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Abstract

The aim of this paper is to construct rational approximants for multivariate functions
given by their expansion in an orthogonal polynomial system. This will be done by gen-
eralizing the concept of multivariate Padé approximation. After defining the multivariate
Frobenius-Padé approximants, we will be interested in the two following problems: the first
one is to develop recursive algorithms for the computation of the value of a sequence of
approximants at a given pooint. The second one is to compute the coefficients of the numer-
ator and denominator of the approximants by solving a linear system. For some particular
cases we will obtain a displacement rank structure for the matrix of the system we have to
solve. The case of a Tchebyshev expansion is considered in more detail.
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1 Introduction

Let us consider a two variable function f(z,y) given by its expansion (or the first coefficients of
its expansion) in an orthogonal polynomial system {P}

flay) =) cPilx)Pi(y).

i=0 j=0
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We want to construct rational approximants for f by generalizing the concept and ideas of Padé
approximation - rational approximation for power series (see for instance [1| and [2])

The univariate case has been studied in [22]|. There the Padé-Legendre approximants for a
series f(z) = > 0, ¢;Pi(x) have been defined and different types of algorithms for their recursive
computation have been proposed. For some classes of functions, acceleration results have been
obtained, that is, it has been shown that the sequence of approximants converges to f faster
than the partial sums. The numerical examples were very good and incited us to generalize
these ideas to the case of a vector function. The simultaneous Frobenius-Padé approrimants were
defined in [23] where their properties have been given and recurence relations between adjacent
approximants in a Frobenius-Padé table have been established, together with recursive algorithms
for their computation.

We are now going to generalize the ideas of Frobenius-Padé approximation to the multivariate
case (we will restrict ourselves to the two variable case). Different generalizations of Padé approx-
imation to the multivariate case have been proposed and inspired our work. Different approaches
have been developed by A. Cuyt |7, 8, 9, 10, 11|, P.Guillaume [13, 14|, and other authors (see for
instance [19], [21], [6], ..).Properties of the different approximants, convergence properties and
ways of computing them have been developped. We take advantage of these different ideas to
generalize them to the case of orthogonal expansions.

After giving the general definition of the multivariate Frobenius-Padé approximants, we will
be interested in the way how to compute them. We will consider two different situations:

e compute the values of a sequence of approximants at a given point (¢, yo);
e compute the coefficients of the denominators and numerators of a sequence of approximants.

We will see that these computations are equivalent to the solution of linear systems.

In order to define an approximant we will need to choose three sets of indices: the set of
indices appearing in the numerator which we will denote by N, the set of indices appearing in
the denominator D and the one corresponding to the terms that will be annihilated in the error
term, E. We have also many ways of defining sequences of approximants: fixing the denominator
(numerator) and increasing the cardinal of the set of indices in N ( respectively D), increasing
simultaneously the sets N and D... Our aim in this paper is to obtain, for particular choices in this
large variety of parameters, either recursive algorithms to compute a sequence of approximations,
either a displacement rank structure for the matrix of the system we have to solve to obtain the
approximant.

A second generalization of Frobenius-Padé approximation based on the ideas of [13] for Padé
approximants is then developed- the mized Frobenius-Padé approximants. We will consider the
particular case of a Tchebyshev series for which the computation of the coefficient matrix of the
system which gives the denominator coefficients of the approximant is very simple and we will
show that the matrix has in this case a block Toeplitz-plus-Hankel structure.

Let us begin with the first definitions.



2 Definition of the approximants

Let us consider a two variable function given by its expansion in an orthogonal series

=YY i P(@)Pi(y) (1)

i=0 j=0

where
{P;} is a system of orthogonal polynomials in [a, b] with respect to

the weight function w

v =PIl | PIP= [ Pl@)?w(w)d
ci = Ji [, f@y) P )P(y)w(w)w(y)dwdy

We search for two polynomials P(z,y) and Q(z,y)

(Ped) = Zuper Pl .
(:E, ) = Z(m‘)ep bzypz(x)PJ(y)
satisfying
f(.T, y)Q(ma y) - P(SE, y) = Z dZJPZ(x)PJ(y) (3)
(4,5)e(N2\E)
where

e D C N? has m elements (ki,01), -+, (km, lm);

e F is the set of indices of the null terms in the expansion of the remainder, N C E with n
elements (i1, j1), (42, 72), -+ , (¢n, Jn), card(N) = n;

e H = FE\N with m — 1 elements (in+1, jn+1)," - s (Gntm—1, Jntm—1)-

We then define the multivariate Frobenius-Padé approximant of the function f as
the rational function

R(z,y) =

We set, for (k,1) € N
Py(x) Py = ) hP@)P(y) (4)

(i,4)EN?

and so we get

(fQ=P)(z,y) = D byP(x)P(y)flz,y)— > ayPi(x)Pi(y)
(4.4)

(i.j)eD

= > | X2 k| PP - Y aiPi(@)Piy).

(i,J)EN? \ (k,l)eD (i.4)EN



Condition (3) writes

(k,))eD
Z buhi; = aj, (i,5) €N (6)
(k,l)eD

As card(D) = card(H) + 1, system (5) is an homogeneous system of (m — 1) equations and m
unknowns, so it always has a nontrivial solution (bx),yep (the coefficients of the denominator
polynomial). Then the coefficients (a;;)¢ )en of the numerator polynomial are immediately
given by (6). So the most important part of the computational effort to compute a multivariate
Frobenius-Padé approximant is the solution of system (5). The coefficients of the system matrix
are the quantities (hjj) defined by (4). They can be computed recursively using the three term
recurence relation for the orthogonal system {P;},., as will be shown in the next paragraph.

2.1 Recursive computation of the (h;}).

Let us consider the three term recurence relation for the system of orthogonal polynomials
{P k}kZO

z2P;(z) = aiPit1(2) + BiPi(2) + viPici(z) >0 (weset y_; =0)

P()(Z):l, Pl(Z) :(Z—B())/OJ()

Then we have

Py (2)Bi(y) f (z,y) = aikka(fr)B(y)f(x, y)—i—zpk(x)ﬂ(y)f(x, y)—Z—ZPk—l(iv)B(y)f(% y) (7)

But
z P () Pi(y) f (= y)_
= Z h Pii1(z) + BiPi(x) + viPioa(z)) Pi(y) =

(3,4)EN?

