Geometry of multivariate stable laws

llya Molchanov
University of Bern, Switzerland

Symmetric stable random vectors

A random vector ξ in \mathbb{R}^{d} is symmetric stable with characteristic exponent $\alpha \neq 0$ (notation $S \alpha S$) if $\xi \stackrel{\mathcal{D}}{=}(-\xi)$ and for all $a, b>0$,

$$
a^{1 / \alpha} \xi_{1}+b^{1 / \alpha} \xi_{2} \stackrel{\mathcal{D}}{=}(a+b)^{1 / \alpha} \xi,
$$

where ξ_{1}, ξ_{2} are independent realisations of ξ.
Relationships to convex geometry

Minkowski sums

Sums of convex bodies in \mathbb{R}^{d}

$$
A+B=\{x+y: x \in A, y \in B\}
$$

Zonotopes

\square Zonotopes are sums of segments, e.g. parallelograms.

\square Translate all segments, so that their centres are at the origin. Then

$$
\sum_{i=1}^{n}\left[-a_{i}, a_{i}\right]=\mathbf{E} X
$$

is the expectation of the random segment X that equally likely takes values $\left[-n a_{i}, n a_{i}\right]$. More general, $\sum_{i=1}^{n} p_{i}\left[-a_{i}, a_{i}\right]=\mathbf{E} X$

Central symmetry

\square Zonotopes are centrally symmetric — very much centrally symmetric!
\square A polytope is a zonotope if and only if each its face of any dimension is centrally symmetric (e.g. icosaedron is not a zonotope).
\square Each centrally symmetric planar polygone is a zononotope.

Zonoids

\square Zonotopes are expected random segments with a discrete distribution.
\square Zonoids are limits of zonotopes in the Hausdorff metric, i.e. expectations of general random segments.
\square Zonoids are convex and centrally symmetric.
\square In the plane each centrally symmetric convex compact set is a zonoid.
This is wrong for dimensions $d \geq 3$ (e.g. icosaedron).
\square Translations are not important; assume that all segments are origin symmetric, so the sums are also origin symmetric (centred).

Support function

\square For compact $K \subset \mathbb{R}^{d}$ the support function is

$$
h_{K}(u)=\sup \{\langle u, x\rangle: x \in K\}, \quad u \in \mathbb{R}^{d}
$$

\square Minkowski sum of convex compact sets translates into the arithmetic sum of their support functions, i.e.

$$
h_{K+L}(u)=h_{K}(u)+h_{L}(u)
$$

Examples of support functions

Cosine transform

$\square \quad$ Zonotope Z is a sum of segments, so its support function is a sum of support functions of the summands:

$$
h_{Z}(u)=\sum_{i=1}^{n} h_{\left[-a_{i}, a_{i}\right]}(u)=\mathbf{E} h_{X}(u)
$$

\square Thus, zonoid becomes the expectation of a random segment X, i.e.

$$
h_{Z}(u)=\mathbf{E} h_{X}(u)
$$

\square If $X=[-\eta, \eta]$ is centred, then $h_{X}(u)=|\langle u, \eta\rangle|$, so that Z is a centred zonoid if and only if

$$
h_{Z}(u)=\mathbf{E}|\langle u, \eta\rangle|=\int_{\mathbb{R}^{d}}|\langle u, z\rangle| \mathbf{P}_{\eta}(d z)=\int_{\mathbb{S}^{d-1}}|\langle u, x\rangle| \sigma(d x)
$$

where the spectral measure σ is a finite measure on the unit sphere \mathbb{S}^{d-1}.

Equivalent characterisations of zonoids

Z is zonoid is equivalent to
$\square \quad h_{Z}(u)=\int_{\mathbb{S}^{d-1}}|\langle u, x\rangle| \sigma(d x)$ for a finite measure σ.
$\square \quad Z$ is the range of an \mathbb{R}^{d}-valued measure.
$\square \mathbb{R}^{d}$ with the norm $\|u\|_{F}=h_{Z}(u)$ is embeddable in $L_{1}([0,1])$, where $F=\left\{u: h_{Z}(u) \leq 1\right\}$ is the unit ball in this norm (polar set to Z).
$\square \quad \varphi(u)=e^{-h_{Z}(u)}, u \in \mathbb{R}^{d}$, is a positive definite function.
\square etc. etc.

