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Symmetric stable random vectors

A random vector ξ in R
d is symmetric stable with characteristic exponent

α 6= 0 (notation SαS) if ξ
D
= (−ξ) and for all a, b > 0,

a1/αξ1 + b1/αξ2
D
= (a + b)1/αξ ,

where ξ1, ξ2 are independent realisations of ξ.

Relationships to convex geometry
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Minkowski sums

Sums of convex bodies in R
d

A + B = {x + y : x ∈ A, y ∈ B}

+ =A B A+B
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Zonotopes

❏ Zonotopes are sums of segments, e.g. parallelograms.

+ =

zonotope

❏ Translate all segments, so that their centres are at the origin. Then

n
∑

i=1

[−ai, ai] = EX

is the expectation of the random segment X that equally likely takes values

[−nai, nai]. More general,
∑n

i=1 pi[−ai, ai] = EX
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Central symmetry

❏ Zonotopes are centrally symmetric — very much centrally symmetric!

❏ A polytope is a zonotope if and only if each its face of any dimension is

centrally symmetric (e.g. icosaedron is not a zonotope).

❏ Each centrally symmetric planar polygone is a zononotope.
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Zonoids

❏ Zonotopes are expected random segments with a discrete distribution.

❏ Zonoids are limits of zonotopes in the Hausdorff metric, i.e.

expectations of general random segments.

❏ Zonoids are convex and centrally symmetric.

❏ In the plane each centrally symmetric convex compact set is a zonoid.

This is wrong for dimensions d ≥ 3 (e.g. icosaedron).

❏ Translations are not important; assume that all segments are origin

symmetric, so the sums are also origin symmetric (centred).
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Support function

❏ For compact K ⊂ R
d the support function is

hK(u) = sup{〈u, x〉 : x ∈ K} , u ∈ R
d

K

u

hK(u)

❏ Minkowski sum of convex compact sets translates into the arithmetic

sum of their support functions, i.e.

hK+L(u) = hK(u) + hL(u)
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Examples of support functions

−z

z
u

K = [−z, z]
hK(u) = |〈z, u〉| hK(u) = r‖u‖

K = Br(0)
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Cosine transform

❏ Zonotope Z is a sum of segments, so its support function is a sum of

support functions of the summands:

hZ(u) =
n

∑

i=1

h[−ai,ai](u) = EhX(u)

❏ Thus, zonoid becomes the expectation of a random segment X , i.e.

hZ(u) = EhX(u)

❏ If X = [−η, η] is centred, then hX(u) = |〈u, η〉|, so that

Z is a centred zonoid if and only if

hZ(u) = E |〈u, η〉| =

∫

Rd

|〈u, z〉|Pη(dz) =

∫

Sd−1

|〈u, x〉|σ(dx) ,

where the spectral measure σ is a finite measure on the unit sphere S
d−1.
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Equivalent characterisations of zonoids

Z is zonoid is equivalent to

❏ hZ(u) =
∫

Sd−1 |〈u, x〉|σ(dx) for a finite measure σ.

❏ Z is the range of an R
d-valued measure.

❏ R
d with the norm ‖u‖F = hZ(u) is embeddable in L1([0, 1]),

where F = {u : hZ(u) ≤ 1} is the unit ball in this norm (polar set to Z).

❏ ϕ(u) = e−hZ(u), u ∈ R
d, is a positive definite function.

❏ etc. etc.
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Positive definiteness and zonoids

❏ Z is zonoid if and only if ϕ(u) = e−hZ(u) is positive definite.

❏ Note that hZ(tu) = thZ(u), function ϕ(u) is continuous and

ϕ(0) = 1.

❏ Thus ϕ is the characteristic functions of a stable law with characteristic

exponent α = 1, i.e. the Cauchy distribution.

❏ T.Ferguson (1962) noticed the difference between Cauchy laws in

dimensions 2 and 3, but did not explain it in terms of zonoids.
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Lévy representation

❏ A random vector ξ is SαS with 0 < α < 2 if and only if there exists a

unique symmetric finite (spectral) measure σ on the unit sphere S
d−1 such

that

ϕξ(u) = E ei〈ξ,u〉 = exp

{

−
∫

Sd−1

|〈u, z〉|ασ(dz)

}

.

