Geometry of multivariate stable laws

Ilya Molchanov

University of Bern, Switzerland

Symmetric stable random vectors

A random vector ξ in \mathbb{R}^d is symmetric stable with characteristic exponent $\alpha \neq 0$ (notation $S\alpha S$) if $\xi \stackrel{\mathcal{D}}{=} (-\xi)$ and for all a, b > 0,

$$a^{1/\alpha}\xi_1 + b^{1/\alpha}\xi_2 \stackrel{\mathcal{D}}{=} (a+b)^{1/\alpha}\xi_2$$

where ξ_1, ξ_2 are independent realisations of ξ .

Relationships to convex geometry

Minkowski sums

Sums of convex bodies in \mathbb{R}^d

 $A + B = \{x + y : x \in A, y \in B\}$

Central symmetry

- Zonotopes are centrally symmetric very much centrally symmetric!
- A polytope is a zonotope if and only if each its face of any dimension is centrally symmetric (e.g. icosaedron is not a zonotope).
 - Each centrally symmetric planar polygone is a zononotope.

Zonoids

- Zonotopes are expected random segments with a discrete distribution.
- Zonoids are limits of zonotopes in the Hausdorff metric, i.e. expectations of general random segments.
 - Zonoids are convex and centrally symmetric.

In the plane each centrally symmetric convex compact set is a zonoid. This is wrong for dimensions $d \ge 3$ (e.g. icosaedron).

Translations are not important; assume that all segments are origin symmetric, so the sums are also origin symmetric (centred).

Support function

For compact $K \subset \mathbb{R}^d$ the support function is

 $h_{K}(u) = \sup\{\langle u, x \rangle : x \in K\}, \quad u \in \mathbb{R}^{d}$

Minkowski sum of convex compact sets translates into the arithmetic sum of their support functions, i.e.

$$h_{K+L}(u) = h_K(u) + h_L(u)$$

Examples of support functions

Cosine transform

 \Box Zonotope Z is a sum of segments, so its support function is a sum of support functions of the summands:

$$h_Z(u) = \sum_{i=1}^n h_{[-a_i, a_i]}(u) = \mathbf{E} h_X(u)$$

Thus, zonoid becomes the expectation of a random segment X, i.e.

 $h_Z(u) = \mathbf{E} h_X(u)$

If $X = [-\eta, \eta]$ is centred, then $h_X(u) = |\langle u, \eta \rangle|$, so that *Z* is a centred zonoid if and only if

$$h_Z(u) = \mathbf{E} |\langle u, \eta \rangle| = \int_{\mathbb{R}^d} |\langle u, z \rangle| \mathbf{P}_{\eta}(dz) = \int_{\mathbb{S}^{d-1}} |\langle u, x \rangle| \sigma(dx) \,,$$

where the spectral measure σ is a finite measure on the unit sphere \mathbb{S}^{d-1} .

Equivalent characterisations of zonoids

Z is zonoid is equivalent to

- $\square \quad h_Z(u) = \int_{\mathbb{S}^{d-1}} |\langle u, x \rangle | \sigma(dx) \text{ for a finite measure } \sigma.$
- \Box Z is the range of an \mathbb{R}^d -valued measure.

 $\square \mathbb{R}^d \text{ with the norm } \|u\|_F = h_Z(u) \text{ is embeddable in } L_1([0,1]),$ where $F = \{u : h_Z(u) \le 1\}$ is the unit ball in this norm (polar set to Z).

 $\label{eq:phi} \Box \quad \varphi(u) = e^{-h_Z(u)} \text{, } u \in \mathbb{R}^d \text{, is a positive definite function.}$

Positive definiteness and zonoids

 \Box Z is zonoid if and only if $\varphi(u) = e^{-h_Z(u)}$ is positive definite.

□ Note that $h_Z(tu) = th_Z(u)$, function $\varphi(u)$ is continuous and $\varphi(0) = 1$.

