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Voronoi Cells

Given ϕ = {x1, x2, . . . } ⊂ Rd at most countable set of nuclei
points, with each xi ∈ ϕ there is associated a

Voronoi Cell

C(xi , ϕ) = {y ∈ Rd : ‖y − xi‖ ≤ ‖y − xj‖ for all xj ∈ ϕ}
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Main Properties of Voronoi Tessellation

Being intersection of half-spaces, each cell is a convex
polytope
Voronoi tessellation (VT) is normal, i. e. if nuclei ϕ are in a
general position1 then each k -dimensional face (k -face) is
the intersection of exactly d − k + 1 cells (vertices are
0-dimensional faces)
In particular, each k -face is the set of points equidistant
from exactly d − k + 1 nuclei.

1No k + 2 nuclei lie in a k -dimensional plane and no k + 3 nuclei lie in a
k -dimensional sphere
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Applications and Limitations of Voronoi Tessellation

There are huge number of different applications of VT:
modelling of cellular systems in Biology, material science,
telecommunications, encoding algorithms, numeric
integration, etc.
Still, since the geometry of cells defined by inter-distances
between nuclei only, all nuclei are ‘equal’. However, in
many real situations this may be too restrictive. One may
wish to assign some ‘weight’ to nuclei so that ‘mighty’
nuclei get larger cells.
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Power Function

Assume with each nuclei xi ∈ ϕ there is associated a
non-negative weight wi . A power of a point y with respect to the
pair (x ,w) is defined as

pow(y , (x ,w)) = ‖y − x‖2 − w .

In geometry, this is the power of a point with respect to a
sphere of radius r =

√
w , hence the name.
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Laguerre Cells

Let ϕ = {(xi , ri)} be (weighted) nuclei set. With every
nucleus (xi , ri) there is associated

Laguerre cell

C((xi , ri), ϕ) = {y ∈ Rd : pow(y , (xi , r2
i )) ≤pow(y , (xj , r2

j ))

for all (xj , rj) ∈ ϕ} .

Compared to VT, the Euclidean distance is replaced with
‘power-distance’ in the definition of cells.
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Voronoi Cells vs. Laguerre Cells

Similarities
Laguerre cells are also convex polytopes
Laguerre tessellation (LT) formed by non-empty cells is
normal

Differences
Laguerre cell can be empty
It may not contain its nucleus
It may contain a few nuclei even the ones with non-empty
cells
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Voronoi and Laguerre Tessellations
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Normal tessellations in Rd (d ≥ 3)

Theorem

Every normal tessellation of Rd with convex cells for d ≥ 3 is a
Laguerre tessellation.

This statement cannot be strengthened to include d = 2, a
counter-example is given by F. Aurenhammer
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Poisson Laguerre Tessellations

If the nuclei set ϕ is given by a realisation of a random
point process, the corresponding LT becomes a random
tessellation.
From now on we concentrate on Poisson Laguerre
tessellations (PLT) when ϕ is a realisation of a Poisson
point process (PPP) in Rd × R+ with intensity measure
λdxρ(dr).
Since points of PPP are in general position a.s., PLT is
normal a.s.
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The Condition of Existence

Theorem
Let Φ be a PPP with intensity measure λdxρ(dr). Then the PLT
exists, i.e. min

(x ,r)∈Φ
pow(y , (x , r)) > −∞ a.s. for all y ∈ Rd ,

if and only if

∞∫
1

rd ρ(dr) <∞ .
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Idea of the Proof

Generating functional for PPP: for a suitable function v(x , r)

G[v ] = E
[ ∏

(x ,r)∈Φ

v(x , r)
]

= exp
{
−λ
∫ (

1−v(x , r)
)
λd (dx) ρ(dr)

}
.
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Let y ∈ Rd and p(t) be the probability that the power from y to
each point of Φ exceeds t :

p(t) = E

 ∏
(x ,r)∈Φ

1I{pow(y , (x , r)) > t}


= G

[
1I{pow(y , (x , r)) > t}

]
= exp

{
− λωd

∞∫
0

(
[t + r2]+

) d
2 ρ(dr)

}
,

where t+ = max(t ,0) and ωd is the volume of a unit ball in Rd .
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If
∫∞

1 rdρ(dr) <∞, then

P
(

inf
(x ,r)∈Φ

pow(y , (x , r)) = −∞
)

= lim
t→−∞

P
(

inf
(x ,r)∈Φ

pow(y , (x , r)) < t
)

= lim
t→−∞

(1− p(t)) = 0.

Thus for each y ∈ Rd we have at least one point (x , r) ∈ Φ
minimising pow(y , (x , r)). Hence, y ∈ C((x , r),Φ).
On the other hand,

∫∞
1 rdρ(dr) =∞ implies p(t) = 0 for each t

and therefore inf(x ,r)∈Φ pow(y , (x , r)) = −∞ with probability 1.
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Intensities of faces

There are two types of intensities to be defined: counting and
area-weighted.

Let γk be intensity of k -dimensional faces of the PVT
(k = 0 corresponds to vertices, k = d – to the cells). So
that in a large volume A there is on average γkA
k -dimensional faces.
Let µk be the mean k -content of k -faces per unit volume.
So that in a large volume A the k -content of k -dimensional
faces is on average µkA.
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Expressions for intensities

There are expressions for γk and µk for k = 0, . . . ,d and all
d ≥ 2 which involve integration w.r.t. ρ(dr) and the integrals

Vm,k (w0, . . . ,wm)

= (m!)k+1
∫

(Sm−1)m+1

∆k+1
m (w0u0 . . .wmum)σm+1(du0 . . . dum) ,

where ∆m(x0, . . . , xm) is the m-dimensional volume of the
convex hull of x0, . . . , xm in Rm and σ is the surface measure.
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In some cases, there are explicit expressions for Vm,k . E.g. if
the weights are equal (Voronoi tessellation case)

Vm,k (1, . . . ,1) = 2m+1π
m(m+1)

2

×
Γ
(1

2(m + 1)(d + 1)−m
)

Γ(md
2 )Γ(d+1

2 )m+1

m∏
i=1

Γ
(1

2(k + 1 + i)
)

Γ( i
2)

.
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Planar Laguerre Tessellations

For planar normal tessellations one has

γ1 = 3/2γ2 γ0 = 1/2γ2

γ2 = p0λ µ0 = γ0 = 2γ2 ,

where p0 is the (Palm) probability that a typical Laguerre cell is
non-empty.
So it is sufficient to evaluate explicitly at least one of the above
quantities (and µ1) for the others to come explicit too.
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Idea for computation of vertex intensity

At a vertex, the powers from nuclei zi = (xi , ri) of 3
neighbouring Laguerre cells have the same value, say t .
Powers from all other nuclei should be larger than t . The prob.
of the last is p(t). Now integrate w.r.t t and possible position of
zi ’s.

µ0 =
λ3

12

∫∫∫
R3

+

∞∫
−min

i
r2
i

e
−λπ

∞R
0

[t+r2]+ρ(dr)

× V2,0

(
(t + r2

0 )
1
2 , (t + r2

1 )
1
2 , (t + r2

2 )
1
2

)
dt

× ρ(dr0)ρ(dr1)ρ(dr2)
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Other results

Mean k -content of typical k -faces
Spherical and linear contact distribution functions
Convergence to VT under different schemes of power
distributions
Characteristics of sectional tessellations
Statistical applications: modelling and parameter fitting

Happy reading and applying!
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