Positive definiteness and zonoids

$\square \quad Z$ is zonoid if and only if $\varphi(u)=e^{-h_{Z}(u)}$ is positive definite.
$\square \quad$ Note that $h_{Z}(t u)=t h_{Z}(u)$, function $\varphi(u)$ is continuous and $\varphi(0)=1$.
\square Thus φ is the characteristic functions of a stable law with characteristic exponent $\alpha=1$, i.e. the Cauchy distribution.
\square T.Ferguson (1962) noticed the difference between Cauchy laws in dimensions 2 and 3 , but did not explain it in terms of zonoids.

Lévy representation

\square A random vector ξ is $S \alpha S$ with $0<\alpha<2$ if and only if there exists a unique symmetric finite (spectral) measure σ on the unit sphere \mathbb{S}^{d-1} such that

$$
\varphi_{\xi}(u)=\mathbf{E} e^{i\langle\xi, u\rangle}=\exp \left\{-\int_{\mathbb{S}^{d}-1}|\langle u, z\rangle|^{\alpha} \sigma(d z)\right\}
$$

(if $\alpha=2$, then $|\langle u, z\rangle|^{2}$ is a quadratic form and σ is not unique).
\square Density is not known analytically apart from the cases $\alpha=2$ (normal law) and $\alpha=1$ (Cauchy distribution).

Star bodies

$\square \quad F$ is star body if $[0, u) \subset \operatorname{IntF}$ for every $u \in F$ and the Minkowski functional

$$
\|u\|_{F}=\inf \{s \geq 0: u \in s F\}=\frac{1}{\text { radial function of } F \text { in direction } u}
$$

is continuous.
$\square \quad F$ is called centred if it is origin-symmetric.
If F is also convex, then $\|u\|_{F}$ is a (convex) norm on \mathbb{R}^{d}.

Stable laws, zonoids and star bodies

\square For $\alpha \in(0,2]$,

$$
\int_{\mathbb{S}^{d-1}}|\langle u, z\rangle|^{\alpha} \sigma(d z)=\|u\|_{F}^{\alpha} \Rightarrow \varphi_{\xi}(u)=e^{-\|u\|_{F}^{\alpha}}
$$

for an origin symmetric star body F.
\square If $\alpha \in[1,2]$, then

$$
\int_{\mathbb{S}^{d-1}}|\langle u, z\rangle|^{\alpha} \sigma(d z)=h_{Z}(u)^{\alpha} \quad \text { and } \quad \varphi_{\xi}(u)=e^{-h_{Z}(u)^{\alpha}}
$$

for a convex body Z being an L_{α}-zonoid called the associated zonoid of ξ. Then $F=\left\{u: h_{Z}(u) \leq 1\right\}$ is convex and is the polar set to Z.

First examples

$$
\varphi_{\xi}(u)=e^{-\|u\|_{F}^{\alpha}}
$$

F is called the associated star body of ξ
\square If ξ has independent components, $F=\left\{x: x_{1}^{\alpha}+\cdots+x_{d}^{\alpha} \leq r^{\alpha}\right\}$ is ℓ_{α}-ball in \mathbb{R}^{d} (not convex if $\alpha<1$).
\square If $\xi=\left(\xi_{1}, \ldots, \xi_{1}\right)$ (completely dependent), then $\|u\|_{F}=\left|\sum u_{i}\right|$;
its spectral measure σ is not full-dimensional; F is an infinite strip.

