Least Squares Orthogonal Polynomials and some applications

Claude Brezinski and Ana C. Matos
Laboratoire d’Analyse Numérique et d’Optimisation
Université des Sciences et Techniques de Lille Flandres-Artois
59655 Villeneuve d’Ascq cedex - France

e-mail:brezinsk@ano.univ-lillel.fr, matos@ano.univ-lillel.fr

Keywords: orthogonal polynomials, least squares, Padé-type approximation, quadrature methods.

1 Introduction

Let ¢ be the linear functional on the space of complex polynomials defined by

c(z') = ¢eC, i=0,1,..
— 0, i < 0.

It is said that {Py} forms a family of (formal) orthogonal polynomials with respect to c if V&
— Py has the exact degree k,
— (2" P(z)) =0 for i=0,---,k— 1.

Such a family exists if, V&, the Hankel determinant

Co ¢t - Ck—1
(0) 4] Cy - Ck
H, W~ =
Ck—1 Cr -+ C2k—2

is different from zero. Such polynomials enjoy most of the properties of the usual orthogonal polynomials,
when the functional c is given by

c(z') = /ab e da(z),

where « is bounded and non decreasing in [a,b] (see [1] for these properties). In this paper we study
the polynomials Ry such that

m .

> _le(a' By(x))])?

=0
is minimized, where m is an integer strictly greater than k — 1 (since, for m = k — 1, we recover the
previous formal orthogonal polynomials) and which can possibly depend on k. They will be called
least squares (formal) orthogonal polynomials. They depend on the value of m but for simplicity this
dependence will not be indicated in our notations .

Such polynomials arise naturally in problems of Padé approximation for power series with perturbed

coefficients, and in Gaussian quadrature (as described in the last section). Some properties of these
polynomials are derived, together with a recursive scheme for their computation.



2 Existence and uniqueness

Since the polynomials Ry will be defined apart from a multiplying factor, and since it is asked that the
degree of Ry is exactly k we shall write

Ri(x) =bo+ byz + -4 bp_y2™ 1 + bpa®  with by = 1.

We set .
®(bo, -+, bp-1) = Y_[e(a'Ry(2))]?
=0
and we seek for the values of by, - - -, by_; that minimize this quantity. That is, such that
0®/0b;=0for j=0,---,k—1. (1)
Setting ¥, = (€n, -+, Cnym) ! this system can be written
bo(v0,7i) + -+ be—1(Ve-1,7) = —(ve, %), J=0,--- k=1 (2)

Thus Ry exists and is unique if and only if the matrix Ay of this system is non singular. Setting
X = (1,z,---,2" ') and calling the right hand side of the preceding system v we see that

Ay
X ok
If we set
CO .« e .« s Ck—l
B, =
Cm . e .« s Cm—l—k—l

then A = B,CTB}C , Y = BkT'yk and we recover the usual solution of a system of linear equations in the
least squares sense.

3 Computation

The polynomials Ry can be recursively computed by inverting the matrix Ay of the above system (2)
by the bordering method, see [5]. This method is as follows. Set

A
wn= (00 )

where uy is a column vector, vy a row vector and aj a scalar. We then have

A1 A,;1+A;11ukﬁ;11va,;1 —A;lulkﬁk—l
o —By, vk Ay P

-1
where By = ar — v A} ug.



Instead of choosing the normalization by = 1 we could impose the condition bg = 1. In that case we
have the system

by (Y1, %5) + A b (v 7)) = —(10,75)s G =1,k (3)

and the bordering method can be used not only for computing the inverses of the matrices of the system
recursively but also for obtaining its solution, since the new right hand side contains the previous one.
Let A, be the matrix of (3) and d, be the right hand side. We then have

/ Ay, / d,
s () =)

u;c = ((7k+17 71)7 ) (7k+17 PYk))T ;
v = (v, Ye41)s o (Vs YE41)) 5
ap = (Vrt1, Vot1);

;c = ((v0,71)5 5 (70, ’Yk))T ;

= (70, Vk+1)-

with

~o -

TR,

! ! ! T
Setting z;, = (bl, - -,bk) we have

Z;c = Zk + 7‘][1“ Yl _Ak_luk
+ 0 B, 1
with ﬁ;c = a}c — 'U;A;_lu;c.

Of course the bordering method can only be used if g ( or ﬁ; in the second case) is different from
zero. If it is not the case, instead of adding one new row and one new column to the system it is possible
to add several rows and columns until a non singular 35 ( which is now a square matrix) has been found

(see [4] and [3]).

