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Abstract

The aim of this paper is to give some convergence results for some sequences of generalized Padé type
approximants. We will consider two types of interpolatory functionals: one corresponding to Lagrange and
Hermite interpolation and other corresponding to orthogonal expansions. For these two cases we will give
sufficient conditions on the generating function G(z,¢) and on the linear functional ¢ in order to obtain
the convergence of the corresponding sequence of generalized Padé type approximants. Some examples
are given.

1 Definition of the Generalized Padé-Type Approximants.

Let f be an analytic function defined on a set A C € by the series of functions
f(t) = Zcigi(t), te A (1)
=0

Let G/(z,1) be a generating function of the family {g;(¢)};, that is, G(z,1) = 322 €;2%g;(t), with €; # 0. In
applications, G(z,t) could be taken to be a standard generating function whose coefficients e; are specified:
see Section 3.1.3.

We define the linear functional ¢ by its moments in the following way:

cleg’)=¢; & e(a)= L =d;, i€N. (2)
€;

Then formally we have f(t) = ¢(G(z,t)), t € A, where the linear form ¢ acts on the variable z (this will
be the case along all the paper).

The generalized Padé-type approximant of order n of the series f, (n)f(¢) — or in short GPTA — is
defined in the following way [2]:



e we fix t € A and consider the polynomial P,(z;t) of degree less or equal n in & which satisfies the
following interpolation conditions:

Li(Pu(w;t)) = Li(G(z, 1)) i=0,---,m, (3)
where the L; are linear functionals acting on the variable z;

e we replace G by its approximation P, and we construct the approximant
P y Pp Pp
(n)f(t) = e(Pp(z;t)) nmneN.

It’s easy to see that this approximant satisfies the following order condition: the expansion of (n)s(¢) in
terms of the family {g;(¢)} coincides with the one of f(¢) up to the order n, that is

f) - =3 bigi(o).

i=n+1

A similar generalization has been proposed for the Padé approximants of a class of functions having
some integral representation and corresponds to the Baker-Gammel approximants (see, for instance [1]).

The existence and unicity conditions for the GPTA have been studied in [2] and a program in Math-
ematica for the formal recursive computation of these approximants has been given in [4]. The good
numerical results obtained there motivate us to study the convergence behavior of these approximants.

In this paper we will study the convergence of sequences of generalized Padé type approximants corre-
sponding to two types of linear functionals L;:

1. Li(f) = f(a;) (if the point is repeated, we consider the derivatives);

or

2. Li(f) = [o f(2)pi(2)w(z) |dz|, where {p;(z)} is the family of orthonormal polynomials on C' with
respect to the weight function w(z).

We will determine what conditions must the generating function G and the linear functional ¢ satisfy
in order to have

lim (n)(t) = f(t)

n—oo
for all ¢ in some set B € C

We illustrate our results with some examples for the case where G(z,t) is a generating function of a
family of classical orthogonal polynomials.

2 A general convergence result.

2.1 Continuity properties of the linear functional.

From the definition of the GPTA, we see that to study the convergence of a sequence of approximants, we
have to obtain the conditions for the convergence of the sequence of interpolation polynomials P,(z;t) and
the continuity of the linear form ¢. Let us begin by obtaining some properties of ¢, namely the domain of
definition and continuity. We consider three normed spaces of functions that we will need in the sequel.



(a) Let Bla,b] be the set of all bounded functions defined on [a,b]. We define the norm
function

I/ 1I= supa<a<s [ /()]

We have a normed linear space. The linear functional ¢ defined by (2) is defined on the set of all polyno-
mials. We can extend its domain of definition to all the functions of Bla,b] which are the uniform limit
in [a,b] of a sequence of polynomials (lim,,—. p.(z) = f(z) uniformly on [a,b]) and for which the limit
lim,, oo ¢(pn(z)) exists. We set Hy[a,b] such normed space of functions and we define then

o(f) = lim ¢(pa(2)).

n—oo

c(f) is well defined if for any other sequence of polynomials (g,) converging uniformly to f in [a,b] we
have: lim,, o ¢(¢n(2)) = lim, o ¢(pn(x)). This is clearly satisfied if

(V(pr) — 0 uniformly in [a,b]) = (¢(pn) — 0) (4)

For instance, if the moments ¢; satisfy

o= [ @tz

where {¢;(z)} is the sequence of orthonormal polynomials in [a, b] with respect to the weight function w(z)
then we can show that condition (4) is satisfied.
So we obtain from the definition of ¢:

Property 1 If the linear functional ¢ satisfies (4) then it is continuous in Hq[a,b].