- Thus φ is the characteristic functions of a stable law with characteristic exponent $\alpha = 1$, i.e. the Cauchy distribution.
- T.Ferguson (1962) noticed the difference between Cauchy laws in dimensions 2 and 3, but did not explain it in terms of zonoids.

Lévy representation

□ A random vector ξ is $S\alpha S$ with $0 < \alpha < 2$ if and only if there exists a unique symmetric finite (spectral) measure σ on the unit sphere \mathbb{S}^{d-1} such that

$$\varphi_{\xi}(u) = \mathbf{E} e^{i\langle \xi, u \rangle} = \exp\left\{-\int_{\mathbb{S}^{d-1}} |\langle u, z \rangle|^{\alpha} \sigma(dz)\right\}.$$

(if $\alpha=2$, then $|\langle u,z
angle|^2$ is a quadratic form and σ is not unique).

Density is not known analytically apart from the cases $\alpha = 2$ (normal law) and $\alpha = 1$ (Cauchy distribution).

Star bodies

 $\hfill F$ is star body if $[0,u)\subset \mathrm{IntF}$ for every $u\in F$ and the Minkowski functional

$$||u||_F = \inf\{s \ge 0: u \in sF\} = \frac{1}{\text{radial function of } F \text{ in direction } u}$$

is continuous.

 \Box F is called centred if it is origin-symmetric.

If F is also convex, then $||u||_F$ is a (convex) norm on \mathbb{R}^d .

First examples

$$\varphi_{\xi}(u) = e^{-\|u\|_F^{\alpha}}$$

F is called the associated star body of ξ

If ξ has independent components, $F = \{x : x_1^{\alpha} + \dots + x_d^{\alpha} \le r^{\alpha}\}$ is ℓ_{α} -ball in \mathbb{R}^d (not convex if $\alpha < 1$).

If $\xi = (\xi_1, \dots, \xi_1)$ (completely dependent), then $||u||_F = |\sum u_i|$; its spectral measure σ is not full-dimensional; F is an infinite strip.

$\begin{array}{l} L_p\text{-balls}\\ F \text{ is associated star body of } S\alpha S \text{ law}\\ & \updownarrow\\ e^{-\|u\|_F^\alpha} \text{ is positive definite}\\ & \updownarrow\\ F \text{ is an } L_p\text{-ball, i.e. } (\mathbb{R}^d, \|\cdot\|_F) \text{ is embeddable in } L_p([0,1]) \text{ with } p = \alpha \end{array}$ 1966: J. Bretagnolle, D. Dacunha Castelle, J.L. Krivine. Lois stables et espaces L^p .

 L_1 -balls are polar sets to zonoids

One known result

Theorem 1. If F is an L_p -ball for $p \in (0, 2]$, then F is an L_r -ball for all $r \in (0, p]$.

Proof. ξ is $S\alpha S$ with $\alpha = p$ and star body F. Let $\zeta > 0$ be strictly stable with exponent $\beta \in (0, 1)$ and independent of ξ . Define $\xi' = \zeta^{1/\alpha} \xi$ (sub-stable law).

$$\mathbf{E} e^{i\langle \xi', u \rangle} = \mathbf{E}(\mathbf{E}(e^{i\zeta^{1/\alpha}\langle \xi, u \rangle} | \zeta)) = \mathbf{E} e^{-\zeta \|u\|_F^{\alpha}} = e^{-\|u\|_F^{\alpha\beta}}$$

Thus, *F* is the associated star body of ξ' with the characteristic exponent $r = \alpha \beta \in (0, p)$.

Summary so far

 \Box Each $S\alpha S$ law is determined by $\alpha \in (0,2]$ and star body F.

 \Box The associated star body F is an L_{α} -ball.

If $\alpha \in [1, 2]$, then F is convex, its polar is L_{α} -zonoid K, and $\varphi_{\xi}(u) = e^{-\|u\|_{F}^{\alpha}} = e^{-h(K, u)^{\alpha}}$.

Independent coordinates if and only if F is an ℓ_{lpha} -ball.

Sub-Gaussian laws

Sub-Gaussian laws appear as products $\sqrt{\zeta}\xi$, where ξ is Gaussian and $\zeta > 0$ is positive (one-sided) strictly stable.

