A brief introduction to spatial point processes

\qquad
\qquad

Jean-François Coeurjolly

\qquad
http://www-ljk.imag.fr/membres/Jean-Francois.Coeurjolly/
\qquad
Laboratoire Jean Kuntzmann (LJK), Grenoble University \qquad
\qquad
\qquad
\qquad
\qquad

Examples	Definitions, Poisson
Preliminary	Summary statistics

Notes
Preliminary
\qquad
\qquad
Files which can de downloaded
http://www-ljk.imag.fr/membres/Jean-Francois.Coeurjolly/documents/Lille/ or more simply on the workshop webpage, program page
http://math.univ-lille1.fr/ heinrich/geostoch2014/

- introductionSPP_cours.pdf : pdf file of the slides. Beamer version.
- introductionSPP_print.pdf : pdf file of the printed version.
- Short R code used to illustrate the talks.
- The code is using the excellent R package spatstat which can be downloaded from the R CRAN website.

(1)
 Examples

(2) Definitions, Poisson

3 Summary statistics \qquad
4. Modelling and inference \qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
... can be roughly and mainly classified into three categories :
(1) Geostatistical data.
\qquad
(2) Lattice data.
(3) Spatial point pattern
\qquad

- sic. 100 dataset (R package geoR)
- Cumulative rainfall in Switzerlan the 8th May.
- The observation consists in the discretization of a random field,
$X=\left(X_{u}, u \in \mathbb{R}^{2}\right)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad

Percentage with blood group A in Eire \qquad

- Eire dataset (R package spdep)
- \% of people with group A in eire, observed in 26 regions.
- The data are aggregated on the region \Rightarrow random field on a network.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Lennon dataset (R package fields)
- Real-valued random field (gray scale image with values in $[0,1])$.
- Defined on the network $\{1, \ldots, 256\}^{2}$.
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| Examples | Definitions, Poisson | Summary statistics |
| :--- | :---: | :---: | Modelling and inference

Notes
\qquad
\qquad

- Japanesepines dataset (R package spatstat)
- Locations of 65 trees on a bounded domain.
- $S=\mathbb{R}^{2}$ (equipped with $\|\cdot\|)$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Longleaf dataset (R package spatstat)
- Locations of 584 trees observed with their diameter at breast height.
- $\mathcal{S}=\mathbb{R}^{2} \times \mathbb{R}^{+}$(equipped with $\max (\|\cdot\|,|\cdot|)$).

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad

- Ants dataset (R package spatstat)
- Locations of 97 ants categorised into two species.
- $S=\mathbb{R}^{2} \times\{0,1\}$ (equipped with the metric $\max \left(\|\cdot\|, d_{M}\right)$ for any distance d_{M} on the mark space).

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- chorley dataset (R package spatstat)
- Cases of larynx and lung cancers and position of an industrial incinerator
- $S=\mathbb{R}^{2} \times\{0,1\}$ (equipped with the metric $\max \left(\|\cdot\|, d_{M}\right)$ for any distance d_{M} on the mark space).

Notes
\qquad

- Beischmedia dataset (R package spatstat)
- 3604 locations of trees observed with spatial covariates (here
\qquad the elevation field). \qquad
- $S=\mathbb{R}^{2}$ (equipped with the metric $\left.\|\cdot\|\right), z(\cdot) \in \mathbb{R}^{2}$.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Spatio-temporal point process on a complex space
- Daily observation of sunspots at the surface of the sun.
- can be viewed as the realization of a marked spatio-temporal \qquad point process on the sphere.
- $S=S_{2} \times \mathbb{R}^{+} \times \mathbb{R}^{+}$(state, time, and mork) \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

- Towards stochastic geometry .
- Planar section of the pseudo-stratified epithelium of a drosophila wing marked with antibodies to highlight cell borders.
- The centers form of the tessellation form a point process.
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

References

冨 A．Baddeley and R．Turner．
Spatstat ：an R package for analyzing spatial point patterns．
Journal of Statistical Software， 12 ：1－42， 2005.
\qquad

N．Cressie．
Statistics for spatial data． John Wiley and Sons，Inc， 1993.
嗇 P．J．Diggle．
Statistical Analysis of Spatial Point Patterns． Arnold，London，second edition， 2003.
夙 X．Guyon．
Random Fields on a Network．
Springer－Verlag，New York， 1991.
國 J．Illian，A．Penttinen，H．Stoyan，and D．Stoyan． Statistical Analysis and Modelling of Spatial Point Patterns． Statistics in Practice．Wiley，Chichester， 2008.
R J．Møller and R．P．Waagepetersen．
Statistical Inference and Simulation for Spatial Point Processes
Chapman and Hall／CRC，Boca Raton， 2004

