns
of the Padé—Legendre table

Given a Legendre series, its domain of convergence is well-known (see for instance [3])in the
following two cases:

13



e if f is given by a Legendre series f(2) = Y2, fxLk(2) with limsup,_,.. | fi|"/* = 1/r , with
r > 1, then the series converges to f in the interior of the ellipse &, (foci at +1, semi—axes
a=3(r+r1),b=1(r—r"1)),s0D=E;

o if f(2) = Y32, fuLlk(2) is analytic in —1 < x < 1 with limsup_, |fe|”/¥ = 1, then the
series converges to f in —1 <z <1 and so D =] — 1,1].

The speed of convergence of the partial sums of a Legendre series can be measured by the order

of the coefficient sequence (fx)x: if f(2) = 252, felk(z) for z € Dy, g(2) = Yoo gk Li(z) for

2z € Dy and limy_,o Ik _ 0, then, for z € Dy N Dy, the sequence of partial sums of g converges
k

faster than the one of f.

To study the speed of convergence of the columns of the Padé—Legendre table for a function
given by its Legendre series, we are going to write the approximants as partial sums of a certain
Legendre series and obtain the asymptotic behaviour of the corresponding coefficient sequence.

We will now fix ¢ and consider the sequence:

/alhe) = (S ol (2)) / (gzé%(z))=,:0c§"><z)f:i<z) neN,

where

&M (z) =

0 , 0<i<n. (25)
4o L(2)

So, to study the speed of convergence of ([n/q]}(2))n, it is sufficient to know the asymptotic

(n)

behaviour of the sequence (c;"”(z)), when i — oo, n — oo (i < n). For this, we begin by

studying the behaviour of (hy ;)x when k — oo (j fixed).

6.1 Asymptotic behaviour of sequences (h; ;)i>0

We are going to consider two different behaviours for (f,,), and deduce from them the asymptotic
behaviour of the sequences (hy, ;)y.

Proposition 1 Let us consider a sequence (fy), satisfying:

hn,0:fn:p la0+@+0( >‘|a p7é15a07£0' (26)

Then
s = " [a]+&+o( )] (n — o0) with (27)
a; = ag(p+ )/2 and « ij_ 1aj_1(p+ 1/p)/2 — j];_laj_z. (28)

Moreover, for all j, a; # 0.

14



Proposition 2 Let us consider now a sequence (fy,)n having the following asymptotic behaviour:

hn,O:fn:%<1+§+%<;%+0(#)>> (n — o). (29)
Then . 51 (ke ,

Vi >1 hnj=ﬁ<1+ﬁ+ﬁ<§)ni;+o(nk+l)>> (n — 00) (30)
where c19 = coo + 3(p + 1)° andcjo_ﬁ(c] 10+;(p+1)2) ‘7_1cj 00 for j > 2.

Proof:The result of the two propositions is easily obtained by induction using the recurrence
relation for the computation of the quantities (hy, ;).
A

6.2 Asymptotic behaviour of the sequence (c\"(z)); and convergence
results

We will now derive, from the previous results, the asymptotic behaviour of the numerator coeffi-
cients (a (n))(n — 00), (1 < n) and denominator coefficients (bg")),i =0,---q in order to estimate
the order of convergence of the approximants. We will consider first the cases ¢ = 1,2 for which
we can obtain their explicit form and then turn to the general case g > 2.

6.2.1 Caseqg=1

We obtain the following result:

Proposition 3 Let f(z) = Y2, fiLi(2) be a function given by a Legendre series in a domain D
of convergence of the series. We suppose that Hy, # 0 Vn € N. We consider the first column
of the Padé-Legendre table

[n/1]%( iz Z ¢ (n)
1=0
Then the following holds:

1. If the sequence (f;); satisfies (26), then

A (2) o K ()P (= 00) (i < ), (31)

~.