= Z (ozZ 1h, M—i—ﬂzhw +%+1hz+1l) (x)PJ(y)
(i,)EN2

Equating coefficients of the same type in equation (7) we get

aphi ™ = oy 1L+ BiRE 4y b — Behl — b (8)
and by symmetry with respect to the y variable

ah ™ =y hB )+ BRE B — BB — 9)

From these two equations, and giving suitable initializations, we can compute recursively all the
quantities hj! from the initial data hy} = c¢;, 4,5 > 0 (recursion is done on the superscripts
k,l1 > 0). We also remark that, as by definition we have

1 b b
hij = T/ / Py(2)Pi(y) f (z, y) Pi(2) Pj (y)w(z)w(y)dzdw with v; =[| P; [ P; 1%,
iy Ja Ja



then -
hijvis = hm
This implies that we only need to compute h¥ for k < i,1 < j(i,j > 0).
We can then construct the matrix

kily kalo . kmlm
Tn4+1Jn+1 tnt+1in+1 Int+1in+1
H= : : . : (10)
ki1l kalo . kmlm
In+m—1In+m—1 In+m—1In+m—1 n+m—1In+m—1

So the problem of computing the denominator coefficients of one approximant is equivalent
to the solution of the linear system (5). If rank(#) = m — 1 then the solution is unique apart
from a multiplicative factor (we need to fix the normalization of the denominator polynomial).

But we can consider different kinds of approximation problems: instead of computing one
Frobenius-Padé approximant, one may be interested in computing the value in a given point of
a sequence of approximants. For this we will develop in the next section a recursive algorithm.

3 Recursive algorithm

Using Cramer’s rule for solving the systems (6) and (5) we immediately get the following deter-
minantal expression for the numerator and the denominator of the Frobenius-Padé approximant:

P (z)Py(y)  Pro(2)Pu(y) -+ P, (2)B,(y)
k1l1 kalo . kmlm
Zq-i—lljn+1 2712-;—21]'n+1 - i":;i-;jn+1
Qz,y) = int2int2 in+2in+2 in+2jn+2
k1l1 ’ kols ) . _. . kmlm .
Z.n+m—1jn+m—1 Z.n+m—1jn+m—1 Z.n+m—1jn+m—1

P(z,y)= > ayP(@)Pi(y)= > | > buhll | Pi(x)P;(y) =

(1,4)eEN (t)eEN \(kDeD
kil kala kml
> pen i Pi@)Pi(y) Xpen hig B(@)B(y) -+ X jen li " Pi(z) Pi(y)
il kals . il
In+1In+1 In+1In+1 In+1Jn+1
_ ]?1_)—1 ) ]?272 i ... wmim
- In+2In+2 In4+2In+2 In+2In+2
kila kals o Kmlm
Z.n+m—1jn+m—1 Z.n—f—m—1jn+m—1 Z.n+m—1jn+m—1

Following the ideas developped in [7] for the recursive computation of multivariate Padé approx-
imants, we will do some row and column manipulation in these two determinants. Let us divide
the first column by Py, (z)P,(y), - -, the mth column by Py _(z)P,, (y); then we multiply the



second row by P; .. (z)P;,.,(y), ---, the mth row by P, . . (x)P; (y). We obtain:

In+m—1
Eijen it Pi(@)Pi(y) N Eijen Mm@ P ()
kily Pin+1 (w)lpjn-u (v) L. kmlm Pin+1 (w)Pjn+1 ()
int1dn+1 Py (€)Pr, (y) in+1dn+1  Prpy, (%) Py, (y)
k1l1 Pin;m,l (w)Pjn+m71 (y) . . kmlm Pin'+m71 (z)Pjn+m71 (y)
P(.’L',y) o Z.n+m—1jn+m—1 Pkl(m)Pkl(y) Tn+m—1Jn+m—1 Pkm(.z‘)Pkm(y)
Q(z,y) 1 e 1
klll Pin+1 (z)Per—l (y) . kmlm Pin+1 (I)Pjn+1 (y)
in+1jn+1 Pkl (CE)Pkl (y) in+1jn+1 Pkm (.CC)Pkm (y)
kily Pin+m_1 (z)Pjn+m_1 (y) . kmlm Pin+m_1 (m)Per_m_l (y)
z.'n.+m—1.7.n+7'n—1 Pkl (Q})Pkl (y) Z.n+m—1jn+m—1 Pkm (E)Pkm (y)
Let us set
kyly
suln) = S0 P 0P )/ Pu@B )y
Asy(n) = sy(n+ 1) — sy(n)
Then
s1(n) s Sm(n)
Asi(n) e As,(n)
P(z,y) Asi(n+m—=2) -+ Asp(n+m—2)
Qz,y) 1 - 1
Asi(n) e Asp(n)
Asiin+m—=2) -+ Asyp(n+m—2)




Again with some column and row manipulation we get

P(z,y) _
Q(z,y)
s1(n) $m(n)
si(n+1) Sm(n+1)
_ s1(n +.m—1) Sm(n —|-.m—1)
B 1 0 0
Asq(n) Aso(n) — Asi(n) e Asp(n) — Asp—1(n)
Asi(n + m—2) Ass(n+m—2) - Asi(n+m—2) - Asp(n+m — 2) —‘Asm_l(n +m-1)
si(n) si(n+1) -+ si(n+m—1)
sa(n)  se(n+1) -+ sy(n+m—1)
B sm(n) sm(n.-l- 1) - Sm(n —i—.m —1)
B Asy(n) — Asi(n) e Asp(n) — Asp_1(n)
Asy(n +m — 2) - Asi(n+m—2) - Aspy(n+m—2) —'Asm,l(n +m —2)