Notes
\qquad
－S ：Polish state space of the point process（equipped with the \qquad σ－algebra of Borel sets \mathcal{B} ）
－A configuration of points is denoted $x=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$ ．For $B \subseteq S: x_{B}=x \cap B$.
\qquad
－$N_{l f}$ ：space of locally finite configurations，i．e．

$$
\left\{x, n\left(x_{B}\right)=\left|x_{B}\right|<\infty, \forall B \text { bounded } \subseteq S\right\}
$$

equipped with $\mathcal{N}_{l f}=\sigma\left(\left\{x \in \mathcal{N}_{l f}, n\left(x_{B}\right)=m\right\}, B \in \mathcal{B}, B\right.$ bounded，$\left.m \geq 1\right)$ ．

Definition

A point process X defined on S is a measurable application defined on some probability space (Ω, \mathcal{F}, P) with values on $N_{\text {If }}$ ．

Measurability of $X \Leftrightarrow N(B)=\left|X_{B}\right|$ is a r．v．for any bounded $B \in \mathcal{B}$ ．

Proposition

\qquad
The distribution of a point process X
(1) is determined by the finite dimensional distributions of its counting function, i.e. the joint distribution of $N\left(B_{1}\right), \ldots, N\left(B_{m}\right)$ for any bounded $B_{1}, \ldots, B_{m} \in \mathcal{B}$ and any $m \geq 1$.
(2) is uniquely determined by its void probabilities, i.e. by

$$
P(N(B)=0), \quad \text { for bounded } B \in \mathcal{B}
$$

- From now on, we assume that $S=\mathbb{R}^{d}$ (and even $d=2$) or a bounded domain of \mathbb{R}^{2}.
- Everything can de extended to marked spatial point processes and/or to more complex domains.

Notes
\qquad

- Moments play an important role in the modelling of classical inference.
- For point processes $=$ moments of counting variables.
\qquad

Definition: for $n \geq 1$ we define

\qquad

- the n-th order moment measure (defined on S^{n}) by \qquad

$$
\mu^{(n)}=\mathrm{E} \sum_{u_{1}, \ldots, u_{n}} \mathbf{1}\left(\left\{u_{1}, \ldots, u_{n}\right\} \in D\right), \quad D \subseteq S^{n}
$$

- the n-th order reduced moment measure (defined on S^{n}) by

$$
\alpha^{(n)}(D)=\mathrm{E} \sum_{u_{1}, \ldots, u_{n}}^{\neq} \mathbf{1}\left(\left\{u_{1}, \ldots, u_{n}\right\} \in D\right), \quad D \subseteq S^{n}
$$

where the \neq sign means that the n points are pairwise distinct.

Intensity functions

Assume $\mu^{(1)}$ and $\alpha^{(2)}$ are absolutely continuous w.r.t. Lebesgue measure, and denote by ρ and $\rho^{(2)}$ the densities. \qquad

Campbell Theorems

\qquad
(1) For any measurable function $h: S \rightarrow \mathbb{R}$ \qquad

$$
\mathrm{E} \sum_{u \in X} h(u)=\int_{S} h(u) \rho(u) \mathrm{d} u
$$

\qquad
(2) For any measurable function $h: S \times S \rightarrow \mathbb{R}$
\qquad

$$
\mathrm{E} \sum_{u, v \in X}^{\neq} h(u, v)=\int_{S} \int_{S} h(u, v) \rho^{(2)}(u, v) \mathrm{d} u \mathrm{~d} v .
$$

\qquad
\qquad
$\rho(u) \mathrm{d} u \simeq$ Probability of the occurence of u in $B(u, \mathrm{~d} u)$ $\rho^{(2)}(u, v) \simeq$ Probability of the occurence of u in $B(u, \mathrm{~d} u)$ and v in $B(v, \mathrm{~d} v)$.
\qquad
\qquad

Notes
\qquad
Classical definition: $X \sim \operatorname{Poisson}(S, \rho)$ \qquad

- $\forall m \geq 1, \forall$ bounded and disjoint $B_{1}, \ldots, B_{m} \subset S$, the r.v. $X_{B_{1}}, \ldots, X_{B_{m}}$ are independent.
- $N(B) \sim \mathcal{P}\left(\int_{B} \rho(u) \mathrm{d} u\right)$ for any bounded $A \subset S$.
- $\forall B \subset S, \forall F \in N_{I f}$
\qquad

$$
P\left(X_{B} \in F\right)=\sum_{n \geq 0} \frac{e^{-\int_{B} \rho(u) \mathrm{d} u}}{n!} \int_{B} \ldots \int_{B} \mathbf{1}\left(\left\{x_{1}, \ldots, x_{n}\right\} \in F\right) \prod_{i=1}^{n} \rho\left(x_{i}\right) \mathrm{d} x_{i}
$$

\qquad

- If $\rho(\cdot)=\rho, X$ is said to be homogeneous which implies

$$
\mathrm{E} N(B)=\rho|B|, \quad \operatorname{Var} N(B)=\rho|B|
$$

- and if $S=\mathbb{R}^{d}, X$ is stationary and isotropic.