(b) The linear functional ¢ can be also extended by continuity to a certain class of analytic
functions. Let us suppose that the sequence (d;); defined by (2) satisfies

lim |d,|" = r < (5)

n—oo

Let h be a function analytic in a neighborhood of 0 for which we have the power series representation
h(z) =32y az" If limy, o Do a;d; exists then we can define c¢(h(z)) by

c(h(z)) = ij: a;d;.

A sufficient condition for convergence of this series is lim,_ o, |a,| /n

result:

< 1/r and so we have the following

Proposition 1 The linear functional ¢ is well defined for all functions analytic in D, = {z :|z| < r}

Let B be a region in € and let

L*(B) = {f : fis analytic in B and// |f(z)|2d.7cdy < oo} .
B

With the scalar product (f,¢) = [ [g fgdady, L*(B) is a complete inner product space [3].



We choose B = Dp, ={z : |z| < R.}, with R, > r, and then we have [3]

5 0 2R2n+2
Vg € LD = n|” — ,
g€ L*(Dgr,) gl ﬂn;lal il <%

where g(2) = 3,2, a,2". Let ¢ be the linear functional defined by (2) and (d,,),, satisfy (5). If we denote
by D(c) the set of functions where ¢ is well defined then L?(Dg,) C D(c), and for g € L*(Dg,), we obtain

oo
> aidi
1=0

2 2

<

1

o0 a;
[y
=0 it 1 =0 R*
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S;(Z(Hl)ldil (%) )ugu .

i+1 '
= ) Vi+ 1R d;

le(g))* =

=0
1 0 9 1 2142
It t M= — L+ 1) |di|” | — < oo then M < d
we se - ;(z + 1) |d;] (R*) oo then o0 an

lc(g)l <M | gl Vg€ L*(Dg,).

As a bounded linear functional defined on a normed linear space is also continuous, we obtain the following
result

Property 2
Y(gn)n such that g, € L*(Dg,) and 3g € L*(Dg,) lim // |9n(2) — g(2)|* dedy = 0

we have
c(g) = lim ¢(gyn).

n—oo

We will set Hy(R.) = L*(Dg,).
(¢) Let us finally consider the case where

m |d,|"/" = . (6)

n—oo

Let us denote by Hz(R) the space of entire functions f(z) = .72 a;2* for which 322 a;d; converges
with the norm

| g [|=supp,j<rlg9(2)].
The linear functional ¢ can be extended to Hz(R) by setting

o(f) =) aid;.
1=0

We easily obtain



Proposition 2 If the linear functional ¢ satisfies

lim ¢(p,) =0 VY(pn), such that (p,) converges uniformly to the null function in Dg (7)

and p,, is a polynomial of degree < n, then for all sequence of polynomials (g,) converging uniformly to
g(z) in H3(R) we obtain
lim ¢(¢,) = c(g).

n—oo

2.2 Convergence theorem.

From the definition of the GPTA and the continuity properties of the linear form ¢ on Hi[a,b], H2(R.)
and H3(R) obtained in the previous section, we get:

Theorem 1 Lel f be an analylic function on A C @' represented by the series of functions
f(z) =) cigi(z) ze€A, (8)
=0

and G(z,t) a generating function of the family {g;(z)}. We define the linear functional ¢ by its moments by
(2) and Hila,b], Hz2(R.) and Hs(R) as in the previous section. Letl us consider a sequence of polynomials
of degree n in the variable = (t is a parameter), P,(z;1), satisfying the interpolating conditions (3). Let
us suppose that one of the following situations holds:

1. for t in some subset A, C A the generating function G(-,t) belongs to Hq[a,b], ¢ satisfies (4) and
the sequence {P,(+;t)} converges uniformly in [a,b] to G(-,t);

2. for t in some subset A, C A the generating function G(-,t) belongs to Ha(R.), ¢ satisfies (5) and
the sequence {P,(-;1)} converges to G(-,t) in Ha(R.);

3. fort in some subset A, C A the generating function G(-,t) belongs to Hz(R), ¢ satisfies (6) and (7)
and the sequence {P,(-;1)} converges uniformly in Dg to G(-,1).