4 Location of the zeros

We return to the normalization by, = 1. As

: de(x' Ry (x
c(z'Ry(2)) = boc; + - - + bgeipy and % = Citj,
j
from 1 we obtain .
c(¢'Re(z))eip; =0for j=0,--- k — 1. (4)
=0

This relation can be written as

c(Ri(z)(c; + iz + -+ cpme™)) =0, i=0,---,k—1.

Let us now assume that

b
ci:/ z'da(z), i=0,1,---



with a bounded and nondecreasing in [a,b] . We have

m

b .
Gt Cip1 + - Cipma” = Z[/ yzﬂda(y)] v

=0

= /abyi (i::x]y]) do
o

w(x, i) = ¢+ i@+ -+ Cipma™

Set

Thus

and it follows that
c(Ry(x /Rk w(z,i)da(z)=0 for 1=0,---,k—1

which shows that the polynomial Ry is biorthogonal in the sense of [7, 8]. Let us now study the location
of the zeros of Rj. For that purpose we shall apply Theorem 3 of [7], also given as Theorem 5 of [8]. Set

00 (a, 1) = w(z, p)da(x)
and )
Te(p) :/ 2hd®(z, 1), k=01,
In our case, p takes the values p; = ¢ — 1, Z: 1,2,--- Thus
det [I;(p;)] = det [(7j-1,7)]

and the condition of regularity of [7, 8] is equivalent to our condition for the existence and uniqueness
of Ry. According to [7, 8], we now have to look at the interpolation property of w. We have

w(zg, ;) = (vi-1, Xs)

where X; = (1,2;,---,2™)7, the z;’s being arbitrary distinct points in [a, b], and thus
(’Yo,X1) (717X1) (’Yk—17X1)
(70‘7'}'(2) (71‘,‘)'(2) (’Yk—'1‘7.X2) — det(X,Ty)
(vos X&) (1, Xk) - (vk—1, Xk)
X7
with A} = : and [y = (y0,- -, Yk-1)-
xt

The interpolation property holds if and only if det(X;I'x) # 0, that is, if and only if the matrix A,
has rank k. Thus, using thre theorem of [7, 8], we have proved the following result

Theorem 1 If Ay is reqular and if XUy has rank k, then Ry exists and has k distinct zeros in [a, b].

Remark: When 0 < a < b, it can be proved that det(Xx['x) # 0 (see [2] for the details).



5 Applications

Our first application deals with Padé-type approximation. Let vy be an arbitrary polynomial of degree
k and let wg(t) = ag + -+ -+ ax_1t*~ be defined by

a; = c(a” " lop(z)) =0,k — 1.
We set
Op(t) = tPor(t™Y) and @ (t) = t* " Lwp(t7h).
Let f be the formal power series
= Z Citi.
=0
Then it can be proved that

F(t) = (1) /5(t) = O(t") (= 0).

The rational function @(t)/0x(t) is called a Padé-type approximant of f and it is denoted by (k —
1/k)¢(t), [1]. Moreover it can also be proved that

oy - DL T ()

Vg (t ’ﬁk(t) 1—at
k

_ t 1_|_ t_l_ T k—ltk—l_l_ ‘rktk ( )
BEON ! v ) ) )

f(t)f)k(t) — wk io: x vk

~—

That is

Thus if the polynomial vg, which is called the generating polynomial of (k — 1/k), satisfies
c(z'vp(z)) =0 for i=0,---, k-1

then
J(8) = @ (t)/51(t) = O(%F).

In this case vy is the formal orthogonal polynomial P, of degree k with respect to ¢ and wy(t)/0x(t) is
the usual Padé approximant [k — 1/k] of f.

As explained in [10], Padé approximants can be quite sensitive to perturbations on the coefficients ¢;
of the series f. Hence the idea arises to take as vy the least squares orthogonal polynomial Ry of degree
k instead of the usual orthogonal polynomial, an idea which in fact motivated our study. Of course
such a choice decreases the degree of approximation, since the approximants obtained are only of the
Padé-type, but it can increase the stability properties of the approximants and also their precision since
Yoo [c(xivk(x))]Q is minimized by the choice vy = Rj. We give a numerical example that illustrates
this fact.