L_{p}-balls

F is associated star body of $S \alpha S$ law
I
$e^{-\|u\|_{F}^{\alpha}}$ is positive definite
I
F is an L_{p}-ball, i.e. $\left(\mathbb{R}^{d},\|\cdot\|_{F}\right)$ is embeddable in $L_{p}([0,1])$ with $p=\alpha$

1966: J. Bretagnolle, D. Dacunha Castelle, J.L. Krivine. Lois stables et espaces L^{p}.
L_{1}-balls are polar sets to zonoids

One known result

Theorem 1. If F is an L_{p}-ball for $p \in(0,2]$, then F is an L_{r}-ball for all $r \in(0, p]$.

Proof. ξ is $S \alpha S$ with $\alpha=p$ and star body F. Let $\zeta>0$ be strictly stable with exponent $\beta \in(0,1)$ and independent of ξ. Define $\xi^{\prime}=\zeta^{1 / \alpha} \xi$ (sub-stable law).

$$
\mathbf{E} e^{i\left\langle\xi^{\prime}, u\right\rangle}=\mathbf{E}\left(\mathbf{E}\left(e^{i \zeta^{1 / \alpha}\langle\xi, u\rangle} \mid \zeta\right)\right)=\mathbf{E} e^{-\zeta\|u\|_{F}^{\alpha}}=e^{-\|u\|_{F}^{\alpha \beta}}
$$

Thus, F is the associated star body of ξ^{\prime} with the characteristic exponent $r=\alpha \beta \in(0, p)$.

Summary so far

- Each $S \alpha S$ law is determined by $\alpha \in(0,2]$ and star body F.
$\square \quad$ The associated star body F is an L_{α}-ball.
\square If $\alpha \in[1,2]$, then F is convex, its polar is L_{α}-zonoid K, and

$$
\varphi_{\xi}(u)=e^{-\|u\|_{F}^{\alpha}}=e^{-h(K, u)^{\alpha}}
$$

\square Independent coordinates if and only if F is an ℓ_{α}-ball.

Sub-Gaussian laws

- Sub-Gaussian laws appear as products $\sqrt{\zeta} \xi$, where ξ is Gaussian and $\zeta>0$ is positive (one-sided) strictly stable.
\square Ellipsoids are associated zonoids (and star bodies) of Gaussian laws, so all ellipsoids are L_{p}-zonoids for $p \in[1,2]$ and L_{p}-balls for $p \in(0,2]$.
\square Sub-Gaussian laws can be characterised as those having ellipsoids as associated star bodies (and zonoids).

Approximation by sub-Gaussian laws

Theorem 2. A law is $S \alpha S$ with $\alpha \in[1,2]$ if and only if it can be obtained as a weak limit for sums of independent sub-Gaussian laws with the same characteristic exponent α.

Proof. Grinberg-Zhang (1999) result on approximation of L_{p}-balls by sums of ellipsoids.

Dvoretzky's theorem (1960): Each $S \alpha S$ law of sufficiently high dimension can be projected on a lower dimensional subspace, such that the projection lies arbitrarily close to a sub-Gaussian law.

Stable density

ξ is $S \alpha S$ with associated star body F and density f. Then

$$
\varphi_{\xi}(u)=e^{-\|u\|_{F}^{\alpha}}=\mathbf{P}\left\{\zeta \geq\|u\|_{F}\right\}=\mathbf{E} \mathbf{1}_{\zeta \geq\|u\|_{F}}=\mathbf{E} \mathbf{1}_{u \in \zeta F},
$$

where

$$
\mathbf{P}\{\zeta \geq x\}=e^{-x^{\alpha}}, \quad x>0
$$

Fourier inversion

$$
(2 \pi)^{d} f(x)=\mathbf{E} \int_{\mathbb{R}^{d}} e^{-i\langle u, x\rangle} \mathbf{1}_{u \in \zeta F} d u=\mathbf{E} \int_{\zeta F} e^{-i\langle u, x\rangle} d u
$$

E.g.

$$
f(0)=\frac{1}{(2 \pi)^{d}} \Gamma\left(1+\frac{d}{\alpha}\right) \operatorname{Vol}_{d}(F)
$$

Generalised functions

f is the stable density, g is a generalised function

$$
(g, f)=\frac{1}{(2 \pi)^{d}}\left(\hat{g}, \mathbf{E} \mathbf{1}_{u \in \zeta F}\right)
$$

Need to find the action of the Fourier transform \hat{g} on $\mathbf{1}_{u \in \zeta F}$.
$\square \quad$ Important example $g(x)=\|x\|^{\lambda}$.