(if α = 2, then |〈u, z〉|2 is a quadratic form and σ is not unique).

❏ Density is not known analytically apart from the cases α = 2 (normal

law) and α = 1 (Cauchy distribution).

12



Star bodies

❏ F is star body if [0, u) ⊂ IntF for every u ∈ F and the Minkowski

functional

‖u‖F = inf{s ≥ 0 : u ∈ sF} =
1

radial function of F in direction u

is continuous.

❏ F is called centred if it is origin-symmetric.

If F is also convex, then ‖u‖F is a (convex) norm on R
d.
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Stable laws, zonoids and star bodies

❏ For α ∈ (0, 2],
∫

Sd−1

|〈u, z〉|ασ(dz) = ‖u‖α
F ⇒ ϕξ(u) = e−‖u‖α

F ,

for an origin symmetric star body F .

❏ If α ∈ [1, 2], then
∫

Sd−1

|〈u, z〉|ασ(dz) = hZ(u)α and ϕξ(u) = e−hZ(u)α

for a convex body Z being an Lα-zonoid called the associated zonoid of ξ.

Then F = {u : hZ(u) ≤ 1} is convex and is the polar set to Z .
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First examples

ϕξ(u) = e−‖u‖α
F

F is called the associated star body of ξ

❏ If ξ has independent components, F = {x : xα
1 + · · · + xα

d ≤ rα}
is ℓα-ball in R

d (not convex if α < 1).

❏ If ξ = (ξ1, . . . , ξ1) (completely dependent), then ‖u‖F = |∑ui|;
its spectral measure σ is not full-dimensional; F is an infinite strip.
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Lp-balls

F is associated star body of SαS law

m
e−‖u‖α

F is positive definite

m
F is an Lp-ball, i.e. (Rd, ‖ · ‖F ) is embeddable in Lp([0, 1]) with p = α

1966: J. Bretagnolle, D. Dacunha Castelle, J.L. Krivine. Lois stables et

espaces Lp.

L1-balls are polar sets to zonoids
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One known result

Theorem 1. If F is an Lp-ball for p ∈ (0, 2], then F is an Lr-ball for all

r ∈ (0, p].

Proof. ξ is SαS with α = p and star body F . Let ζ > 0 be strictly stable

with exponent β ∈ (0, 1) and independent of ξ. Define ξ′ = ζ1/αξ

(sub-stable law).

E ei〈ξ′,u〉 = E(E(eiζ1/α〈ξ,u〉|ζ)) = E e−ζ‖u‖α
F = e−‖u‖αβ

F

Thus, F is the associated star body of ξ′ with the characteristic exponent

r = αβ ∈ (0, p).
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Summary so far

❏ Each SαS law is determined by α ∈ (0, 2] and star body F .

❏ The associated star body F is an Lα-ball.

❏ If α ∈ [1, 2], then F is convex, its polar is Lα-zonoid K , and

ϕξ(u) = e−‖u‖α
F = e−h(K,u)α

.

❏ Independent coordinates if and only if F is an ℓα-ball.
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Sub-Gaussian laws

❏ Sub-Gaussian laws appear as products
√

ζξ, where ξ is Gaussian

and ζ > 0 is positive (one-sided) strictly stable.

❏ Ellipsoids are associated zonoids (and star bodies) of Gaussian laws,

so all ellipsoids are Lp-zonoids for p ∈ [1, 2] and Lp-balls for p ∈ (0, 2].

❏ Sub-Gaussian laws can be characterised as those having ellipsoids as

associated star bodies (and zonoids).
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Approximation by sub-Gaussian laws

Theorem 2. A law is SαS with α ∈ [1, 2] if and only if it can be obtained

as a weak limit for sums of independent sub-Gaussian laws with the same

characteristic exponent α.

Proof. Grinberg–Zhang (1999) result on approximation of Lp-balls by sums

of ellipsoids.