Then the corresponding sequence of GPTA converges to f in A,:

Vi € A, nh—{go(n)‘f(t) = f(1).

3 Convergence results for different types of interpolatory conditions

Let us use the results of the interpolatory convergence theory and Theorem 1 to obtain convergence
results for particular sequences of GPTA. We will consider different types of interpolation functionals L.
3.1 Lagrange and Hermite interpolation.

3.1.1 Interpolation series.

Theorem 2 Let (y,(2,- -+, Cx be points in €' and L, the lemniscate interior defined by:

(2 = )2 — C2) -+ (2 — ()| < pF.



Let f be an analytic function of the form

z) =Y cigi(z) z€A,
=0

and let G(z,1) be the corresponding generaling function. We suppose that the linear functional ¢ defined
by (2) satisfies (5) and that:

Vie A. C A G(-,1) is analytic in L, O Dg,, R.>r.
If we consider a sequence of points (z;); satisfying
lim an-l—i:Ci7 1<t <k ZZ'E,CP Vi,
n—00

and if P,(z;t) is the polynomial of degree n that interpolates G(z,t) at the points z;, i=1,---,n+ 1, (t
is considered as a parameter), then the corresponding sequence of GPTA satisfies

lim (n);(t) = f(1) Vi€ A,

n—oo

Proof: 1t is known from the interpolation theory results (see for instance [3] ) that in the conditions of this
theorem, the sequence {P,(-;¢)}, converges uniformly to G(-,t)in £,. As £, D Dg,, part 2. of Theorem
1 holds and the result follows. A

What form have these generalized Padé type approximants?
(a) If the interpolation points are all distinct, by the Lagrange formula we obtain

ZC CZ?

=0

where the [;(z) are the fundamental polynomials for pointwise interpolation and so the approximants are
linear combinations of the functions G((;,t), i =1,---,n+ 1.

(b) If all the interpolation points coincide, the lemniscate reduces to a circle and P,(z;1)
is the Taylor polynomial

nooy

=27

:0

$Z

|IC

2GCn)

(c) If we consider the sequence of interpolation points z,44; = ¢; Yn e N i =1,--- k,
then for all m = nk + ¢ it is easy to verify that (m)s(¢) is a linear combination of the functions

In this case the approximants are linear combinations of the functions {

o | o |
{ (Cl7 ) = 7-.-7k; ]207"'771/_1; 8$nG(Cl7t) l:17...1]}‘

We remark that if g;(t) = ' Vi, the generating function is given by G(z,t) = 1/(1 — «t) and the
approximant will be a rational function - it is a Padé-type approximant.



3.1.2 A more general case: triangular set of interpolation points.

Let us consider now the more general case where the linear functionals Ly depend on n, that is, we consider
the set of interpolation points

N
IR
L (9)

and the sequence of polynomials p,(z) of respective degrees n interpolating f(z) at the points ﬁYL), S 57(11)1

We have the following general result for the convergence of the sequence {p,(2)} [6]:

Theorem 3 Let C' be a closed limiled point set whose complement K is connected and reqular. Lel
w = ¢(z) map K onto the region |w| > 1 so that the points at infinity correspond to each other, and let A
be the capacity of C'. Let the points (9) have no limit point exterior to C' and satisfy the relation

Jim [ = B = 8) e = 6| T = Ao,

‘1/(n

uniformly on any closed limited point set interior to K, and let f be an analytic and single valued function
on C.
Then the sequence of polynomials p,(z) of respective degrees n found by interpolation of f(z) in the
points ﬁyb), - -,ﬂfﬁ_)l satisfy
lim p,(z) = f(z) uniformly for z € C.

n—oo

From this general result, considering particular sets (9) and applying Theorem 1 we will obtain
convergence results for the corresponding sequences of GPTA.
We begin by considering the case where the ﬁz(n) are the roots of classical orthogonal polynomials.

Jacobi abcissas.