Moments of the Euclidean norm

Theorem 3. For $\lambda \in(-d, \alpha)$

$$
\mathbf{E}\|\xi\|^{\lambda}=\frac{2^{\lambda-1}}{\pi^{d / 2}} \Gamma\left(\frac{d+\lambda}{2}\right) \frac{\Gamma\left(1-\frac{\lambda}{\alpha}\right)}{\Gamma\left(1-\frac{\lambda}{2}\right)} \int_{\mathbb{S}^{d-1}}\|u\|_{F}^{\lambda} d u .
$$

Proof. Fourier transform for the generalised function $\|u\|^{\lambda}$ or plain-wave expansion of the norm.

Known: in the isotropic case $F=B_{\sigma^{-1}}$ (σ is the scale parameter) and

$$
\mathbf{E}\|\xi\|^{\lambda}=2^{\lambda} \frac{\Gamma\left(\frac{2+\lambda}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \frac{\Gamma\left(1-\frac{\lambda}{\alpha}\right)}{\Gamma\left(1-\frac{\lambda}{2}\right)} \sigma^{\lambda} .
$$

Wanted $\int_{\mathbb{S}^{d-1}}\|u\|_{F}^{\lambda} d u!$

$\square \quad$ Not easy even if $\|u\|_{F}^{2}$ is a bilinear form.
$\square \quad$ This quantity is a dual mixed volume of F. The dual mixed volume inequality implies

$$
\mathbf{E}\|\xi\|^{\lambda} \geq 2^{\lambda} \frac{\Gamma\left(\frac{d+\lambda}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \frac{\Gamma\left(1-\frac{\lambda}{\alpha}\right)}{\Gamma\left(1-\frac{\lambda}{2}\right)}\left(\frac{\kappa_{d}}{\operatorname{Vol}_{d}(F)}\right)^{\lambda / d}
$$

with the equality if and only if F is a Euclidean ball (κ_{d} is the volume of the unit Euclidean ball).
\square Sophisticated bounds (Litvak-Milman-Schechtman, 1998: Averages of norms and quasi-norms) imply inequalities between moments of different orders.

Other moments

\square Expressions for mixed moments $\mathbf{E}\left(\left|\xi_{1}\right|^{\lambda_{1}} \cdots\left|\xi_{d}\right|^{\lambda_{d}}\right)$ and signed powers $\mathbf{E}\left(\xi_{1}^{\left\langle\lambda_{1}\right\rangle} \cdots \xi_{d}^{\left\langle\lambda_{d}\right\rangle}\right)$.
\square For instance, if d is even,

$$
\mathbf{E} \operatorname{sign}\left(\xi_{1} \cdots \xi_{d}\right)=\frac{i^{d}}{\pi^{d}} \int_{F} \frac{d u}{u_{1} \cdots u_{d}}
$$

The integral is scale-invariant and does not exceed π^{d} in absolute value.

Integrals of the density

$$
\int_{\mathbb{R}} f(t u) d t=\frac{1}{(2 \pi)^{d-1}} \Gamma\left(1+\frac{d-1}{\alpha}\right) \operatorname{Vol}_{d-1}\left(F \cap u^{\perp}\right)
$$

