Français



Alexandre Jollivet

Research Position for CNRS

Laboratoire de Mathématiques Paul Painlevé
Université de Lille 1
Cit
é scientifique,
59 655 Villeneuve d'Ascq Cédex
France

phone:   33 (0)3 20 43 45 73
fax:       33 (0)3 20 43 43 02

e-mail:      alexandre.jollivet@math.univ-lille1.fr
Research area: Inverse problems, PDE, Mathematical physics


CV

Publications and preprints

Talks

Teaching

Links





CV

Download a CV

Citizenship: France

2013 -- :

Research position for CNRS, Laboratoire de Mathématiques Paul Painlevé, University of Lille, France.

2009 -- 2013:

Research position for CNRS, Laboratoire de Physique Théorique et Modélisation, University of Cergy-Pontoise, France.

2007 – 2009:

Postdoc Research Scientist, Department of Applied Physics & Applied Mathematics, Columbia University in the City of New York, USA.

2004 – 2007:

PhD Student and part time teacher for undergraduate courses (doctorant & allocataire de recherche-moniteur), Laboratoire de Mathématiques Jean Leray & Department of Mathematics, University of Nantes, France.

Publication list

[17] A. Jollivet and V. Sharafutdinov, Steklov zeta-invariants and a compactness theorem for isospectral families of planar domains, J. Funct. Anal. 275:(7), 1712–1755 (2018). See hal-01392858, for a previous version.

[16] G. Bal and A. Jollivet, Generalized stability estimates in inverse transport theory, Inverse Probl. Imaging 12:(1), 59–90 (2018), hal-01480904.

[15] A. Jollivet and V. Sharafutdinov, An inequality for the zeta function of a planar domain, J. Spectr. Theory 8:(1), 271–296 (2018). See arXiv:1510.06548, for a previous version.

[14] A. Jollivet, Inverse Scattering at High Energies for Classical Relativistic Particles in a Long-Range Electromagnetic Field, AHP 16:(11), 2569—2602 (2015). See preprint 2013, ArXiv:1401.0182 , for a previous longer version.

[13] A. Jollivet, Inverse scattering at high energies for a classical particle in a long range force field, Eurasian Journal of Mathematical and Computer Applications 2:(1), 14—39 (2014), hal-01063458.

[12] A. Jollivet, Inverse scattering at high energies for the multidimensional Newton equation in a long range potential, Asymptotic Analysis 90:(1&2), 105—132 (2014). ArXiv:1306.3638.

[11] A. Jollivet, On inverse scattering at fixed energy for the multidimensional Newton equation in a non-compactly supported field, J. Inverse Ill-posed Probl. 21:(6), 713–734 (2013).

[10] G. Bal, A. Jollivet, I. Langmore and F. Monard, Angular average of time-harmonic transport solutions, Comm. Partial Differential Equations 36:(6), 1044 – 1070 (2011). (Download a preliminary version .)

[9] G. Bal and A. Jollivet, Stability in time-dependent inverse transport, SIAM J. Math. Anal. 42:(2), 679–700 (2010), ArXiv:0809.0906.

[8] G. Bal, A. Jollivet and V. Jugnon, Inverse transport theory of photoacoustics, Inverse Problems 26:(2) , 025011 (2010).

[7] G. Bal and A. Jollivet, Time-dependent angularly averaged inverse transport, Inverse Problems 25:(7), 075010 (2009). An extended version of this paper is available in ArXiv.

[6] A. Jollivet, On inverse scattering at high energies for the multidimensional Newton equation in electromagnetic field, J. Inverse Ill-posed Probl. 17:(5), 441--476 (2009) ; ArXiv:0710.0085.

[5] G. Bal and A. Jollivet, Stability estimates in stationary inverse transport, Inverse Probl. Imaging 2:(4), 427--454 (2008), ArXiv:0804.1320.

[4] A. Jollivet, On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies, Asympt. Anal. 55:(1&2) 103--123 (2007).

[3] A. Jollivet, On inverse problems in electromagnetic field in classical mechanics at fixed energy, J. Geom. Anal. 17:(2), 275--319 (2007),

[2] A. Jollivet, On inverse problems for the multidimensional relativistic Newton equation at fixed energy, Inverse Problems 23:(1), 231--242 (2007),

[1] A. Jollivet, On inverse scattering for the multidimensional relativistic Newton equation at high energies, J. Math. Phys. 47:(6) 062902, (2006),


Proceedings


[4] A. Jollivet, Convexity properties of the normalized Steklov zeta function of a planar domain, to appear in the special QIPA issue of J. Inverse Ill-posed Probl., see preprint 2020, hal-02918987 for a previous version.

[3] A. Jollivet and V. Sharafutdinov, On an inverse problem for the Steklov spectrum of a Riemannian surface, Inverse problems and applications, Eds. P. Stefanov, A. Vasy, M. Zworski, Contemporary Mathematics 615 (2014), 165--191.

[2] G. Bal and A. Jollivet, Combined source and attenuation reconstruction in SPECT, Tomography and Inverse Transport Theory, Eds. G. Bal, D. Finch, P. Kuchment, J. Schotland, P. Stefanov, G. Uhlmann. Contemporary Mathematics 559 (2011), 13 – 27.

[1] G. Bal and A. Jollivet, Approximate stability estimates in inverse transport theory, Biomedical Mathematics: Promising Directions in



Preprints


[3] G. Bal and A. Jollivet, Boundary control for transport equations, preprint 2021, hal-03199743.

[2] A. Jollivet and V. Sharafutdinov, An estimate for the Steklov zeta function of a planar domain derived from a first variation formula, preprint 2020, hal-02515278.

[1] A. Jollivet, M. K. Nguyen and T. T. Truong, Properties and Inversion of a new Radon Transform on parabolas with fixed axis direction in R2, 2010.




Ph.D. Thesis

[0] Inverse problems for the multidimensional Newton-Einstein equation, 2007 (mostly in french), TEL-00164558.


Talks




Teaching


I taught in the University of Nantes from November 2004 to January 2007 as a moniteur (part time teacher for undergraduate courses) of the Department of Mathematics. Here is what I did.

Year 2006-2007

Year 2005-2006

Year 2004-2005


Links