Definitions, Poisson
$\rho(u)=\beta e^{-u_{1}-u_{1}^{2}-.5 u_{1}^{3}}$
\qquad
\qquad

- $\rho=200$.
- $\rho(u)=\beta e^{2 \sin \left(4 \pi u_{1} u_{2}\right)}$.
(β is adjusted s.t. the mean number of points in $S, \int_{S} \rho(u) \mathrm{d} u=200$.) \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
Proposition : if $X \sim$ Poisson (S, ρ) \qquad

- Void probabilities : $v(B)=P(N(B)=0)=e^{-\int_{B}(\rho(u) d u)}$. \qquad
- For any $u, v \in S, \rho^{(2)}(u, v)=\rho(u) \rho(v)$ (also valid for $\rho^{(k)}, k \geq 1$) \qquad
- and if $|S|<\infty, X$ admits a density w.r.t. Poisson $(S, 1)$ given by

$$
f(x)=e^{|S|-\int_{s} \rho(u) \mathrm{d} u} \prod_{u \in X} \rho(u) .
$$

\qquad

- Slivnyak-Mecke Theorem : for any non-negative function
\qquad $h: S \times N_{I f} \rightarrow \mathbb{R}^{+}$, then

$$
\mathrm{E} \sum_{u \in X} h(u, X \backslash u)=\int_{S} \mathrm{E} h(u, X) \rho(u) \mathrm{d} u
$$

\qquad
\qquad

Example : if $\rho(\cdot)=\rho, \mathrm{E} \sum_{u \in X \cap[0,1]^{2}} \mathbf{1}(d(u, X \backslash u) \leq R)=\rho\left(1-e^{-\rho \pi R^{2}}\right)$
Simulation

$\begin{aligned} & \rho=20, R=0.1 \\ & \sum_{u \in x} \mathbf{1}(d(u, x \backslash u) \leq R)=9 \\ & \rho\left(1-\exp \left(-\rho \pi R^{2}\right)\right) \simeq 9.33 \end{aligned}$	$\begin{aligned} & \rho=100, R=0.05 \\ & \sum_{u \in x} \mathbf{1}(d(u, x \backslash u) \leq R)=60 \\ & \rho\left(1-\exp \left(-\rho \pi R^{2}\right)\right) \simeq 54.41 \end{aligned}$

\qquad

Notes
\qquad

- Simulation :
- homogeneous case : very simple
\qquad
- inhomogeneous case : a thinning procedure can be efficiently done if $\rho(u) \leq c$: simulate Poisson(c, W) and delete a point u with prob. $1-\rho(u) / c$.
- Inference :
- consists in estimating $\rho, \rho(\cdot ; \theta)$ or $\rho(u)$ depending on the context.
- All these estimates can be used even if the spatial point process is not Poisson (wait for a few slides)
- Asymptotic properties very simple to derive under the Poisson assumption.
- Goodness-of-fit tests : tests based on quadrats counting, based on the void probability,...
- We consider here the problem of estimating the parameter ρ of a homogeneous Poisson point process defined on S and observed on a window $W \subseteq S$.
- Since $N(W) \sim \mathcal{P}(\rho|W|)$, the natural estimator of ρ is

$$
\widehat{\rho}=N(W) /|W|
$$

\qquad

Properties

- (i) $\widehat{\rho}$ corresponds to the maximum likelihood estimate.
\qquad
- (ii) $\hat{\rho}$ is unbiased. \qquad
- (iii) $\operatorname{Var} \widehat{\rho}=\frac{\rho}{|W|}$. \qquad
Proof : (i) follows from the definition of the density (ii-iii) can be checked using the Campbell formulae.
\qquad

Notes
\qquad
Asymptotic results

- For large $N(W), \widehat{\rho}|W| \simeq \mathcal{N}(\rho|W|, \rho|W|)$ and so
\qquad
\qquad

$$
|W|^{1 / 2}(\widehat{\rho}-\rho) \simeq \mathcal{N}(0, \rho)
$$

\qquad
(the approximation is actually a convergence as $W \rightarrow \mathbb{R}^{d}$) \qquad