\square Busemann problem: Does $\operatorname{Vol}_{d-1}\left(F_{1} \cap u^{\perp}\right) \leq \operatorname{Vol}_{d-1}\left(F_{2} \cap u^{\perp}\right)$ for all u and centred F_{1}, F_{2} imply $\operatorname{Vol}_{d}\left(F_{1}\right) \leq \operatorname{Vol}_{d}\left(F_{2}\right)$? Gardner et al., 1999: yes if $d \leq 4$, otherwise not.
$\square \quad F$ is an L_{p}-ball, and so is an intersection body. Thus, in all dimensions

$$
\int_{\mathbb{R}} f_{1}(t u) d t \leq \int_{\mathbb{R}} f_{2}(t u) d t, \quad u \in \mathbb{S}^{d-1} \Longrightarrow f_{1}(0) \leq f_{2}(0)
$$

Covariation

ξ is $S \alpha S$ in \mathbb{R}^{2} with $\alpha>1$ and associated zonoid Z
The covariation of ξ is defined as $\left[\xi_{1}, \xi_{2}\right]_{\alpha}=\int_{\mathbb{S}^{1}} s_{1} s_{2}^{\langle\alpha-1\rangle} \sigma(d s)$

Theorem 4. If $\left\{\left(x_{1}, x_{2}\right)\right\}$ is the support point (necessarily unique!) of Z in direction $(0,1)$, then

$$
\left[\xi_{1}, \xi_{2}\right]_{\alpha}=x_{1} x_{2}^{\alpha-1}
$$

$$
\mathbf{E}\left(\xi_{1} \mid \xi_{2}\right)=\frac{x_{1}}{x_{2}} \xi_{2} \text { a.s. }
$$

Extension for multiple regression.

One-sided stable laws

- How to describe geometrically a strictly stable (not symmetric!) ξ with values in \mathbb{R}_{+}^{d} ?
\square How to describe geometrically distributions stable with respect to other operations, e.g. max-stable laws?

\mathbb{R}_{+}^{d} with maximum operation

$\square \quad \xi$ is max-stable random vector in \mathbb{R}_{+}^{d}, i.e.

$$
a^{1 / \alpha} \xi_{1} \vee b^{1 / \alpha} \xi_{2} \stackrel{\mathcal{D}}{=}(a+b)^{1 / \alpha} \xi
$$

\square Assume $\alpha=1$; then ξ is said to have a semi-simple max-stable distribution. Up to a scale of coordinates, all marginals are unit Fréchet

$$
\Phi_{1}(x)= \begin{cases}0, & x<0 \\ e^{-x^{-1}}, & x \geq 0\end{cases}
$$

and ξ has a simple max-stable distribution.

Representation of semi-simple max-stable distributions

Theorem 5. A random vector ξ is semi-simple max-stable if and only if

$$
\mathbf{P}\{\xi \leq x\}=\exp \left\{-h_{Z}\left(x^{-1}\right)\right\}, \quad x \in \mathbb{R}_{+}^{d}
$$

where $x^{-1}=\left(x_{1}^{-1}, \ldots, x_{d}^{-1}\right)$ and

$$
Z=c \mathbf{E} \Delta_{\eta}
$$

is the expectation of the random crosspolytope

$$
\Delta_{\eta}=\operatorname{conv}\left(0, \eta_{1} e_{1}, \ldots, \eta_{d} e_{d}\right)
$$

$$
\overbrace{0}^{\stackrel{\Delta_{\eta}}{\eta_{1}}}
$$

for $c>0$ and a random vector η in \mathbb{S}_{+}^{d-1} (unit sphere in \mathbb{R}_{+}^{d}).

Max-zonoids

$\square \quad$ The set $Z=c \mathbf{E} \Delta_{\eta}$ is said to be a max-zonoid.
\square If $d=2$, then each convex set Z satisfying
$\Delta_{a} \subset Z \subset\left[0, a_{1}\right] \times\left[0, a_{2}\right]$ for $a=\left(a_{1}, a_{2}\right) \in(0, \infty)^{2}$ is a max-zonoid. This is not the case if $d \geq 3$.

Summary so far

\square Stable ξ has the chacteristic function

$$
\varphi(u)=e^{-h_{Z}(u)^{\alpha}}
$$

for an L_{α}-zonoid Z (L_{p}-expectation of a segment).
\square Max-stable ξ with $\alpha=1$ has the cumulative distribution function

$$
F(x)=e^{-h_{Z}\left(x^{-1}\right)}
$$

where Z is a max-zonoid (expectation of a random triangle).