Proposition 3 Let f be an analytic function satisfying (8), G(z,t) the generating function and c the
corresponding linear functional defined by (2). Let us suppose that:

o fort € A, C A the generating function G(-,t) is continuous in [—1, 1] with modulus of continuity

w(8) satisfying w(8) = o([log §]™1);
o the linear functional ¢ satisfies (4) in [—1,1];
o forte A, G(-,t) belongs to H1[-1+4¢€,1 —€] (e < 1/2).

Then the Lagrange polynomials interpolating G(-,1) at the zeros of the Jacobi polynomials Rga’ﬁ)(m) con-
verge uniformly to G(-,t) in [—1 4 €,1 — €] and the corresponding sequence of GPTA salisfies

lim (n);(t) = f(1) Vi€ A,

n—oo



Laguerre abcissas
Proposition 4 Let f, G(-,t) and ¢ be defined as in the previous proposition. Lel us suppose that

o fort e A, C A G(-,1) is continuous for x > 0 and G(z,1) = O(z™) (z — 00) (m is a fized posilive
number);

e Ja,b> 0: ¢ satisfies (4) in [a,b] and G(.,t) belongs to Hy[a,b] fort € A,.

Then the sequence of GPTA corresponding lo the sequence of interpolaling polynomials of the function
G(-,t) on the zeros of the Laguerre polynomials nga) (o > —1) converges to f(t) fort € A,.

Lagrange polynomials for certain general classes of abcissas. Let ﬁz(n_l) t = 1,---,n, denote
the zeros of the n'* orthogonal polynomial p,(z) associated with the weight function w(z) in the interval
—1 <z <1. We consider two classes of weight functions characterized by the following conditions:
A Jp>0: W)>p, —-1<az<+1.
B.3u>0 : W(z)>p(l-2?)"12 —1<z<+1.
Then we obtain:

Proposition 5 Let f, G(z,t), and ¢ be in the conditions of the previous theorem and let us suppose that:
o forte A, G(-,1) is defined in —1 < z < +1;
o ¢ belongs to Hi[—1,1] and satisfies (4).

Let P, (z;t) be the sequence of Lagrange interpolation polynomials at the zeros of the orthogonal polynomials
associated to a weight function w(z), —1<a <1. Then, if
(a) w satlisfies A and G(-,1) has a continuous derivative in [—1,1],
or
(b) w satisfies B and w(8) = o(8'/?),
the sequence of GPTA corresponding to the sequence P,(z;1) converges to f(t) in A,.

Regular distribution of the interpolation points ﬁ](cn) Let us suppose that for t € A, C A the
function G(-,¢) is analytic in a closed simply connected region R. Let C' be a simple, closed, rectifiable

)

curve that lies in R and contains the points ﬁ,(cn in its interior. Then, if p,(z;t) is the interpolating

polynomial in the points ﬁ](cn), the interpolation error is given by

1 (@ =B = ) (e - 8T Gz
G(~T7t)_pn($7t) = —/C (Z —ﬂin))(z_ﬁzn))(z_ﬁib{;ll) zZ—x dz.

271
From this expression we see that the convergence of the sequence p,(z;t) is determined by the behavior

of the polynomials (z — ﬁYL)) (- 57(11)1) Let us suppose that the points ﬁ,(cn) satisfy:

=o(z)

for z on certain sets of the complex plane. If we can choose C' as the contour |o(z)| = K (constant) then

. n n) |1/ (n+1)
lim (z—ﬁ§ ))(3_57(14-)1)‘ =

n—oo

we obtain
lim pu(w51) = Gla,1)

n—oo



uniformly for z on the compact subsets of {# € R: |o(z)| < K} . Let us consider the following example.
Let ﬁyb), . -,ﬁgj_)l be the (n 4 1) roots of the (n + 1)st Tchebyshev polynomial 7},11(z). Then

n n 1
Ti(z) = = A7) (2= A = 3o Taa (2)

and we can show that [3]

o(z)= lim |T;(z)|l/n =p/2 for z € £, uniformly , (10)

n—oo

where &, is the ellipse with foci £1 and semi-axes a = (p+p~!)/2and b = (p—p~')/2. Applying Theorem
1 we obtain the following result

Proposition 6 Let f be an analytic function defined by (8), ¢ the linear form defined by (2) and G(z,1)
the generating function. We suppose that ¢ satisfies (5) and that for t € A, C A, G(-,t) is analytic in a
region S and let £, (p > 1 ) be the ellipse such that:

£ C S and¥p >p £, CS5.