- Variance stabilizing transform :
\qquad

$$
2|W|^{1 / 2}(\sqrt{\hat{\rho}}-\sqrt{\rho}) \simeq \mathcal{N}(0,1)
$$

\qquad

- We deduce a $1-\alpha(\alpha \in(0,1))$ confidence interval for ρ

$$
\mathrm{IC}_{1-\alpha}(\rho)=\left(\sqrt{\hat{\rho}} \pm \frac{z_{\alpha / 2}}{2|W|^{1 / 2}}\right)^{2}
$$

Notes
\qquad
We generated $m=10000$ replications of homogeneous Poisson point processes with intensity $\rho=100$ on $[0,1]^{2}$ (blcak plots) and on $[0,2]^{2}$ \qquad (red plots).
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| Examples | Definitions, Poisson | Summary statistics |
| :--- | :--- | :--- |\quad Modelling and inference

Notes
\qquad
\qquad
We generated $m=10000$ replications of homogeneous Poisson point processes with intensity $\rho=100$ on $[0,1]^{2}$ (black plots) and on $[0,2]^{2}$ (red plots).
\qquad
\qquad

	$W=[0,1]^{2}$	$W=[0,2]^{2}$
Emp. Mean of $\widehat{\rho}$	100.17	100.07
Emp. Var. of $\widehat{\rho}$	98.57	25.69
Emp. Coverage rate of 95% confidence intervals	95.31%	94.78%

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- We consider three unmarked datasets : japanesepines, swedishpines, finpines.
- Plot the data, estimate the intensity parameter.
- Construct a confidence interval for each of them. Which one is significantly more abundant?
- Judge the assumption of the Poisson model using a GoF test based on quadrats.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad

- Assume that ρ is parametrized by a vector $\theta \in \mathbb{R}^{p}(p \geq 1)$. The most well-known model is the log-linear one :

$$
\rho(u)=\rho(u ; \theta)=\exp \left(\theta^{\top} z(u)\right)
$$

where $z(u)=\left(z_{1}(u), z_{2}(u), \ldots, z_{p}(u)\right)$ correspond to known spatial
\qquad functions or spatial covariates.

- θ can be estimated by maximizing the log-likelihood on W \qquad

$$
\begin{aligned}
I_{W}(X, \theta) & =\sum_{u \in X_{W}} \log \rho(u ; \theta)+\int_{W}(1-\rho(u ; \theta)) \mathrm{d} u \\
& =|W|+\underbrace{\sum_{u \in X_{W}} \theta^{\top} z(u)-\int_{W} \exp \left(\theta^{\top} z(u)\right) \mathrm{d} u}_{:=\ell_{W}(X, \theta)} .
\end{aligned}
$$

\qquad
\qquad

In other words

$$
\widehat{\theta}=\operatorname{Argmax}_{\theta} \ell_{W}(X, \theta)
$$

\qquad

- Why would $\widehat{\theta}$ be a good estimate? \qquad
Compute the score function \qquad

$$
s_{W}(X, \theta)=\nabla \ell_{W}(X, \theta)=\sum_{u \in X_{W}} z(u)-\int_{W} z(u) \underbrace{\exp \left(\theta^{\top} z(u)\right)}_{:=\rho(u)} \mathrm{d} u
$$

\qquad

The true parameter θ_{0} (i.e. $X \sim P_{\theta_{0}}$) minimizes the expectation of the score function. Indeed from Campbell formula

$$
E s_{W}(X, \theta)=\int_{W} z(u)\left(\exp \left(\theta_{0}^{\top} z(u)\right)-\exp \left(\theta^{\top} z(u)\right)\right) \mathrm{d} u=0
$$

$$
\text { when } \theta=\theta_{0} \text {. }
$$

- Rathbun and Cressie (1994) showed the strong consistency and the asymptotic normality of $\widehat{\theta}$ as $W \rightarrow \mathbb{R}^{d}$.

Notes

A point pattern giving the locations of 3605 trees in a tropical rain forest Accompanied by covariate data giving the elevation (altitude) $\left(z_{1}\right)$ and slope of elevation $\left(z_{2}\right)$ in the study region.
elevation,21
\qquad

\qquad
\qquad

Assume an inhomogeneous Poisson point process (which is not true, see the next chapter) with intensity

$$
\log \rho(u)=\beta+\theta_{1} z_{1}(u)+\theta_{2} z_{2}(u)
$$

Question : how can we prove that each covariate has a significant influence?