Finally we set

and then

s1(n) 51(n+1) 51(n+m—1)
Po,y) = glsn) 91(”;" ) g1(n +Sm —1)
gm—l(n) gm—l(n + 1) e gm—l(n +m — 1)



gi1(n+1) — g1(n) gm-1(n+1) = gm-1(n)
gi(n+m — )—gl(n+m—2) gm_1(n+m —1) ;gm_l(n+m—2)
1 g1(n) gm—1(n)
_ 0 Agl(n) Agm_1(n) _
6 Agl(n~|'-m—2) Agm_l(n.+m—2)
1 g1(n) e gm-1(n)
L1 et e geamt)
1 gl(n-l-‘m—l) gm_l(n—‘i-m—l)
Finally
s1(n) siln+1) -+ si(n+m—1)
g1(n) g(n+1) -+ gi(n+m-—1)
P(z,y) _ 9m7.1(n) 9m71(;1+ 1) 9m71(n-.i‘m —1) (11)
Qz,y) 1 1 1
gi(n)  giln+1) -+ giln+m-—1)
Gn 1) Gna(n+1) o gua(ntm—1)

It is well-known that this quotient of determinants can be computed by the E-algorithm [3]
with the initializations:

Eé") s1(n) NeN
gOZ=g(n) i=1,2,---

and the recursive rules:

(1) _ ()
(n) _ (n) By B (n)
B, = B - (n+1) o™ i1,k
e eyt :
(n) _  (n) Ik—1,i k-1, () .
Iki = k14" <n+13 pD “Opig 1=k+LE+2,--

Ik — 1,k k—l,k

We conclude that the value at (z,y) of this Frobenius-Padé approximant P(x,y)/Q(z,y) can be
computed by the E-algorithm

This enables us to compute the value at a fixed point (z,y) of a sequence of approximants.
For this let us consider two sequences of indices:



o {(41,71), (42, j2), -, (in, Jn), - - -} which corresponds to the indices of the polynomials P;, (z)P;, (v)
appearing in the numerators plus the indices of the coefficients that will be cancelled out
in the remainder term;

o {(ki,l1),(ko,12), -, (km,lm), - -} which corresponds to the indices of the polynomials Py, (x) P, ()
appearing in the denominator.

We set for n,m 2 Oa Nn = {(ilajl)a (i27j2)a Tty (lna]n)} and Dm = {(kla ll)a (kZa l2)a T, (kma lm)}
and define for n > 0, m > 0 the multivariate Frobenius-Padé approximant

Sn,m(xﬁy) = P(m,y)/Q(:v,y)

by (2) and (3) with N = N,,, D = D, and E = Ny,
Applying the E-algorithm with the initializations

kil
EW — Zpen hiy P@)P©) u=0,1,---
0 Py, (fﬂk)Plll(?/) »
g(u) — E(i,j)eNu hlfﬂ v+1Pi($)Pj (v) _ E(i,j)ENu thlvPi(m)Pj(y) v 0.1
0,v Pry 1) Py () Proy(2) Py (9) ’ >

we get
Spm(z,y) = EM for m,n > 0.

We can also apply the particular rules of the E-algorithm given in [[4]] which enable us to compute
the quantitiesS, ,4x(z,y) directly from the quantities Sy, (z,y), -, Sntkm(z,y) (see [4] for
details). These rules can be interesting from a numerical point of vue to prevent instabilities.

If we dispose these approximants in a double entry table as usual with the Padé table, we
have a recursive algorithm to compute the value in a given point of this double sequence of
approximants. So we know how to solve the so called “value problem”.

But we can be interested in obtaining an explicit form for the approximant - the so-called
“coefficient problem”. In this case we will need to solve, for each approximant a linear system.
We will try, in the following sections, by defining particular sequences in the table or choosing
a particular family of orthogonal polynomials (namely the Tchebyshev polynomials), to obtain
some recursive algorithm to compute the coefficients of a sequence of approximants.

4 Different choices of sequences of approximants.

In the general definition of the multivariate Frobenius-Padé approximants (2) and (3), the sets of
indices N, D, F indicating the indices of the polynomials present in the numerator, denominator
and remainder term only need to satisfy the conditions:

card(F) = card(D) + card(N) —1, N C E, (12)

and so they can be very general sets. In order to obtain recursive algorithms and convergence
results we need to consider particular sequences of approximants, which means different choices
for these index sets. We can define particular sequences in such a way that:

9



e a symmetry between the two variables x and y is preserved;

e the computation of the m + 1 term of the sequence can take profit of the computations
done at the previous step.

We recall that from (5), if we order the indices in N, D, E' in the following way:
N = {(/I;lajl):"' 7(2na.7n)}

D = {(ki,l), -, (km,lm)} ]
E = NU{(uy,v1), ", (tme1,Vn1)}

the linear system we have to solve to obtain the denominator coefficients is

k1l kml
hulyull e huTvIn bklll 0
... = =1 : (13)
klll - kb
hum 1Um—1 huﬁ w{vm 1 bkmlm 0

We will consider two main choices.

4.1 Tensor product type approximants
In this case, the sets N, D, E verifying (12) are of the following type:
e E={(i,7): 0<i<m-—1, 0<j<m-—1}, with card(E) = m?.
e N={(i,j): 0<i<m-—1I, 0<j<m-1}
e D=A(,j): (m—-Il<i<m-land0<j<m-1l)or(0<i<m-—-landm—-I<j<m-1)}

for given m and [. We can also interchange the definitions of N and D. We get the approximants
of the form

> s Z] oaza Pi(z)P;(y)
Sy S b Pa@) Py (y) + X0 ST b i) P(y)

We can then consider the following sequences

7;n,l($7 y)

1. Vertical sequences: let us consider
D={(,j): 0<i,j<m} fixed
Ny ={(G,7): m+1<i<n0<j<n)or(0<i<mm+1<j<n)}u{(0,0)}
E,=DUN,,
Then we have a sequence of approximants

Ny (z, )

T) (2,y) = m,

n>0

where the denominator is fixed (obtained by solving the (m —1) x (m —1) system (13) and
the numerator coefficients are given by (6).

10



Figure 1: Index sets for vertical sequences

2. Horizontal sequences:we consider now the sets:

N={(i,7): 0<4,5 <n} fixed
D, ={(,7): (n+1<i<m,0<j<m)or (0<i<n,n+1<j<m)}uU{0,0)}
E,=D,UN

We have seen that the important part of the computational work to solve the coefficient
problem (that is, compute the explicit form of the approximant — its coefficients) is the
solution of the system (13) giving the denominator coefficients (the numerator coefficients
are then given trivially by (6). Let us consider the following ordering for the pairs (i, j) € N:

(0,0),(0,1),(1,1),(1,0),(0,2),(1,2),(2,2),(2,1),(2,0), - - -

If we set (7,"),, the sequence of Frobenius-Padé approximants defined from the sets of in-
dices (N, Dy, Ey,), then we easily see from (13) that the system we have to solve to compute
the denominator coefficients of 7, is obtained from the previous one (corresponding to
7.") by adding 2m + 1 rows and columns. So we can solve it efficiently by using the block
bordering method [5] and compute efficiently the sequence of approximants.