Dvoretzky’s theorem (1960): Each SαS law of sufficiently high dimension

can be projected on a lower dimensional subspace, such that the projection

lies arbitrarily close to a sub-Gaussian law.
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Stable density

ξ is SαS with associated star body F and density f . Then

ϕξ(u) = e−‖u‖α
F = P{ζ ≥ ‖u‖F } = E1ζ≥‖u‖F

= E1u∈ζF ,

where

P{ζ ≥ x} = e−xα

, x > 0

Fourier inversion

(2π)df(x) = E

∫

Rd

e−i〈u,x〉
1u∈ζF du = E

∫

ζF

e−i〈u,x〉du

E.g.

f(0) =
1

(2π)d
Γ(1 +

d

α
)Vold(F )
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Generalised functions

f is the stable density, g is a generalised function

(g, f) =
1

(2π)d
(ĝ,E1u∈ζF )

❏ Need to find the action of the Fourier transform ĝ on 1u∈ζF .

❏ Important example g(x) = ‖x‖λ.
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Moments of the Euclidean norm

Theorem 3. For λ ∈ (−d, α)

E ‖ξ‖λ =
2λ−1

πd/2
Γ(

d + λ

2
)
Γ(1 − λ

α )

Γ(1 − λ
2 )

∫

Sd−1

‖u‖λ
F du .

Proof. Fourier transform for the generalised function ‖u‖λ or plain-wave

expansion of the norm.

Known: in the isotropic case F = Bσ−1 (σ is the scale parameter) and

E ‖ξ‖λ = 2λ Γ( 2+λ
2 )

Γ(d
2 )

Γ(1 − λ
α )

Γ(1 − λ
2 )

σλ .
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Wanted
∫

Sd−1 ‖u‖λ
Fdu !

❏ Not easy even if ‖u‖2
F is a bilinear form.

❏ This quantity is a dual mixed volume of F . The dual mixed volume

inequality implies

E ‖ξ‖λ ≥ 2λ Γ(d+λ
2 )

Γ(d
2 )

Γ(1 − λ
α )

Γ(1 − λ
2 )

(

κd

Vold(F )

)λ/d

.

with the equality if and only if F is a Euclidean ball (κd is the volume of the

unit Euclidean ball).

❏ Sophisticated bounds (Litvak–Milman–Schechtman, 1998: Averages of

norms and quasi-norms) imply inequalities between moments of different

orders.
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Other moments

❏ Expressions for mixed moments E(|ξ1|λ1 · · · |ξd|λd) and signed

powers E(ξ
〈λ1〉
1 · · · ξ〈λd〉

d ).

❏ For instance, if d is even,

E sign(ξ1 · · · ξd) =
id

πd

∫

F

du

u1 · · ·ud
.

The integral is scale-invariant and does not exceed πd in absolute value.
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Integrals of the density

∫

R

f(tu)dt =
1

(2π)d−1
Γ
(

1 +
d − 1

α

)

Vold−1(F ∩ u⊥)

❏ Busemann problem: Does Vold−1(F1 ∩ u⊥) ≤ Vold−1(F2 ∩ u⊥)

for all u and centred F1, F2 imply Vold(F1) ≤ Vold(F2)?

Gardner et al., 1999: yes if d ≤ 4, otherwise not.

❏ F is an Lp-ball, and so is an intersection body. Thus, in all dimensions

∫

R

f1(tu)dt ≤
∫

R

f2(tu)dt , u ∈ S
d−1 =⇒ f1(0) ≤ f2(0)
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Covariation

ξ is SαS in R
2 with α > 1 and associated zonoid Z

The covariation of ξ is defined as [ξ1, ξ2]α =
∫

S1 s1s
〈α−1〉
2 σ(ds)

Theorem 4. If {(x1, x2)} is the support point (necessarily unique!) of Z in

direction (0, 1), then

[ξ1, ξ2]α = x1x
α−1
2

Z

(x1, x2)
regression line

E(ξ1|ξ2) = x1

x2

ξ2 a.s.