Definitions, Poisson

(Diggle 2003)

- Idea is to mimic the kernel density estimation to define a nonparametric estimator of the spatial function ρ.
- Let $k: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}$a symmetric kernel with intensity one. Examples of kernels
- Gaussian kernel : $(2 \pi)^{-d / 2} \exp \left(-\|y\|^{2} / 2\right)$.
- Cylindric kernel : $\frac{1}{\pi} \mathbf{1}(\|y\| \leq 1)$.
- Epanecnikov kernel : $\frac{3}{4} \mathbf{1}(|y|<1)\left(1-|y|^{2}\right)$.
- Let h be a positive real number (which will play the role of a bandwidth window), then the nonparametric estimate (with border correction) at the location v is defined as

$$
\widehat{\rho}_{h}(v)=K_{h}(v)^{-1} \sum_{u \in X_{w}} \frac{1}{h^{d}} k\left(\frac{\|v-u\|}{h}\right)
$$

\qquad

Notes
\qquad
Indeed, using the Campbell formula and a change of variables we can \qquad obtain

$$
\begin{aligned}
\mathrm{E} \widehat{\rho}_{h}(v) & =K_{h}(v)^{-1} \mathrm{E} \sum_{u \in X_{W}} \frac{1}{h^{d}} k\left(\frac{\|v-u\|}{h}\right) \\
& =K_{h}(v)^{-1} \int_{W} \frac{1}{h^{d}} k\left(\frac{\|v-u\|}{h}\right) \rho(u) \mathrm{d} u \\
& =K_{h}(v)^{-1} \int_{\frac{w-v}{h}} k(\|\omega\|) \rho(\omega h+v) \mathrm{d} \omega \\
& \stackrel{\text { hmall }}{\simeq} K_{h}(v)^{-1} \int_{\frac{w-v}{h}} k(\|\omega\|) \rho(v) \mathrm{d} \omega \\
& \simeq \rho(v) .
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

More theoretical justifications and properties and a discussion on the bandwidth parameter and edge corrections can be found in Diggle (2003).

Summary statistics
Modelling and inference

Objective and classification

Objective \qquad

- Define some descriptive statistics for s.p.p. (independently on any model so).
- Measure the abundance of points, the clustering or the repulsiveness of a spatial point pattern w.r.t. the Poisson point process.
\qquad
lassification :
- First-order type based on the intensity function.
- Second-order type statistics : pair correlation function, Ripley's K function.
- Statistics based on distances : empy space function F, nearest-neigbour G, J function.
(We assume that ρ and $\rho^{(2)}$ exist in the rest of the talk)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
Thanks to Campbell formulae, the estimates of the intensity for a Poisson point process can be used to estimate the intensity of a general spatial point process X. In particular
(1) if X is stationary $\widehat{\rho}=N(W) /|W|$ is an estimate of ρ.
(2) Non-stationary, parametric estimation of the intensity : if $\rho(u)=\rho(u ; \theta)$ can be used using the "Poisson likelihood", i.e.

$$
I_{W}(X, \theta)=\sum_{u \in X_{W}} \log \rho(u ; \theta)-\int_{W} \rho(u ; \theta) \mathrm{d} u
$$

(3) Non stationary, non-parametric estimation of the intensity (see previous chapter for notation) :

$$
\widehat{\rho}_{h}(u)=K_{h}(u)^{-1} \sum_{v \in X_{w}} \frac{1}{h^{d}} k\left(\frac{\|v-u\|}{h}\right) .
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A simulation example in the stationary case

\qquad
We generated $m=10000$ replications of a stationary log-Gaussian Cox processes (Thomas process, $\kappa=50, \sigma=.005$) with intensity $\rho=400$. \qquad

	$W=[0,1]^{2}$	$W=[0,2]^{2}$
Emp. Mean of $\widehat{\rho}$	400.4	399.5
Emp. Var. of $\widehat{\rho}$	1741.4	507.4

A survey of the estimation of the asymptotic variance of $\widehat{\rho}$ can be found in Prokesova and Heinrich (2010) and references therein.

Notes

We generated $B=1000$ replications of Thomas process with parameters $\kappa=50, \sigma=.005$ and with intensity function

$$
\rho(u)=\exp \left(\beta-\theta u_{1}^{2} u_{2}^{2}\right)
$$

with $\theta=-2$ and β adjusted s.t. $\mathrm{EN}(W)=200$ for $W=[0,1]^{2}$ and 800 for $W=[0,2]^{2}$.