Figure 2: Index sets for horizontal sequences

3. Diagonal sequences: for m > 0, we define the approximant 7,%(z,y) from the following
sets:

11



e D, ={(i,j): 0<i<m, 0<j<m}
e N ={(5,j): (m+1<i<2mand0<j<2m)or (0<i<2mand m+1<j<2m)}U
{(0,0)}
e E,={(i,7): 0<i<2m, 0<j<2m}
If we denote by by, the vector of denominator coefficients at step m and by H,,b,,, = 0 the
system to solve, in the next step we will need to solve Hy, 1 1bmy1 = 0 with

h]f?m_’+1lm’+1 L. hlf:m:’+2m+2lm’+2m+2 \
H 1272 2272
m - -
H _ kil R kit t2mt2lim! 1om2
m+1 — Und +1Jm! +1 ! +1Im! +1
kily ) L Em! yomt2lm! +om+2
tm! f2m42dm! £2m4-2 b +2m+2Jm! +2m+2

(m’ = m?). So the system can be obtained from the previous one by adding 2m + 1 new
rows and columns and we can then apply, like in the previous case, the bordering block

method to solve it efficiently.

Figure 3: Index sets for diagonal sequences

4.2 “Homogeneous” approximants

In this second class of approximants we consider the following choices for the indices sets:
o E={(i,j): 0<i+j<m~—1},Card(E)= "t
e N={(i,j): 0<i+j<m—I}
e D={(i,j): m—-Il+1<i+j<m-—I1}U{(0,0)}

and we get the approximants

Houan) = Y. asPi@BW) Y. PP ()

12



As in the previous case, we can define sequences in such a way that for computing the m -+ 1th
term we can take advantage of the computations done in the previous steps.
For this, let us consider the following ordering in N?:

(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),---,(n,0),(n—1,1),---,(0,n),- -

e vertical sequences: let us consider the sequence of approximants (H?, )m defined by the
indices set
- D={(i,j): 0<i+j<m} for a fixed m;
— No={(i,j): m+1<i+j<n}u{(0,0)}
— E,=DUN,

In this case the sequence of approximants has a fixed denominator (obtained by solving a
m(m + 1)/2 square system (13)) and the numerator coefficients follow from (6).

Figure 4: Index sets for vertical sequences

n
B

m+l

e horizontal sequences: let us consider now the sequence (H!),,of approximants defined
by the indices set:
- N={(,5): 0<i+j<n} fora fixed n;
— Dp,={(,7): n+1<i4+j5j<m}u{(0,0)}, m>n+1
- FE,=D,UN
We easily see that in this case, the system we have to solve to compute H! 41 can be

obtained from the one corresponding to H? by adding m + 1 rows and columns to the
system and again we can apply the block bordering method.

e diagonal sequences: we will consider a sequence HE (z,y), m > 0 defined by the sets

— Dp={(i,j): 0<i+j<m}
— Np={(,j): (m+1<i+j<2m}u{(0,0)}
— B,={(i,j): 0<i+j<2m}

13



In the denominator we have m' = (m + 2)(m + 1)/2 coefficients, in the numerator (3m +
3)m/2+1 and the sum gives Card(E) — 1. We have then an homogeneous system of m'— 1
equations and m' unknowns which always gives a non trivial solution for the b;; and the
numerator coefficients a;; are obtained from

di; = 0 for (i,5) = (0,0) and m+1<i+j <2m

If we want to compute the m + 1th approximant after having computed the mth one, then
we have to solve a system that, like in the previous section, is obtained from the one of
step m by adding a block of m + 2 rows and columns. It can then be solved efficiently by
the bordering method.

5 Displacement rank for Frobenius-Padé matrices

We will now look for a structure of the matrix of the system giving the denominator coefficients
of the approximants, in order to obtain more efficient algorithms to solve the coefficient problem
in some particular cases. We recall that to obtain the numerator and denominator coefficients of
an approximant associated to the indices sets N, D and E we have to solve the two systems (6)
and (5). If we enumerate the elements in these sets by

{ D = {(kl’ ll)’ (k27 l2)7 T (kn+17 ln+1)}
E\N = {(ilajl)’ (i2aj2)7 Ty (Zna]n)}

and we set by, ,;,., = 1 (we recall that we have an homogeneous system of n 4+ 1 unknowns and
n equations so we fix one unknown), the denominator coefficient matrix is

k1l1 kols L. knly
h’iljl hi1j1 hiljl
hk1l1 hkzlz . hknln
M = 1272 1272 1272 (14)
k1l1 kalo . knly

We will look for a displacement structure for M. We recall that M has a {Y,V }-displacement

structure if
VM - MY =GB with

o G € My, B € Mgy, are the generators;
e rank(VM — MY) = a small compared with the matrix size n.

Fast algorithms to solve Mx = ¢ have been proposed for several types of matrices V and Y
(see for instance [18] and the references inside). Gauss elimination applied to M requires O(n?)
operations. Displacement structure allows to speed up Gauss elimination. In fact the n? entries
of M are completely determined by the entries of the generators {G, B}. Translating the Gauss
elimination procedure into appropriate operations on the generators gives fast algorithms. Let
us now return to our problem and consider the particular case

D={(,7): 0<i,7<m—1} and E\N = D\ {(kns1,ln11)}

14



and use the following ordering for this set:
(0,0),(0,1),(0,2),---,(0,m—1),(1,0),(1,1),---,(1,m—1),------ ,(m—1,0),(m-1,1),---, (m—1,m—1).