Extension for multiple regression.
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One-sided stable laws

❏ How to describe geometrically a strictly stable (not symmetric!) ξ with

values in R
d
+?

❏ How to describe geometrically distributions stable with respect to other

operations, e.g. max-stable laws?
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R
d
+ with maximum operation

❏ ξ is max-stable random vector in R
d
+, i.e.

a1/αξ1 ∨ b1/αξ2
D
= (a + b)1/αξ

❏ Assume α = 1; then ξ is said to have a semi-simple max-stable

distribution. Up to a scale of coordinates, all marginals are unit Fréchet

Φ1(x) =







0, x < 0 ,

e−x−1

, x ≥ 0 ,

and ξ has a simple max-stable distribution.
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Representation of semi-simple max-stable
distributions

Theorem 5. A random vector ξ is semi-simple max-stable if and only if

P{ξ ≤ x} = exp{−hZ(x−1)} , x ∈ R
d
+ ,

where x−1 = (x−1
1 , . . . , x−1

d ) and

Z = cE∆η

is the expectation of the random crosspolytope

∆η = conv(0, η1e1, . . . , ηded) 0 η1

η2

∆η

for c > 0 and a random vector η in S
d−1
+ (unit sphere in R

d
+).
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Max-zonoids

+ =

η1

η2

∆η

Z = cE∆η

a1

a2

❏ The set Z = cE∆η is said to be a max-zonoid.

❏ If d = 2, then each convex set Z satisfying

∆a ⊂ Z ⊂ [0, a1] × [0, a2] for a = (a1, a2) ∈ (0,∞)2 is a

max-zonoid. This is not the case if d ≥ 3.

31



Summary so far

❏ Stable ξ has the chacteristic function

ϕ(u) = e−hZ(u)α

,

for an Lα-zonoid Z (Lp-expectation of a segment).

❏ Max-stable ξ with α = 1 has the cumulative distribution function

F (x) = e−hZ(x−1),

where Z is a max-zonoid (expectation of a random triangle).
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Between the sum and the maximum

❏ p-addition (assume p > 0)

s +p t = (sp + tp)1/p , s, t ≥ 0

Special cases: p = 1 (arithmetic sum); p = ∞ (maximum).

❏ The p-sum x +p y for x, y ∈ R
d
+ is defined coordinatewisely.
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Stability for p-sums: definition

❏ Random vector ξ in R
d
+ is SαS for p-sums if

a1/αξ1 +p b1/αξ2
D
= (a + b)1/αξ

for all a, b > 0, some α 6= 0, and ξ1, ξ2 being independent copies of ξ.

Assume p ∈ (0,∞).

❏ Stability on semigroups ⇒ α ∈ (0, p].
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Stability for p-sums: characterisation

Theorem 6. ξ is SαS for p-sums with α = 1 if and only if

E e−
P

(uiξi)
p

= e−hZ(u) , u ∈ R
d
+ ,

where Z = EX is the expectation of

X = {(η1v1, . . . , ηdvd) : ‖v‖q ≤ 1, v ∈ R
d
+}

being randomly rescaled ℓq-ball.

❏ The set Z is said to be an L1(p)-zonoid.
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Case p = 2, i.e. s +2 t =
√

s2 + t2

❏ L1(2)-zonoid Z is the expectation of the ellipsoid

X = {(η1v1, . . . , ηdvd) : ‖v‖2 ≤ 1, v ∈ R
d
+}

with random semi-axes η−1
1 , . . . , η−1

d .

+ =

η−1

2

η−1

1
Z

❏ The Laplace transform of ξ is given by

E exp
{

−
∑

(ξiui)
2
}

= e−hZ(u)
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Arithmetic sums and α ∈ (0, 1)

❏ ξ is SαS in R
d
+ with α ∈ (0, 1).

❏ Then ξα is S1S for p-sums with p = 1
α .

❏ Finally

E e−
P

uiξi = e−hZ(uα) ,

where Z is the expectation of randomly rescaled ℓq-ball with

q = 1/(1 − α), e.g. expectation of an ellipsoid if α = 1
2 .
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