We denote by E, the interior of the ellipse £, .If AR, > r (1 given by (5) ): Dr, C E, and we choose the

interpolation points ﬁ](cn) as the rools of the Tchebyshev polynomials, the sequence of corresponding GPTA,
(n)f(t), converges to f() in A,.

Remark: We obtain a similar result if we consider the roots of the Legendre polynomials, because
lim,, 0 |Pn(z)|1/n =p Vz €&, (P,(2) is the n-th Legendre polynomial).

Proof:From the conditions of the proposition we get that G(-,t) € Ha(R.) for t € A, and from (10)
we obtain the uniform convergence of the interpolating polynomials in Dpg,. Result follows by applying
Theorem 1. A

Interpolation in the roots of unity.

Proposition 7 Let f(t), G(z,t) and ¢ be defined as in the previous theorems, and let us suppose that
Vi€ A, C A fized G(-,1) is analytic for |z| < p > 1.

Let P,(z;t) be the polynomial of degree n which interpolates G(-,t) in the (n + 1)st roots of unity. If
p > R. then the corresponding sequence of GPTA converges to f(t) for allt € A,.

This result follows immediately from the convergence result for interpolating polynomials in the roots
of unity [6] and from Theorem 1.

3.1.3 Examples.

a) Function given by a Legendre series.
Let f(z) be given by the series of functions

2= Y b, (1)



1
where P,(z) are the Legendre polynomials and ¢, = / f(z)P,(z)dz, n=0,1,--- Let us suppose that
-1

lim,,_, oo sUp |cn|l/n = 1/p. Then the expansion (11) converges for ¢ in the ellipse £,. A generating function
for the Legendre polynomials is

Gla, )= 3 a"Py(t) = (1 - 2ta + 2%)7Y/2,
n=0

For ¢ fixed in &,, G(z,t) is analytic in Dg , VR < 1 and so belongs to Hy(R). Let us choose R, such that
1> R, > 1/p, and a sequence of interpolation points (z;); in Dp, converging to 0.

We replace G(z,1) by the Lagrange interpolation polynomials P, (z;t) = 37" Li(z)(1 — 2tz; + a3)~1/2
and so f(t) is approached by the sequence

(n)5(1) = e(Pu(51) = Y e(li()(L = 2ta; + 2)7/2,
=0
By applying Theorem 2 we know that it converges to f(¢) for t € &,.

b) Function given by an Hermite series.
Let f(t) be given by the following Hermite series

o0 400
f(t) = Z e H, (1) te A, withe, = / f(x)e_xQHn(m)da:.
n=0 e
A generating function for the Hermite polynomials is
> 1 n T —1‘2
G(z,t) = Z_% Y H,(t) = *!

Forall t € €, G(-,t) is an entire function. In this case we have d,, = nlc,, and so, if lim,,_ |cn|1/n =1/r,
then lim,_, |d,|"/" = o0 and so G(-, 1) belongs to Hs(R) ( R > 0).

If (z;) is a sequence of interpolation points satisfying lim,, . @, = 0, @, € Dr Vn then the corre-
sponding sequence of approximants is a linear combination of exponentials

(n)f(t) = c(Pu(-, 1)) = ane_zzzc(li(-))ehit_

1=0

The sequence of GPTA (n)¢() converges to f(¢) in A if ¢ satisfies (7).

3.2 Orthogonal expansions

We will consider now a second type of interpolation conditions: the functionals L are defined by

1g) = [ o milEu(z) Jiz].

where C' is a rectifiable Jordan arc or curve, w(z) is a real, non-negative and uniformly limited function
on C' (not a null function), and {px(z)} is the sequence of orthonormal polynomials on C' with respect to
the weight function w(z). Then, the polynomial of degree n, P,(z;t), that satisfies the conditions

Li(Pn(z;t)) = Lg(G(z,t)) k=0,---,n, (12)

10



(as before, Lj acts on the variable z) is given by
Py(z;t) = E agpe(), ax = /C G(z,)pr(z)w(z) |dz|,
k=0

which is also the polynomial of degree n of best approximation of G(z,?) (function of z) in the sense of
the least squares norm, that is, the polynomial of degree n that minimizes