\qquad
\qquad
\qquad
\qquad
\qquad

Then for each replication, θ is estimated using the "Poisson likelihood"

	$W=[0,1]^{2}$	$W=[0,2]^{2}$
Emp. Mean of $\widehat{\theta}$	-2.03	-2.01
Emp. Var. of $\widehat{\theta}$	0.13	0.03

[^0]- See Guan (2006), Guan and Loh (2008), Waagepetersen, Guan and Jalilian (2012) and Coeurjolly and Møller (2012) for details and refinements.

Ripley's K function

Notes

We assume (for simplicity) the stationarity and isotropy of X.

Definition

The Ripley's K function is literally defined for $r \geq 0$ by \qquad

$$
\begin{aligned}
K(r) & =\frac{1}{\rho} \mathrm{E}(\text { number of extra events within distance } r \text { of a randomly chosen event }) \\
& =\frac{1}{\rho} \mathrm{E}(N(B(0, r) \backslash 0) \mid 0 \in X)
\end{aligned}
$$

\qquad
\qquad

We define the L function as $L(r)=(K(r) / \pi)^{1 / 2}$.
\qquad

Properties

\qquad

- Under the Poisson case, $K(r)=\pi r^{2} ; L(r)=r$.
- If $K(r)>\pi r^{2}$ or $L(r)>r$ (resp. $K(r)<\pi r^{2}$ or $\left.L(r)<r\right)$ we suspect clustering (regularity) at distances lower than r.
\qquad

Notes
\qquad

Definition

\qquad
If ρ and $\rho^{(2)}$ exist, then the pair correlation function is defined by
\qquad

$$
g(u, v)=\frac{\rho^{(2)}(u, v)}{\rho(u) \rho(v)}
$$

where we set for convention $a / 0=0$ for $a \geq 0$. \qquad

$$
g(u, v) \begin{cases}=1 & \text { if } X \sim \operatorname{Poisson}(S, \rho) \\ >1 & \text { for attractive point pattern. } \\ <1 & \text { for repulsive point pattern. }\end{cases}
$$

\qquad
\qquad

If $S=\mathbb{R}^{d}$ and X is stationary and isotropic, then

$$
g(u, v)=\frac{\rho^{(2)}(\|v-u\|)}{\rho^{2}}=\bar{g}(\|v-u\|
$$

\qquad
\qquad
\qquad
\qquad

Theorem

For stationary and isotropic processes in $S=\mathbb{R}^{d}$

$$
g(r)=\frac{K^{\prime}(r)}{\sigma_{d} r^{d-1}}
$$

\qquad
\qquad
where $\sigma_{d}=d \omega_{d}$ is the surface area of unit sphere \mathbb{S}^{d-1} in \mathbb{R}^{d}. \qquad
$\underline{\text { Proof : Using polar decomposition we obtain }}$ \qquad

$$
K(r)=\int_{B(0, r)} g(\|u\|) \mathrm{d} u=\int_{0}^{r} \int_{S^{d-1}} t^{d-1} g(t) \mathrm{d} t=\sigma_{d} \int_{0}^{r} t^{d-1} g(t) \mathrm{d} t
$$

\qquad
\qquad
\qquad

Edge corrected estimation of the K function
Notes
\qquad
\qquad
\qquad
\qquad
\qquad
where $W_{\ominus r}=\{u \in W: B(u, r) \subseteq W\}$ is the erosion of W by r.
\qquad

- the translation-corrected estimate as

$$
\widehat{K}_{T C}(r)=\frac{1}{\widehat{\rho}^{2}} \sum_{u, v \in X_{w}}^{\neq} \frac{\mathbf{1}(v-u \in B(0, r))}{\left|W \cap W_{v-u}\right|}
$$

where $W_{u}=W+u=\{u+v: v \in W\}$.
Remark : everything extends to 2nd-order reweighted stationary point processes; asymptotic properties depend on mixing conditions,. .

For convenience, we consider only stationary and isotropic point processes.

- Then, the pair correlation function $g(u, v)=g(\|u-v\|)$ can be \qquad estimated using the following edge corrected kernel estimate \qquad

$$
\widehat{g}(r)=\frac{1}{\widehat{\rho^{2}}} \sum_{u, v \in X_{w}}^{\neq} \frac{k_{h}(\|v-u\|-r)}{\sigma_{d} r^{d-1}\left|W \cap W_{v-u}\right|}
$$

\qquad
where $k_{h}(t)=h^{-d} k(t / h)$.