Ellipsoids are associated zonoids (and star bodies) of Gaussian laws, so all ellipsoids are L_p -zonoids for $p \in [1, 2]$ and L_p -balls for $p \in (0, 2]$.

Sub-Gaussian laws can be characterised as those having ellipsoids as associated star bodies (and zonoids).

Approximation by sub-Gaussian laws

Theorem 2. A law is $S\alpha S$ with $\alpha \in [1, 2]$ if and only if it can be obtained as a weak limit for sums of independent sub-Gaussian laws with the same characteristic exponent α .

Proof. Grinberg–Zhang (1999) result on approximation of L_p -balls by sums of ellipsoids.

Dvoretzky's theorem (1960): Each $S\alpha S$ law of sufficiently high dimension can be projected on a lower dimensional subspace, such that the projection lies arbitrarily close to a sub-Gaussian law.

Stable density

 ξ is $S\alpha S$ with associated star body F and density f. Then

$$\varphi_{\xi}(u) = e^{-\|u\|_{F}^{\alpha}} = \mathbf{P}\{\zeta \ge \|u\|_{F}\} = \mathbf{E} \mathbf{1}_{\zeta \ge \|u\|_{F}} = \mathbf{E} \mathbf{1}_{u \in \zeta F},$$

where

$$\mathbf{P}\{\zeta \ge x\} = e^{-x^{\alpha}}, \quad x > 0$$

Fourier inversion

$$(2\pi)^d f(x) = \mathbf{E} \int_{\mathbb{R}^d} e^{-i\langle u, x \rangle} \mathbf{1}_{u \in \zeta F} du = \mathbf{E} \int_{\zeta F} e^{-i\langle u, x \rangle} du$$

E.g.

$$f(0) = \frac{1}{(2\pi)^d} \Gamma(1 + \frac{d}{\alpha}) \operatorname{Vol}_d(F)$$

Generalised functions

f is the stable density, g is a generalised function

$$(g,f) = \frac{1}{(2\pi)^d} (\hat{g}, \mathbf{E} \, \mathbf{1}_{u \in \zeta F})$$

- Need to find the action of the Fourier transform \hat{g} on $\mathbf{1}_{u\in\zeta F}$.
- $\label{eq:linear} \square \quad \text{Important example } g(x) = \|x\|^{\lambda}.$

Moments of the Euclidean norm

Theorem 3. For $\lambda \in (-d, \alpha)$

$$\mathbf{E} \|\xi\|^{\lambda} = \frac{2^{\lambda-1}}{\pi^{d/2}} \Gamma(\frac{d+\lambda}{2}) \frac{\Gamma(1-\frac{\lambda}{\alpha})}{\Gamma(1-\frac{\lambda}{2})} \int_{\mathbb{S}^{d-1}} \|u\|_{F}^{\lambda} du.$$

Proof. Fourier transform for the generalised function $||u||^{\lambda}$ or plain-wave expansion of the norm.

Known: in the isotropic case $F = B_{\sigma^{-1}}$ (σ is the scale parameter) and

$$\mathbf{E} \|\xi\|^{\lambda} = 2^{\lambda} \frac{\Gamma(\frac{2+\lambda}{2})}{\Gamma(\frac{d}{2})} \frac{\Gamma(1-\frac{\lambda}{\alpha})}{\Gamma(1-\frac{\lambda}{2})} \sigma^{\lambda}.$$

Wanted $\int_{\mathbb{S}^{d-1}} \|u\|_F^\lambda du$!

• Not easy even if $||u||_F^2$ is a bilinear form.

This quantity is a dual mixed volume of F. The dual mixed volume inequality implies

$$\mathbf{E} \|\xi\|^{\lambda} \ge 2^{\lambda} \frac{\Gamma(\frac{d+\lambda}{2})}{\Gamma(\frac{d}{2})} \frac{\Gamma(1-\frac{\lambda}{\alpha})}{\Gamma(1-\frac{\lambda}{2})} \left(\frac{\kappa_d}{\operatorname{Vol}_d(F)}\right)^{\lambda/d}$$

with the equality if and only if F is a Euclidean ball (κ_d is the volume of the unit Euclidean ball).