The recurrence relations (8) and (9) obtained in section 2.1 that enable us to compute recursively

the quantities hf}, give a linear relation involving three consecutive elements of a row and three

consecutive elements of a column of the matrix (14) like in the following scheme

Kl kl
k-1, i1 k41,0 k-1 iy k41
) kl + ) [ kl a+

Kl Rkl
i+1,5 1,5+1

This suggests that if we left-multiply M by an adequate matrix where we store the coefficients of
recurrence relations (8),(9) (basically the coefficients of the recurrence relations for the orthogonal
system {Py}) , we right-multiply M by the same matrix, and then substract the two we must
obtain a matrix with a lot of zero entries. Let us see this in detail.

We divide the matrix M in m x m blocks each one of size m x m.

Moo Moy, Moy m—1
M= Mw Mu : M1,‘m71 (15)
Mmfl,O Mmfl,l Mmfl,mfl
where each M;; is given by
h{g h{é e hgém—l
R} R
M;; = ! ! ' for 0 <i,j<m-—1
0 i ' m—1
hg,m—l h‘g,m—l o g,m—l
We set
P fo m
00 F, 0 - ay B
F= y with Fy = a;
0 -~ 0 F e Yme
Om—2 ﬂm—l
Let us compute the matrix
FoMoo — Moo Fo FoMor — Mo1 Fy e FoMom—1 — Mom-1Fo
FM—-MF = : : : :
FoMpm—10 — Mpm—10Fy FoMm_11 — Mpm_11Fy -+ FoMp_1m—1 — Mpm—1,m-1Fo

Let us compute ROO = FOMOO — MO()F().
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{ e;+1FOM00€j+1 = 04— éhg z. 1 + ﬁzhgz. + ’Yzbl-lhg .z—l—lﬁ Z;] - 17 e, — 2
el Moo Foej i = kol " + Bihgl + ajhg! T, , J m—2

and using relation (9) we immedlately get

. frnd ST,

el (FoMoo — Moo Fo)e; =0 i,5=2,-++,m—1
o i—=1
—forj=1,---,m—1 we get
e1 Rooej = 50]10’] = 71h0’] — (V4= 1h0’J - Bi- 1h0’] - Oéj—lh%) =0
— for j = m and using (9) we get:
el Rooem = Bohgy" '+ 71hol" " = (Ym-1hoy" ' + Bm-1hoy" ') = Qm-1hy'
ei=m
e Ro0ej11 = (- 2h —o + B lhOm D) — () hO’J 11 +ﬂ]h0] -1 +%h3’3n+11) =

:{—%hgﬁn‘l B =1, m—1
e j=m
For i =2,--- ;m — 1 and again by using (9) we get
€; T Rooern = a; 2h0m 1+ﬁz 1h82”11+%h°;m ! — (Ym— 1h0m 2+ﬁm 1h0m 1+C¥m 1}710Z )+
Famothy ) = Qo thYT
e j=1
Fori=2,---,m — 1 we obtain
— e FoMooer = aiohg)y  + Biahgl + vic1hgy
— ¢ Moo Foer = Bohg_; + OéohoZ 1
and, as vy = 0, by using (9) we get

T . .
€; R00€1 =0 1

2, - ,m—1
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So the matrix Ry is given by

0o .- 0 i1 hOT
0o .- 0 i1 hO
R()() = e
0 - 0 Y P
_thggn e _’Ymhfg’r;n_Q am,1h8%,1 - f)/mh’g’rzn_l

From the structure of each block My, ((Mkl)ij = hﬁgz) we get, applying (9),

0 e 0 Oszlh%
0 e 0 am,lh%‘
Rkl = FOMk‘l - Mk)lFO =
0 e 0 Ozm_lhg’rfan
_'thgcom T —thmd O‘m—lhfcr,nm—l - %nhmfl

If we summarize all together we get for the matrix R = FM — MF the following structure

( X X X\
X X X

X X X X X X X <+ X X X X X X X

X X X

X X X

X X X

X X X X X X X -+ X X X X X X X

X X X

X X X

\X X == X X X X X === X X X X X === - X X)

where we represent by a X the non zero quantities which are in the colums and rows m, 2m, - - -,
m X m. More precisely we get FM — MF = R € M(y2)x(m2) With

0 if i#km and j #Im
R — Q1A if i=km+n and j=Im
(R)ij = — Yl if i=Fkm and j=Im+n, n=1--- m—1
Ofm—lh;:,nmq — quhic’?z;ll if i=km and j=1Im
for k,l =1,---,m). It is easy to see that each block m x m of R can be writen as a product of
the two following matrices of rank two:
0 hggg
m
0 hlcl B0 . hl,m—2 hl,m—l
Ry = GuBy, with Gy = : : and By, = ( km km ke >
. 0o --- 0 Q1
0 hk,m—2
—Tm hgcr,nm—l
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Let us multiply in the left and in the right the matrix R by two permutation matrices P; and
P; in order to group all non-zero columns on the right hand side and all the non-zero rows in the
bottom of the matrix. We obtain

4T i
PlRPQ = ( _$ IS amUl ) with T € M((m_l)m)xm,S S me((m—l)m) and U € mem
If we set
Mgy e T W g
Uo = : : : U = : : :
W et B ime ot 0 Rt
then

U=an-1Uy — vl

If we define the matrices

B 0 T (S U
G_<—’Ym1 Uo) andB-(0 am11> then

=( T\ _ (0 omaT)_
GB = ( _’YmS _/YmUl +O~’m—1UO ) - ( _erS U ) = PlRP2

So
R =G'B with G' = PI'G € My2y(om), B' = BPY € Mm)xm?

Finally we get
FM - MF =G'B.

which means that M has a Hessenberg displacement structure with displacement rank 2m.
Similar results can be obtain for more general index sets. In fact, we can show the following
result:

Theorem 1 Let us consider the multivariate Frobenius-Padé approximant for

defined from the indez sets
D=['i'+m-1]x[j,57'+m—1] and E\N =[i*,i* + m — 1] x [j*,j*+m — 1]

and let M be the m? x m? matriz of the system to solve to obtain the denominator coefficients.
Then M has an Hessenberg displacement rank structure with rank 4m.
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Proof:

the proof involves rather long computations using the same techniques as in the previous case.
We can summarize these computations as follows.