We consider the function



and we assume that we know the coeflicients ¢; with a certain precision. For example, we know approx-
imate values ¢’ such that
|CZ'_C;'K |§ 10_87 220717

In the following table we compare the number of exact figures given by the Padé approximant with
those of the least squares Padé-type approximant, both computed with the same number of coefficients
c?. We can see that the least squares Padé-type approximant has better stability properties.

z || Padé approximant | LS Padé-type approximant

[7/8] [6/7] (m =8)

1.5 6.7 7.7
1.9 5.7 7.0
2.1 5.2 6.7

Another application concerns quadrature methods. We have already shown that if the functional ¢
is given by

b
CiI/$ZdQ($), 1=0,1,--- 0<a<b

with @ bounded and nondecreasing, then the corresponding least squares orthogonal polynomial of de-
gree k, Ry, has k distinct zeros in [a, b]. We can then construct quadrature formulae of the interpolatory

type.
If Ay, Ag, - -+, Ag are the zeros of Ry, we can approximate the integral

= /abf(:p)da(:p)

I = AL f(M) + Aaf(A2) + -+ A f( M) (5)

where

@) Tl )
AZ_/Q e, 71'(:6)_]1;[1(30 A,).

This corresponds to replacing the function f by its interpolating polynomial at the knots Ay, -, Ag.
The truncation error of (5) is given by

b
[—I,=Ep= / FIM, -3 Ay 2] Ri(2)da(a).

Expanding the divided difference we see

f[Alv"'vAkv'r] -
k
= > S Ak Mgty Akl (8 = Apg) - (2 = Apgict)
=1
+ f[/\la c Ak, /\k+17 T 'a/\k+m+17$]($ - /\k+1) s (fC - /\k+m+1)



for Agy1,*, Aitm41 any points in the domain of definition Dy of f. If 0 € Dy, then we can choose

Akl = App2 = - = Apymgr = 0.
Setting
M; = f[A, ) Ak
we get,
m+1
S Ak a] = )0 Mia ™ 4w AL Ak, @)
i=1

and hence, for the truncation error

m b
Ep =) My (/ Ri(z)z'da(z ) /fM, Netmat, 2] Ry (2)da(x)
=0 a

with Z (/ Yatda(z ))2 minimised.

Moreover, if f € C**™+1([a,b]) and, since 2™*! is positive over [a, b], we obtain

b
/ S Mgt 2]z T Ry () da(z) =

Cm m
- WMR’“(A)JC(H (), A€ la,b]

and, for the error,

+)! kE+m+1)!
"72’6[‘175] ’L'IO,--',’I’II; /\7"76[@75]-

We remark that in the case where m = k — 1, Ry is the orthogonal polynomial with respect to the
functional ¢ and so formula (5) corresponds to a Gaussian quadrature formula. An advantage of the
quadrature formulae (5) is that they are less sensitive to perturbations on the sequence of moments ¢;,
as is shown in the following numerical example. Such a case can arise in some applications where the
formula giving the moments ¢; is sensitive to rounding errors, see [11] for example.

1 1
Ciz/JUZdJC:.
0 1+ 1

and perturb the coeflicients in the following way

i@ ZM 4 (/ Ri(z)a'da( >)+(7cm+1 Ry (0) S+ () (6)

Consider the functional ¢ defined by

*

il & il «

0 | 1.00000011 || 6 | 0.14285700
11 0.50000029 | 7 | 0.12500000
21 0.33333340 || 8 | 0.11111109
3| 0.25000101 {| 9 | 0.10000000
4 | 0.20000070 (| 10 | 0.09090899
5 | 0.16666600 (| 11 | 0.08333300




We can construct from these coefficients the least squares orthogonal polynomials and the corre-
sponding quadrature formulae (5). The precision of the numerical approximations of I = fol flz)dz is
given in the following table

f(z) k=5 m=4 k=5 m=6
Gaussian quad | least squares quad

1/(z+05) || -22%107° —6.2% 107°

1/(z+0.3) || -2.1%107* —1.2%107°

We can obtain other applications from the following generalization. Instead of minimizing 3" [c(z' R}, (1‘))]2
we can introduce weights and minimize

m

. 2
O™ (bg, - -+, bp—1) = Zpi {C(JCZR;(JC))}
=0
with p; > 0, ¢ =0,---, m. If we choose the inner product

m
(%', ’Yj)* = Zpk0i+k0j+k

k=0
the solution of this problem can be computed as in the previous case and all the properties of the
polynomials are still true. It can be seen, from numerical examples, that if the sequence of moments
¢; has a decreasing precision, we can expect that the least squares Padé-type approximants constructed
with a decreasing sequence of weights will give a better result. In the same way, for the quadrature
formulae (5), from the expression (6) of the truncation error and the knowledge of the magnitude of the
derivatives, we can reduce this error by choosing appropriate weights. Some other possible applications
of least squares orthogonal polynomials will be studied in the future.
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