Sophisticated bounds (Litvak–Milman–Schechtman, 1998: Averages of norms and quasi-norms) imply inequalities between moments of different orders.

Other moments

For instance, if d is even,

$$\mathbf{E}\operatorname{sign}(\xi_1\cdots\xi_d) = \frac{i^d}{\pi^d} \int_F \frac{du}{u_1\cdots u_d}$$

The integral is scale-invariant and does not exceed π^d in absolute value.

Integrals of the density

$$\int_{\mathbb{R}} f(tu)dt = \frac{1}{(2\pi)^{d-1}} \Gamma\left(1 + \frac{d-1}{\alpha}\right) \operatorname{Vol}_{d-1}(F \cap u^{\perp})$$

Busemann problem: Does $\operatorname{Vol}_{d-1}(F_1 \cap u^{\perp}) \leq \operatorname{Vol}_{d-1}(F_2 \cap u^{\perp})$ for all u and centred F_1, F_2 imply $\operatorname{Vol}_d(F_1) \leq \operatorname{Vol}_d(F_2)$? Gardner et al., 1999: yes if $d \leq 4$, otherwise not.

 \Box F is an L_p -ball, and so is an intersection body. Thus, in all dimensions

$$\int_{\mathbb{R}} f_1(tu)dt \le \int_{\mathbb{R}} f_2(tu)dt, \quad u \in \mathbb{S}^{d-1} \implies f_1(0) \le f_2(0)$$

Covariation

 ξ is $S\alpha S$ in \mathbb{R}^2 with $\alpha > 1$ and associated zonoid ZThe covariation of ξ is defined as $[\xi_1, \xi_2]_{\alpha} = \int_{\mathbb{S}^1} s_1 s_2^{\langle \alpha - 1 \rangle} \sigma(ds)$

Theorem 4. If $\{(x_1, x_2)\}$ is the support point (necessarily unique!) of *Z* in direction (0, 1), then

$$[\xi_1, \xi_2]_{\alpha} = x_1 x_2^{\alpha - 1}$$

Extension for multiple regression.

One-sided stable laws

 \Box How to describe geometrically a strictly stable (not symmetric!) ξ with values in \mathbb{R}^d_+ ?

How to describe geometrically distributions stable with respect to other operations, e.g. max-stable laws?

\mathbb{R}^d_+ with maximum operation

 ξ is max-stable random vector in \mathbb{R}^d_+ , i.e.

 $a^{1/\alpha}\xi_1 \vee b^{1/\alpha}\xi_2 \stackrel{\mathcal{D}}{=} (a+b)^{1/\alpha}\xi$

Assume $\alpha = 1$; then ξ is said to have a semi-simple max-stable distribution. Up to a scale of coordinates, all marginals are unit Fréchet

$$\Phi_1(x) = \begin{cases} 0, & x < 0, \\ e^{-x^{-1}}, & x \ge 0, \end{cases}$$

and ξ has a simple max-stable distribution.

Representation of semi-simple max-stable distributions

Theorem 5. A random vector ξ is semi-simple max-stable if and only if

$$\mathbf{P}\{\xi \le x\} = \exp\{-h_Z(x^{-1})\}, \quad x \in \mathbb{R}^d_+,$$

where $x^{-1} = (x_1^{-1}, \dots, x_d^{-1})$ and

 $Z = c \mathbf{E} \Delta_{\eta}$

is the expectation of the random crosspolytope

$$\Delta_{\eta} = \operatorname{conv}(0, \eta_1 e_1, \dots, \eta_d e_d) \qquad \overset{\eta_2}{\underset{\eta_1}{\checkmark}}$$

for c > 0 and a random vector η in \mathbb{S}^{d-1}_+ (unit sphere in \mathbb{R}^d_+).

The set $Z = c \mathbf{E} \Delta_{\eta}$ is said to be a max-zonoid.