Let M be the denominator matrix of size m? x m? divides into m? square blocks of size m
like in (15). We define the tridiagonal matrix of size m x m

Bi v+
a; B
by = Qjy1

Yi+m—1
Qj1m—2 ﬂj—l—m—l

Using relations (9) we obtain

X X e X X

x 0 --- 0 x
FyMij — MiygFyp = ¢+ ¢ S I

x 0 --- 0 X

X X e X X

a matrix with nonzero entries only in the first and last rows and columns. If we define
Fyr = ding(Fy) € Mooz, Fy = ding(Fy) € M
it can be shown that

P(FjM — MF;)Q = < g, 5 ) where

e P () are permutation matrices;
o T = T’- X Ziy  T' € Mmm-2)x@m)

ZJI'I :dlag(’)/j’a T U Qlpm—1s 7 Olj'+m71) € Mamxam;
o S=-Z; x5, 5 €Mpomxmm-2),

Z;* :diag(ozj*—l, Crc Ly Qg1 Vi, 7r}/j*+m) € MZWXQ'”L
o U= U()ZJ,-/ — Z;*Ul S M(Qm)x(Qm)
o Up, Uy, S',T" are matrices with entries hj;.

Finally if we define

0o 7 s U
G = < —Z;* Us ) € M(4m)><m2 and B = ( 0 —ZJ’-, ) € M(m2)><4m

we easily obtain
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which gives for M a Hessenberg displacement structure with displacement rank 4m.

We conclude that for the general class of multivariate Frobenius-Padé approximants corre-
sponding to square index sets D and E\N the denominator coefficient matrix M is a polynomial
Hankel like matrix [20] because F;- and F; are Hessenberg (more precisely, tridiagonal).

Fast algorithms (Levinson type algorithms, that is, that produce a triangular factorization
of the inverse of the matrix) for solving systems with Hessenberg displacement structure have
been proposed in [15]. In [17] a Schur type algorithm has been proposed for recursive trian-
gular factorization of general polynomial Hankel-like matrices, that is, matrices with a {Y,V'}
-displacement structure defined via Hessenberg matrices V and Y. That algorithm can be applied
to our matrices leading to a fast solution of the system. In fact, its complexity is given in [17]:

C(n) = O(M(n)n +n?)

for a n x n matrix, where M (n) is the cost of a multiplication of Y,V by a vector. In our case
the complexity will be of order m* instead of m%. The development of such algorithms with
application to the computation of multivariate Frobenius Padé approximants is under study.

6 Mixed Frobenius-Padé approximants

6.1 Definitions

We will now generalize to the Frobenius-Padé case the definition of nested multivariate Padé
approximants given in [13] for two variable functions given by a power series expansion. This
approach consists in applying the Padé approximation with respect to y to the coefficients of
the Padé approximation with respect to z. This leads to algorithms involving univariate ap-
proximation ( and so small systems) and faster in terms of computational costs (FFT methods
can be used) when compared to other generalizations of Padé approximants to multivariate case.
Convergence results for these approximants were given in [14].

As in the previous sections we suppose that f(z,y) is a function given by its expansion in an
orthogonal system { Py} and we write it in the following way:

The approximant is constructed in two steps.
First step: we consider f as a function of z (and y will be considered as a parameter)

We want to compute two polynomials Q,(z) and P,(x) of the form

{Qy(x) = 1425 by’
Py(z) = Yiloai(y)bi(z)

20



such that:
Qy(z)fy(z) — Py(z) = O(Patm+1(2)),

which means that the first n+m+ 1 coefficients in the expansion in the orthogonal system { Py}
vanish. This is a kind of Frobenius-Padé approximant for the one variable function f,(z) : the
only difference is that we express the denominator in the powers of x and not in the orthogonal
system { P} in order to simplify the computations.

Replacing the expressions of Q,(x) and P,(x) we get:

Z fiy)Pj(z) + Z Z bi(y) fi(y)a' Py(x) — Z ai(y) Fi(z) = O(Ppymi1(2)).
We set - -
Y [P =Y [)Pi), (16)
and finally

3 (fj(y) + Zbi(y)f}(y)> Pj(@) = 2 ai(y) Pi(w) = O(Prim1(2))-

§=0 i=1
This leads to the following system:

m

D WAW+fiy) = 0 j=n+1,---,n+m (17)
i=1
i)+ fily) = ai(y) §=0,---,n (18)
i=1

Second step: we replace the unknown functions a;(y), j=0,---,nand bi(y), i=0,---,m

( solution of our problem) by some polynomials that approach them in the following way

e (a)fori=1,---,m y
bi(y) =Y by
k=0

We will have m(M—+1) coeflicients to compute and we can choose them in order to annihilate
the first M + 1 coefficients of the expansion in the orthogonal system { Py} of each equation
in (17). We need to obtain the expansion in the orthogonal system {P;} of the left hand
side of (17), that is for the functions f}(y). We obtain the following result:

Proposition 1 Let f(z,y) = 220 > 272 fijPi(x) Pj(y) be a two variable function given by
its expansion in an orthogonal system {Py} satisfying the recurrence relation

.Z'Pk(x) = AkPk+1(a:) + kak(x) + Ckpkfl(.’L'), (19)
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and let us set as previously,
f,@) =D HWPi),  fiy) =) fixPey).
§=0 k=0
1. The polynomials x'Py(x) can be expressed in the { P} basis in the following way
2’ Py(z) = ai,k+ipk+i(x) + -+ Pe(z) -+ a}.c,kfipk*i(x)’ (20)

where the coefficients afcj can be computed by a recurrence on the upper index ¢ in the
following way:

i _ -1
Opkti = Ak+z—1%,kl+z'—1
i _ R =
Opk—i = Ck—@+l_a1f,k—i+1 - - - (21)
% _ . i— N ) i— o . -
Qi = Aj_lak,j_l + B]akj + C]Hak,jﬂ, k—i+1<j<k+i-1

2. Let us consider the expansion of ' f,(z) in the orthogonal system {P},

' f,(z) = Zf;(y)Pj(x)-

J=0

Then the expansion of the functions fj(y) in the system { Py} is given by

00 k+i
FW) =" FiPey) with fi, =) farod;
k=0 n=k—1i

Proof:

1. this can be easily proved by induction using (19).