(where K (z) independent of i). So, for z € D, the sequence ([n/1]%(z))n converges to f(z)

7
like the partial sums of a Legendre series whose coefficient sequence has order O (p_)
n

15



2. If the coefficient sequence (f;); satisfies (29), then the asymptotic behaviour of cgn)(z) is
(n) L ,
a (2) ~ K(2) - (i = 00), (i < n), (32)
where K (z) is independent of i.
So, for z € D, the sequence ([n/1]%(2))n converges to f(z) like the sequence of partial sums

of a Legendre series whose coefficient sequence has order O (#)

Proof: From the results of the previous sections we know that the normality condition H3'; # 0Vn
implies that b # 0 where DI/ Uz) = b(()n) + bgn)Ll(z). So we can choose, without loss of
generality, bg") = 1. The other coefficients of the approximants are given by

n n (n) _ hnt1,1
b(() )hn+1,0 + bg )hn+1,1 =0 o by - _hnil,o (33)
al” = b5 hig + b hiy =0, oV = hig (it — L) =0, n

i — U9 1,0 1 i, 1 t=U, , i - 1,0 hio Rn+t1,0 - Y% ’

From the definition we have

1) From (27) and (28) we obtain
hil OZ1+&+O(1/22) O ( /81 /60 ]_> 1 .
== . =— |14+ (———)= +0(,—> i — 00
hio g+ % +0(1/%) (a1 ao) i i? ( )
which leads to

(675} (o7) 1 n—+1
and -
n az‘n il
A (2) = —— ~ K(2)p'=,
by’ +z ¢

where K(z) = (261(p+ p™') — fo/(z — (p+ p')/2), which enables us to obtain the asymptotic
order (31) of (cz(") (2));-
2) From (29) and (30) we obtain

>

o dpapdao()

hi,0_1+2(p+1) i2+0 3 (i — o) and so
m_p |t 2l 1 (1) _ % 2L( (1)) : <
a; = hip 2(p+1) (i2 (n—|—1)2)+0 5| = 2(;tH—l) P 1+0 - (i — 00)(i < m).

So the result (32) follows with K(z) = 2 (p+1)*/(z — 1).
A
As we couldn’t show any change in the order of the sequences (cz(-")) for the subsequent
columns of the Padé-Legendre table when the coefficients fy satisfy (26), from now on we will

only consider Legendre series for which (fy) satisfy (29).
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6.2.2 Case ¢ =2

Let us study now the behaviour of the second column of the Padé-Legendre table. We suppose
that HY, # 0 Vp > 0, which garantees the existence and uniqueness of the sequence of ap-
proximants ([n/2]%), and enables us to choose, without loosing generality, by(n) = 1 Vn. The
coefficients of the denominator are the solution of the linear system:

{ b(()n)hn+1,0 + bgn)hrwl,l = —hpi12
B Bn00 + b hpson = —hnyas

which gives

hn—|—2,2 _ hn—|—2,1 hn—|—2,0 _ hn—|—2,2
b(n) _ hn+1,2 hn—|—1,2 hn—|—1,1 b(n) _ hn+1,2 hn—|—1,0 hn—|—1,2 34
0o - h h h ) 1 — h h h . ( )
n+1,0 '‘n+2,1 _ n+2,0 n+1,1 "“n+2,1 _ n+2,0
hn—|—1,1 hn—|—1,0 hn—|—1,1 hn—|—1,0

From the expansion (29) and using the recurrence relation for the quantities (h; ), we can obtain
explicitly the first coefficients of the (h,;)’s expansion in terms of the powers of <, for j = 1,2.
With the help of some computer algebra system we easily obtain:

10 = Coo + 7m1(p) 20 = Coo + 3r1(p)
c11 = co1 + 2(p) ) Co1 = Co1 + 3ra(p) (35)
c12 = co2 + r3(p)coo + 74(P) Cop = Co2 + 373(p)coo + 374(p) + %7“3(27)7’4(10)

with

ri(p) = %(p ' 1), ro(p) =2b(1 + B)* — %(1 +5)
r3(p) = @, ra(p) = —2(p+3) + L (p* + 8p> +23p* + 31p + 21)

Replacing in (34), we obtain

b(()n) — 2+€1(n)’ bg") — _3+€1(n), with Eo(n) =0 (ﬁ) y 61(”) =0 (ﬁ) . (36)

Replacing the quantities by their expansions, we obtain

bS”)hnH,o + b§")hn+1,1 + hpt10 =

— = (24+€((n) —3+e(n)+1)(1+ Y 1) + (2¢00 — 3c10 + €20) (n+ 1)2
1
+(coo€o(n) + cro€1 (n)m + (2000 = 3ew + Cm)m "

1 1
+(2¢o2 — 3c12 + C22)m +0 (E)] .