If d = 2, then each convex set Z satisfying $\Delta_a \subset Z \subset [0, a_1] \times [0, a_2]$ for $a = (a_1, a_2) \in (0, \infty)^2$ is a max-zonoid. This is not the case if $d \ge 3$.

Summary so far

Stable ξ has the chacteristic function

 $\varphi(u) = e^{-h_Z(u)^{\alpha}},$

for an L_{α} -zonoid Z (L_p -expectation of a segment).

 \Box Max-stable ξ with $\alpha = 1$ has the cumulative distribution function

$$F(x) = e^{-h_Z(x^{-1})},$$

where Z is a max-zonoid (expectation of a random triangle).

 \square p-addition (assume p > 0)

$$s +_p t = (s^p + t^p)^{1/p}, \quad s, t \ge 0$$

Special cases: p=1 (arithmetic sum); $p=\infty$ (maximum).

The p-sum $x+_p y$ for $x,y\in \mathbb{R}^d_+$ is defined coordinatewisely.

Stability for p-sums: definition

Random vector ξ in \mathbb{R}^d_+ is Slpha S for p-sums if

 $a^{1/\alpha}\xi_1 +_p b^{1/\alpha}\xi_2 \stackrel{\mathcal{D}}{=} (a+b)^{1/\alpha}\xi$

for all a, b > 0, some $\alpha \neq 0$, and ξ_1, ξ_2 being independent copies of ξ . Assume $p \in (0, \infty)$.

Stability on semigroups $\Rightarrow \alpha \in (0, p]$.

Stability for *p***-sums:** characterisation

Theorem 6. ξ is $S\alpha S$ for p-sums with $\alpha=1$ if and only if

 $\mathbf{E} e^{-\sum (u_i \xi_i)^p} = e^{-h_Z(u)}, \quad u \in \mathbb{R}^d_+,$

where $Z = \mathbf{E} X$ is the expectation of

 $X = \{ (\eta_1 v_1, \dots, \eta_d v_d) : \|v\|_q \le 1, \ v \in \mathbb{R}^d_+ \}$

being randomly rescaled ℓ_q -ball.

$$lacksymbol{\square}$$
 The set Z is said to be an $L_1(p)$ -zonoid.

Case
$$p = 2$$
, i.e. $s +_2 t = \sqrt{s^2 + t^2}$

 \Box $L_1(2)$ -zonoid Z is the expectation of the ellipsoid

 $X = \{(\eta_1 v_1, \dots, \eta_d v_d) : \|v\|_2 \le 1, \ v \in \mathbb{R}^d_+\}$

with random semi-axes $\eta_1^{-1}, \ldots, \eta_d^{-1}$.

The Laplace transform of ξ is given by

$$\mathbf{E}\exp\left\{-\sum(\xi_i u_i)^2\right\} = e^{-h_Z(u)}$$

Arithmetic sums and $\alpha \in (0, 1)$

$$\exists \quad \xi \text{ is } S \alpha S \text{ in } \mathbb{R}^d_+ \text{ with } \alpha \in (0,1).$$

Then ξ^{α} is S1S for *p*-sums with $p = \frac{1}{\alpha}$.

Finally

$$\mathbf{E} e^{-\sum u_i \xi_i} = e^{-h_Z(u^\alpha)} \,,$$

where Z is the expectation of randomly rescaled ℓ_q -ball with $q=1/(1-\alpha),$ e.g. expectation of an ellipsoid if $\alpha=\frac{1}{2}.$

References

 \Box Multivariate $S\alpha S$ laws:

I. Molchanov, Convex and star-shaped sets associated with stable distributions

http://www.arxiv.org/abs/math.PR/0707.0221

Max-zonoids:

I. Molchanov, Convex geometry of max-stable distributions

Extremes, 2008. http://www.arxiv.org/abs/math.PR/0603423

General stability for semigroups:

Y. Davydov, I. Molchanov and S. Zuyev, Strictly stable distributions on

convex cones Electronic J. Probab. 2008