Between the sum and the maximum

$\square \quad p$-addition (assume $p>0$)

$$
s+{ }_{p} t=\left(s^{p}+t^{p}\right)^{1 / p}, \quad s, t \geq 0
$$

Special cases: $p=1$ (arithmetic sum); $p=\infty$ (maximum).
$\square \quad$ The p-sum $x+{ }_{p} y$ for $x, y \in \mathbb{R}_{+}^{d}$ is defined coordinatewisely.

Stability for p-sums: definition

$\square \quad$ Random vector ξ in \mathbb{R}_{+}^{d} is $S \alpha S$ for p-sums if

$$
a^{1 / \alpha} \xi_{1}+{ }_{p} b^{1 / \alpha} \xi_{2} \stackrel{\mathcal{D}}{=}(a+b)^{1 / \alpha} \xi
$$

for all $a, b>0$, some $\alpha \neq 0$, and ξ_{1}, ξ_{2} being independent copies of ξ. Assume $p \in(0, \infty)$.
\square Stability on semigroups $\Rightarrow \alpha \in(0, p]$.

Stability for p-sums: characterisation

Theorem 6. ξ is $S \alpha S$ for p-sums with $\alpha=1$ if and only if

$$
\mathbf{E} e^{-\sum\left(u_{i} \xi_{i}\right)^{p}}=e^{-h_{Z}(u)}, \quad u \in \mathbb{R}_{+}^{d}
$$

where $Z=\mathbf{E} X$ is the expectation of

$$
X=\left\{\left(\eta_{1} v_{1}, \ldots, \eta_{d} v_{d}\right):\|v\|_{q} \leq 1, v \in \mathbb{R}_{+}^{d}\right\}
$$

being randomly rescaled ℓ_{q}-ball.
$\square \quad$ The set Z is said to be an $L_{1}(p)$-zonoid.

$$
\text { Case } p=2 \text {, i.e. } s+{ }_{2} t=\sqrt{s^{2}+t^{2}}
$$

- $\quad L_{1}(2)$-zonoid Z is the expectation of the ellipsoid

$$
X=\left\{\left(\eta_{1} v_{1}, \ldots, \eta_{d} v_{d}\right):\|v\|_{2} \leq 1, v \in \mathbb{R}_{+}^{d}\right\}
$$

with random semi-axes $\eta_{1}^{-1}, \ldots, \eta_{d}^{-1}$.

$\square \quad$ The Laplace transform of ξ is given by

$$
\mathbf{E} \exp \left\{-\sum\left(\xi_{i} u_{i}\right)^{2}\right\}=e^{-h_{Z}(u)}
$$

Arithmetic sums and $\alpha \in(0,1)$

$\square \quad \xi$ is $S \alpha S$ in \mathbb{R}_{+}^{d} with $\alpha \in(0,1)$.
$\square \quad$ Then ξ^{α} is $S 1 S$ for p-sums with $p=\frac{1}{\alpha}$.
\square Finally

$$
\mathbf{E} e^{-\sum u_{i} \xi_{i}}=e^{-h_{Z}\left(u^{\alpha}\right)},
$$

where Z is the expectation of randomly rescaled ℓ_{q}-ball with $q=1 /(1-\alpha)$, e.g. expectation of an ellipsoid if $\alpha=\frac{1}{2}$.

References

\square Multivariate $S \alpha S$ laws:
I. Molchanov, Convex and star-shaped sets associated with stable distributions
http://www.arxiv.org/abs/math.PR/0707.0221

- Max-zonoids:
I. Molchanov, Convex geometry of max-stable distributions

Extremes, 2008. http://www.arxiv.org/abs/math.PR/0603423
\square General stability for semigroups:
Y. Davydov, I. Molchanov and S. Zuyev, Strictly stable distributions on convex cones Electronic J. Probab. 2008