Using the definitions (35) and the equation satisfied by 6™, 5™, we find:

g : :
Ty [ ) + Qo = Ben + en) s

17
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which gives

6(n):(9(1).

nt
(n)

Finally, for the asymptotic behaviour of the a; ’ we obtain

az(") = b(()n)hi,o + bg")hi,l + hi,z =

a 13 2\ . 1
= 57~3(p)r4(p) + (rl(p)el (n) + 6(71)22) P+ 0 (;)] )
which gives
(n)
(), % = ( ! ) ' '
() = =0|—) (i—00) (:<n).
() b5 + b L1 (2) + La(2) wri) | ) (i<m)

Summarising, we have shown the following result:

Proposition 4 Let f be given by a Legendre series f(z) = Y32, fiLi(z) in a domain D of its
convergence. We suppose that (f;); satisfies (29). Then the second column of the Padé —Legendre
table, [n/2]7(2) = i ™ (2)L;(2), converges to f in D like the partial sums of a Legendre series

1
whose coefficient sequence has order O ( )
npt4

6.2.3 Case ¢ > 2
The determination of the first terms of the expansion of the denominator coefficients of [n/q|?

(1 < q), b™ from their explicit expression as a quotient of two determinants becomes very difficult

i
when ¢ > 2. So we are going to proceed in a different way.
Let us suppose that we can compute quantities (b;p,7 = 0,---,¢ — 1) such that

. 1
hn’()bo,() + hn’1b1,0 + hn7q_1bq_1,0 -+ hn,q = G(TZ) with e(n) = 0 (W) (n — OO)

Using the expansion (30) of (hni)n, ¢ < ¢, and collecting the coefficients of the terms with the
same power of (1/n), this is equivalent to suppose that the system

biocii + baoCoi + -+ + bgocgi + i =0, i=1,---,¢—1
has a solution. If we define the quantities (¢;(n),i =0,---,¢ — 1) by
b = b +ei(n) fori=0,--,q-1,

then, from the system of equations satisfied by the bz(-")’s, we immediately get that the €;(n)’s
satisfy

hn+j,0€()(n) + h'n+j,1€1 (n) + -+ hn+j,q71€q,1(n) = e(n +]) for _] = ]_, e, qg.

18



As

C C;
e(n) ~ el ™ hni (n — 00),
solving the previous system we get, for ¢t =0,---,q — 1,
e(n) _ ‘h’n—l—l,O hn—|—1,1 hn+1,z>1 6(71 + 1) hn—|—1,i—|—1 Tt h/n—|—1,q71| K; (n N oo)
i = ~ .
|hnt1,0 P11 o Pngrict Pnsii Pntiivr o Pngig-1] natt

Then, for the coefficients (a\™), we find

al™ = highy" + hi b + -+ hig b+ g =
hioboo + hiibio + - -+ hig_1bg—1,0 + hig + higeo(n) + - - - + hig—1€4-1(n)
= hio(eo(n) — €o(i)) + -+ + hig-1(€g-1(n) — €4-1(4))-

But as e (n) — (i) = O (ﬂ%) for n — 00,7 — 00,7 < n, we finally obtain

1 .
" =0 (ip+q+2) (i — o0),

and the same asymptotic behaviour holds for the (c{"(z)).
We can gather the previous results in the following theorem:

Theorem 4 Let f be given by a Legendre series f(z) = Y2 fxLr(z) for z € D, a domain in
the complex plane. Let us suppose that (fx)r satisfies (29). We construct the Padé-Legendre
table ([n/q]%)n,g>0 and we set

[n/dlf(2) = 3 & () La(2)
i=0
For g > 2 fized, if the system (37) has a solution, then the corresponding (cgn)(z))Z satisfy

K

(n)
a (&) ~ i

(1 = o00) (i <n).