- Alternatively, we can estimate estimate the derivative of the K function (after smooting using e.g. spline techniques) and define

$$
\widehat{g}(r)=\frac{\widehat{K^{\prime}}(r)}{\sigma_{d} r^{d-1}}
$$

Notes
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

- The enveloppes are constructed using a Monte-Carlo approach under the Poisson assumption.
\qquad
- \Rightarrow we don't reject the Poisson assumption.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- \Rightarrow the point pattern does not come from the realization of a homogeneous Poisson point process.
- exhibits repulsion at short distances $(r \leq .05)$
\qquad
\qquad

Example of L function for a clustered point pattern
Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- \Rightarrow the point pattern does not come from the realization of a homogeneous Poisson point process.
- exhibits attraction at short distances ($r \leq .08$).

Assume X is stationary (definitions can be extended in the general case)

Definition

- The empty space function is defined by \qquad

$$
F(r)=P(d(0, X) \leq r)=P(N(B(0, r))>0), \quad r>0 .
$$

\qquad

- The nearest-neighbour distribution function is \qquad

$$
G(r)=P(d(0, X \backslash 0) \leq r \mid 0 \in X)
$$

- J-function : $J(r)=(1-G(r)) /(1-F(r)), \quad r>0$.
\qquad
- Poisson case : $\forall r>0, F(r)=G(r)=1-e^{-\pi r^{2}}, J(r)=1$.
- $F(r)<F_{\text {pois }}(r), G(r)>G_{\text {pois }}(r), J(r)<1$: attraction at dist. $<r$.
- $F(r)>F_{\text {pois }}(r), G(r)<G_{\text {pois }}(r), J(r)>1$: repulsion at dist. $<r$.
\qquad

Notes
\qquad
As for the K and L functions, several edge corrections exist. We focus here only on the \qquad border correction. We assume that X is observed on a bounded window W with positive volume.

Definition

- Let $I \subseteq W$ be a finite regular grid of points and $n(I)$ its cardinality. Then, the (border corrected) estimator of F is \qquad

$$
\widehat{F}(r)=\frac{1}{n\left(l_{r}\right)} \sum_{u \in I_{r}} \mathbf{1}(d(u, X) \leq r)
$$

\qquad
where $I_{r}=I \cap W_{\ominus r}$.

- The (border corrected) estimator of G is

$$
\widehat{G}(r)=\frac{1}{N\left(W_{\ominus r}\right)} \sum_{u \in X \cap W_{\ominus r}} \mathbf{1}(d(u, X \backslash u) \leq r)
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Examples

Notes
\qquad
The main objectives of this section are \qquad

- to present more realistic models than the too simple Poisson point process to take into account the spatial dependence between points.
- to present statistical methodologies to infer these models.

We can distinguish several classes of models for spatial point processes
(1) point processes based on the thinning of a Poisson point processes, on the superimposition of Poisson point processes. [sometimes hard to relate the stochastic process producing the realization and the physical phenomenon producing the data]
(2) Cox point processes (which include Cluster point processes,...).
(3) Gibbs point processes.
(9) Determinental point processes.

Examples	Definitions, Poisson	Summary statistics	Modelling and inference
An attempt to classify these models \ldots			
Model	Allows to model	Are moments expressible in a closed form?	Pensity w.r.t. Poisson?
Cox	attraction	yes	no
Gibbs	repulsion but also attraction Determinental	no	yes

\qquad
\qquad
\qquad

This course only focuses on the two first classes of point processes, i.e. on Cox and Gibbs point processes.
\qquad

Examples	Definitions, Poisson
Definition	

Notes
Definition
\qquad

We let $S \subseteq \mathbb{R}^{d}$ throughout this section. B denotes any bounded domain $\subseteq S$. \qquad
Definition
Suppose that $Z=\{Z(u): u \in S\}$ is a nonnegative random field so that with probability one, $u \rightarrow Z(u)$ is a locally integrable function. If the conditional distribution of X given Z is a Poisson process on S with intensity function Z, then X is said to be a Cox process driven by Z
\qquad

Remarks :

\qquad

- Z is a random field means that $Z(u)$ is a random variable $\forall u \in S$. \qquad
- if $\mathrm{E} Z(u)$ exists and is locally integrable then w.p. $1, Z(u)$ is a locally integrable function

Proposition

(1) Provided $Z(u)$ has finite expectation and variance for any $u \in S$ \qquad

$$
\rho(u)=\mathrm{E} Z(u), \rho^{(2)}(u, v)=\mathrm{E}[Z(u) Z(v)], g(u, v)=\frac{\mathrm{E}[Z(u) Z(v)]}{\rho(u) \rho(v)} .
$$