2. we have z'f,(z) = ij(y)min(x). From (20)we see that the contribution to the
=0

coefficient of Py(x) comes from the terms x'Py_;(x), - -+ , 2°Py,:(z)and so
ki ki
B0~ 3 5= 3 () s~
j=k—i j=k—i \1>0

= Z (Z fjla’;’k> Py(y)

>0 \j=k—i

and the result follows.
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This proposition enables us to obtain the system to be solved in order to compute the
coefficients by; of the denominator polynomial. It is obtained from

fony) fiay) - f) b1 (y) far1 ()
o) Taioly) - fla(v) bay) | _ | frrew)
@) o) o Fn) )\ be) From(®)

equating the coefficients of the first M + 1 terms of each equation.
e (b)forj=0,---,n

a;(y) = Z a;kPr(y)

and so we will have to compute (n+1)(/N +1) coefficients (a;;) that will be chosen in order
to equalize the first N + 1 coefficients of the expansion in {Py} of the right and left hand
side of each equation of (18). The expansion of the left hand side in the orthogonal system
{P:} is obtained as in (a).

(a) implies the resolution of a linear system of m(M + 1) equations and from (b) we obtain
directly the coefficients a;;. We will call Mixed Frobenius-Padé approximant the rational
approximant

Riz,y) = 2@ G { Pa,y) = YooY, axPi(2)P(y)

~ Q(z,y) Qz,y) = 1+ 27, Yol b’y
satisfying
Qz,9)f(z,y) = Plx,y)= > dyPi(z)P;(y)
(4,)e(N2\E)
with

E={(,j):( 0<i<nand0<j<N)or(n+1<i<n+mand0<j<M)}

The shape and the cardinal of the set of indices E depends on the number of the known
coefficients of the series f(x,y). If we want a symmetry with respect to the two variables x and
y it is sufficient to take N = M = n 4+ m. But in this case we don’t have symmetry in the
approximant - the same powers of z and y. For this we need to take N = n and M = m, and
we will privilege the x variable. This can be a very interesting property of these approximants:
we can expect to obtain good approximations when the function has an unsymmetric set of
singularities because of the different nature of the variables

We remark that we can do the same type of construction beginning with the y variable.

As we have seen, in the case of a general family of orthogonal polynomials we need a large
amount of computations to construct the entries of the linear system that give the coefficients of
the approximant, and it seems difficult to obtain a structure for this matrix. We will now consider
a particular case — the family of Tchebychev polynomials — for which the previous computations
will be very simple allowing us to obtain a structure for the coeficient matrix.
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6.2 A class of Padé-Tchebyshev approximants in two variables

Let us now consider a function f(z,y) given by

=Y s Z fity

2,j>0

where {7}} is the system of Tchebyshev polynomials of first kind.
We will proceed as in the previous section to construct the mixed Padé-Tchebyschev
approximant of f(z,y) following the two steps.

First step: we construct a linearized Padé-Tchebyshev approximant to the function of z, f,(z) =
f(z,y), that is, we construct the two polynomials @,(z) and P,(z) of the form:

(@6 = Zrhre)
Py(z) = Xioai(y)Ti(z)
such that
Qy(@)fy(z) — By(2) = O(Tnim41(2)).
We recall a fondamental property of the Tchebyshev polynomials:
1
with the notation T";(z) = T;(z) for all i > 0.

T (2)Ti(x) =

Using (22) we get:

o) )

= %Zbk (Z fivk ) + Z fire(y Z (fir(y) +fz'+k(y))Tz‘($)> =

i=—k i=n-+1

-1y <Zbk(y)(fz 0) + fiinly )) Ti(z)+
N

lc_O

— % Z (Z bi(y) (fizk(y) + fz’-l—k(y)) Ti(z)+

Zfz +Zfz+k ) + fo(y)Te(x)

= (Z b ) i) + fz-+k(y>>> 1) + 35000) 00 Tile) + 5 D b)) i)

Let us suppose that m < n. Then
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e the by (y) are solution of the system:

m

D be(y) (fiokW) + fisr()) =0, i=n+1,-- ,n+m. (23)

We consider the Tchebyshev expansion of the functions b;(y),

By)=| : | = BTy with B, = 5’ , (24)

and we denote by H™(y) the following m x m matrix

fn(y) + fn+2(y) fn—l(y) + fn+3(y) T fn-f—l—m(y) + fn+1+m(y)
N T R

Jotm—1(¥) + fasmi1(¥)  farm—2(W) + fagmia(y) - Jo(y) + friom(y)

Then the b;(y) are the solution of the system
H™(y)B(y) = F(y) with F(y)" =2 ( fasr1(y) - fam(y) ). (25)

e the ay(y) are given by:

{ ao(y) = 53 hobe(v)fuly) o
ai(y) = 3[fo@biy) + ko bk(y) (fire() + fik®)] i=1,---,n °

Second step: we replace the fonctions a;(y) and b;(y) by their approximation by polynomials in
the Tchebyshev basis, a} (y) and b (y).

Computation of the b} (y).

In order to obtain the coefficients b;; we are going to replace B by a polynomial B* of degree
m (that is, truncate the expansion in (24) at order m),

b1 (y) m
Byy=| : |=> BTy
b7, () i=0

25



The expansion of the right hand side of (25) in the Tchebyshev system becomes
H™(y)B*(y) =

_ (f; Hﬂ;-(y)) (f}B;J}@)) -y (ij HiB;fn(ym(y)) -

where, for all i > 0, H; € M,xm is the i-th coefficient of the expansion of H™(y) in Tchebyshev
series.

b Zzo Z;n:o HZmB;TH-J(y) = Z;'nzo Z/Zij Hk—jB;Tk(y) =

i (Z Hk—jB;> Ti(y)

b Zfio Z;n:() HiB;Tifj (y) = ZT:O Zl;“;—j Hk+jB;Tk(y) =
= i% 22—17] HiiBiTe(y) + 325700 2 heo Hir B Ti(y) =
YT S H BT + 5 (S0 Hes ) Tul) =
= SO S Hy BT (y) + 5 (S HeesB; ) Tily) =
= S (S H 0B Taly) + 55520 (S Hiei By ) Te()

Regrouping the coefficients corresponding to the same index k in the expansion in {7} and
replacing Hy and Fj by %HO and %FO respectively, we finally obtain the linear system:

Yo HiwB; + 3 g Hjsx By = Fy, k=1,---,m

(with the convention H; = H_;), which corresponds to equating the coefficients of terms up to
order m in both sides of (25).
We have then shown the following result:

Theorem 2 Let f be a two variable function given by its expansion in a Tchebyshev series
N WXt Zfa
1=0 j5=0

We define mixed Padé-Tchebyshev approximant by

[ Play) = b)) with B(y) = Yo b Th(y)
PIchenq(@y) = Plz.y)/Qle.y) with { Qo) — S a ()T (a) with ot (y) — S ot Tyly)

and the coefficients defined by:
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e the denominator coefficients b};, regrouped in a vector B = (Bg,B},---,B:)7, B; =

157

(0F1, -+, 05,07, 5 =0,--- ,m, are the solution of the (m(m + 1)) x (m(m + 1)) system.:
Z(ijk'i_Hj—{—k)B;:Fk k=0,----m < HB=F (27)
=0

with

H, H -~ H, H, H, --- H,
7_[ _ H:1 PZIO . . Hml + }I:'l P:IQ . e Hm+1 _ %1 + ’H2
H—m H—m+1 HO Hm Hm+1 H2m

with Hy a block Toeplitz matriz and Ho a block Hankel matriz;

e the numerator is given by

ay) = bW ™ W)
ay) = LAY + ot (K00 + 17 w)] i=1-n

with f;m) (y) = > pey fixTk(y) the partial sums of order m.

Then the polynomials P(x,y) and Q(z,y) satisfy:

i,j>0
with
T’i_j:OfOTi:O,..- ,n+m and']:(]’m

This proposition enables us to propose fast algorithms to compute the denominator coeffi-
cients. These will be based on the fast inversion algorithms of Toeplitz-plus-Hankel matrices
developped in [16]. The formulae and algorithms presented there can be generalized to the block
case, that is, A = T+ H, where T is block Toeplitz and H is block Hankel, and it is easy to show
that the solution of the [m(m-+1)] x [m(m+1)] system (27) can be achieved with a complexity of
O (m?(m + 1)?) (instead of O(m?®) using Gauss elimination). Implementation of these algorithms
and numerical examples will be presented in a future work.

6.3 Padé-Tchebyshev approximants of "tensor product type”

Let us now give a second definition for Padé-Tchebyshev approximants which we call of tensor
type because the denominator polynomial is chosen to be a tensor product of a polynomail of
degree m in z by a polynomial of degree m in y. Let us consider the polynomials

{ Qu(z,y) = 2o 2550 bi L) Ti(y)
Pi(z,y) = Z(z’,j)eN a;;Ti(z)T;(y) with N C N?
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We begin by obtaining the expansion of @),,f in a Tchebyshev series. After some simple but
rather long computations using the property (22) we can obtain:

Qm(z,y)f(z (ZZ%T ) (ZZ]”U ) -

=0 j=0 1=0 j=0
= ZZTT (ZZ z]fr 1,j— s) + ZZT’I’(‘I)TS(Q) (Zzbijfri,j+s> +
r=0 s=0 =0 7=0 r=0 s=1 =0 7=0
+ ZZTr(x)Ts(y) (Zzbzyfr—f—zs ]) + ZZTT'(:E)TS(:U) (Zzbijfr—l—i,j—l—s)
r=1 s=0 i=0 j=0 r=1 s=1 i=0 j=0
(28)

We want to compute a rational approximant P, (z,y)/Qm(x,y) to f(x,y) in such a way that:

Rm(xay) :Qm(may)f(x’y)_Pﬂ(x1y) = Z TZ]E(Z‘)CTJ(Z/)

(4,J)EN2\E

where E in a set of pairs (7, 7) for which the corresponding coefficients in the error term are 0.
We write E = N U D, where N and D are disjoint sets, and, as before, N corresponds to the set
of indices appearing in the numerator polynomial and D to the set of indices appearing in the
denominator. Different types of approximants can be obtained by choosing different sets. In our
case we have

D={(,j): 0<i<m0<j<m}

and we will consider the particular choice for NV:

N={G7: m+1<i<2m0<j<m—i}U{(i,j): m+1<;j<.2m0<i<m—j}

Figure 5: Numerator and denominator index sets

We will compute the coefficients of the approximant in the following way:
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e we begin by computing the coefficients of the denominator (b;;) by
eij=0for (i,j) €D, e;j=0 i=0,---,m, j=0,---,m

This corresponds to solving a linear system: with the convention f ; ; = fi; and setting
H;; the following block of size (m + 1),

fij fi+1,j T fi+m,j
fi;j-l—l fi+1,j+1 v fz’—l—m,j-l—l
fz’,j—}—m fi+1,j—|—m e fi+m,j+m

from (28) we immediately obtain the coefficient matrix # of the system we have to solve
to get the (b;;):

H = (Hij)is—0 With Hyy=Hjj+ H ;j+ H;;+H_;_;.

This matrix is easier to construct than in the general case considered in paragraph 6.1,
but not so simple that in the previous case (section 6.2) where we were able to give for the
matrix a structure of block Toeplitz-plus-Hankel.

o the coefficients (a;;) are immediately obtained from the (b;;) by setting
Q35 = €45 for (Z,]) eN
( as seen before the e;; are computed from the coefficients of the series and from the b;;)

So the principal part of the computational effort corresponds to the computation of the denom-
inator coefficients.

7 Conclusions and future work.

We have proposed different types of multivariate rational approximants for functions given by
their orthogonal expansions, based on different generalizations of the concept of Padé approx-
imation to multivariate series. We were mainly interested in proposing algorithms for their
computation: recursive algorithms for the computation of the values at a given point of par-
ticular sequences of approximants and fast algorithms based on a displacement structure of the
matrix giving the denominator coefficients. We are now going to implement these algorithms in
order to show their good numerical properties.

The convergence properties of these approximants are under study. In the case of one variable,
the Frobenius-Padé approximants gave very good numerical results and a great acceleration of
convergence has been shown in [22] for some classes of functions, particularly near the singularities
of these functions. So we can expect that these good properties will be generalized to the
multivariate case. We will try to obtain acceleration results, that is, from some properties
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on the function f or of the sequences (f;;), we will show that the sequence of multivariate
Frobenius-Padé approximants converge faster than the corresponding sequences of partial sums,

Sn(2,9) = X pen fili(2) P (y).
This will be the object of a forthcoming paper.
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