For z € D fized, each column of the Padé-Legendre table converges to f as the partial sums

. . 1
of a Legendre series whose coefficient sequence has order O (W) (n = 00).

7 Numerical examples

We have programmed the algorithms given in the previous sections and obtained some numerical
results which illustrate the acceleration properties given below.

Example 1: Let us consider the generating function for the Legendre polynomials

=2 an(z)
V1—-2az+a> 3

19

f(z) =




For values a < 1 the coefficient sequence of this Legendre series converges linearly and conditions
of Proposition 3 are satisfied for —1 < z < 1. The figures 1 and 2 show that if we consider
approximants computed with the the same number n of coefficients of the Legendre series, the
error |f(z) — [n — 2p/p|(z)| decreases with p. So each column of the Padé-Legendre converges
faster than the previous one.

Figure 1: Generating function, ¢ = 0.8, 2 = 0.9
0.01 T T T T T T T

20terms —
24 terms -—-
0001 & 28tems -
32terms -
3bterms —-

00001
]
1e-06 \\

1e07 |

1e-08 |

Errors logl0 scale

1e-09 |

le10 |

el |

1912 Il Il Il Il Il | Il
0 1 2 3 4 5 6 7 8
columns of the Pade-legendre table

Example 2: Let us consider now a function for which the coefficient sequence of the correspond-
ing Legendre series is logarithmic. It can be shown that [7]

J(@) = 1;36:§P°(x)_22(2n—%((zzz+3)’ “l<o<d

The conditions of Theorem 4 are then satisfied and the good acceleration properties of the
column sequences of the Padé-Legendre table can be seen in Figures 3 and 4, where we compare
the precision of the approximants computed with the same number of coefficients of the initial
series, that is, log;, ‘f(z) —[n— 2p/p]%(z)‘ for the values p = 0,1,---,8 (for p > 8 the rounding
errors become important and we do not gain any precision) and for two values of z, one positif
and one negatif.
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Figure 2: Generating function, a = 0.8, z = —0.5
1
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0
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Example 3: We will now consider a function which has a singularity in the interval [—1, 1]:

0 if -l<z<a
f(z)_{l if a<z<l1

It is known [7] that its expansion in a Legendre series is given by

flo) = 50 -a) -

l\DlP—‘

i P,i1(a) — Pyo1(a)) Pu(z), —1l<z<1

In Figure 5 we compare the precision of the approximants [n — 21/2]? ,1=0,---,6, in the interval
[—1,1]. These approximants are computed with the same number of coefficients of the Legendre
series (in this example we consider n = 140 coefficients). We remark the gain of precision as
we progress through the columns of the Padé-Legendre table, even near the singularity of the
function. However, for ¢ > 6, the numerical instabilities prevent better results.
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Figure 3: f(z) = /3%,2=10.9
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8 Conclusions and further work

In this paper we have shown that Padé-Legendre approximation can be an interesting tool to
improve the convergence properties of the partial sums of the Legendre series. The previous
numerical results confirm the good acceleration properties of the Padé-Legendre approximants
and the algorithms proposed seem to have good stability properties.

The extension of the theoretical results to other classes of functions is under study. Another
interesting problem is to obtain some convergence results for sequences of Padé-Legendre ap-
proximants for values of z such that the sequence of partial sums of the Legendre series doesn’t
converge (like in the classical Padé case).

A comparison between the different algorithms proposed below and a more detailed study of
their stability is under progress. The following problems are also being treated:

e construction of new algorithms in order to progress in the Padé-Legendre table along any
path;

e in the case of non—normality of the table, that is, when the condition Hg;;il #0 Vp >
0,q > 1 is not satisfied, how to detect the breakdown and modify the algorithms in order
to be able to compute the existing approximants.
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Figure 4: f(z) = /3%,2=-0.5
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