[ 16,0 = pati ) w(z)1d2]
C

So the convergence of the sequence (P,(+;1)), to G(-,¢) depends on the convergence of orthogonal expan-
sions. We have the following result which determines the region of convergence of orthogonal expansions

[6]:

Theorem 4 Let C, {pr(2)} and w(z) be defined as above.
(i) Let the numbers a, salisfy the relation: lim, sup|an|1/n = 1/p < 1. Then the function f(z)
defined on C' by the equation

5= X anpal2)

is analylic interior to C,, bul if not identically constant with p = oo has a singularity on C,.
(ii) Conversely, if f(z) is analytic interior to C, but has a singularity at C, then

Jim suplan = 1/p 4= [ SEE0(E) 1

Let us recall the definition of C'r: CRg is the equipotential locus |¢(2)| = R, where ¢(z) is a function which
maps the complement of the region bounded by C' conformally onto the exterior of the unit circle, so that
the points at infinity correspond to each other.

From this theorem, and proceeding like in the previous cases, we will obtain the convergence of a
sequence of GPTA corresponding to interpolation conditions of the form (12) if the generating function
satisfies the conditions of this theorem and if we can apply Theorem 1.

Let us consider in more detail the particular case of C' = [—1,41]. Then Cp is the ellipse with foci +1
and semi-axes a = (R4 1/R)/2 and b= (R — 1/R)/2 [6]. We obtain

Corollary 1 Let f be an analytic function defined by f(z) = .72, ¢i9i(z), z € A, and let G(z,t) be a
generating function of the family {g:(z)}. Let ¢ be the functional defined by (2). We suppose that

o fort e A, C A fized, the function G(z,1) of the x variable is analytic in the closed segment [—1,1]
and we set £, the greatest ellipse with foci £1 in which G(-,t) is analytic for all t € A,;

o c salisfies (5);
e we can choose R, > r such that Dgr, C &,.

Let us consider the polynomial of degree n in z, P,(x;t), satisfying relations (12) with

1 (e.0) ;.
L) = [ a0 o1 4 o),

11



)

that is, the partial sum of order n of the expansion of G(-,t) in a Jacobi series (Pé“’ﬁ are the Jacobi

polynomials, h%a’ﬁ) their norms).
Then we obtain

Vi € A, nh_)rgo(n)f(t) = f(1).

Let us consider an example of application of this corollary.
Let f be an analytic function represented by a power series

f(t) = Zciti with lim |e, [V = r < 1.
=0

Then the generating function is given by

G($,t)22$iti_ ! z # %
=0

1= at’

For |t| < @ < 1, we have 1/ |t| > 1/a and so G(z,t) as function of z is analytic for || < 1/a. Let us
replace G(z,t) by the sequence of polynomials

Po(z;t) = aopo(x) + ar1p1(x) 4 - - - + anpr(x)

where {p;(z)} is a system of orthonormal polynomials on C' with respect to the weight function w, and
the a; are given by

a; = / G(z,O)pi(2)w(z)|dz| i=0,---,n.
C

These polynomials satisfy the interpolation conditions (12) with

Lk(f):/cf(z)pk(z)w(z)|dz| k=0, n.

The corresponding sequence of GPTA is

c(Pu(-1)) = Zn:aic(pi(-)), where a; = /C %w(z) |dz| .

1=0

Let us consider the particular case where C' = [—1,1] and the {p;(z)} are the Legendre polynomials and
let us obtain the form of the approximants.
By simple computations we obtain

/1 i log (%) - 5i(1)

L 1—aT Rjog(t) = i1 ’

where 5;(t) is the ith partial sum of the Taylor series of log (%), and so the approximants have the form

o(Pu(51)) = an akaOg(t). (13)
k=0

We can easily verify that for |[t| < @ < 1, the conditions of the corollary are satisfied and the sequence

(13) of GPTA converges to f().

12



4 Conclusion.

The convergence results presented in this paper show that some classes of generalized Padé type approx-
imants can have interesting approximation properties. They are very general and this opens the way to
a more detailed study for particular cases. For functions given by an expansion in a series of a family of
classical orthogonal polynomials, the problem of how to choose the interpolation points in order to have
better convergence results and even acceleration of convergence is under study. Also the effect of choosing
different generating functions for the same family has to be considered. This will be the subject of a
forthcoming paper.
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