\qquad
(2) The void probabilities are given by \qquad

$$
v(B)=\operatorname{Eexp}\left(-\int_{B} Z(u) \mathrm{d} u\right)
$$

for bounded $B \subseteq S$.
Proof : direct consequence of the fact that $X \mid Z$ is a Poisson point process with intensity function Z. \qquad

| Examples | Definitions, Poisson | Summary statistics |
| :--- | :---: | :--- | Modelling and inference

Notes

Proposition

Let A, B bounded sets of S, then

$$
\operatorname{Cov}(N(A), N(B))=\int_{A} \int_{B} \operatorname{Cov}(Z(u), Z(v)) \mathrm{d} u \mathrm{~d} v+\int_{A \cap B} \mathrm{E} Z(u) \mathrm{d} u
$$

\qquad

Consequence :

- In particular, $\operatorname{Var} N(A) \geq \mathrm{E} N(A)$ with equality only when X is a Poisson process. \qquad
- \Rightarrow over-dispersion of the counting variables. \qquad
Other remarks :
- Most of models have pcf such that $g \geq 1$ (but a few exceptions \exists).
- If $S=\mathbb{R}^{d}$ and X is stationary and/or isotropic then X is stationary and/or isotropic.
- Explicit expressions of the F, G and J functions in the stationary case are in general difficult to derive.

Definitions, Poisson
Summary statistics

Definition

A mixed Poisson process is a Cox process where $Z(u)=Z_{0}$ is given by a positive random variable for any $u \in S$, i.e. $X \mid Z_{0}$ follows a homogeneous Poisson process with intensity Z_{0}.

- Limited interest ...
- X is stationary and (provided Z_{0} has first two moments)

$$
\rho=\mathrm{E} Z_{0} \quad \text { and } \quad g(u, v)=\frac{\mathrm{E}\left[Z_{0}^{2}\right]}{\mathrm{E}\left[Z_{0}\right]^{2}} \geq 1
$$

\qquad
\qquad

- The K and L functions are given by

$$
K(r)=\beta \omega_{d} r^{d} \quad \text { and } \quad L(r)=\beta^{1 / d} r \geq r
$$

where $\omega_{d}=|B(0,1)|$ and $\beta=\frac{\mathrm{E}\left[Z_{z}^{2}\right]}{\mathrm{E}\left[Z_{0}\right]^{2}}$.
(recall that $K^{\prime}(r)=d \omega_{d} g(r) r^{d-1}$).
\qquad
\qquad
\qquad

Notes

Definition
Let C be a stationary Poisson process on \mathbb{R}^{d} with intensity $\kappa>0$.
Conditional on C, let $X_{c}, c \in C$ be independent Poisson processes on \mathbb{R}^{d} where X_{c} has intensity function
\qquad

$$
\rho_{c}(u)=\alpha k(u-c)
$$

where $\alpha>0$ is a parameter and k is a kernel (i.e. for all $c \in \mathbb{R}^{d}$,
$u \rightarrow k(u-c)$ is a density function). Then $X=\cup_{c \in C} X_{c}$ is a
Neymann-Scott process with cluster centres C and clusters $X_{c}, c \in C$.

- X is also a Cox process on \mathbb{R}^{d} driven by $Z(u)=\sum_{c \in C} \alpha k(u-c)$.
- Simulating a Neymann-Scott process (on W) is very simple (if k has compact support $T<\infty$)
(1) Generate $C \sim \operatorname{Poisson}(W \oplus T, k)$.

2) For each $c \in C$, generate $X_{c} \sim \operatorname{Poisson}\left(W, \rho_{c}\right)$
(3) Concatenate all the X_{c} 's. \qquad

- If k has unbounded support, an exact simulation is still possible.

We obtain specific models by choosing specific kernel densities. \qquad
(1) the Matérn cluster process where

$$
k(u)=\mathbf{1}(\|u\| \leq R) \frac{1}{\omega_{d} R^{d}}
$$

is the uniform density on the $B(0, R)$.
(2) the Thomas process where

$$
k(u)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{d / 2} \exp \left(-\frac{\|u\|^{2}}{2 \sigma^{2}}\right)
$$

is the density of $\mathcal{N}\left(0, \sigma^{2} I_{d}\right)$.
When R is small or when σ is small, then point pattern exhibit strong attraction.

Notes

- κ is the mean number of cluster centres per unit square, α is the mean number of daughters points per cluster.
- X is stationary (since Z is stationary) and is isotropic if $k(u)=k(\|u\|)$.
- Intensity of $X: \rho(u)=\alpha \kappa$.
- The (stationary) pair correlation function is given by $g(u, v)=1+\frac{k * k(v-u)}{\kappa} \geq 1 \quad$ where $\quad k * k(u)=\int k(c) k(v-u+c) \mathrm{d} c$.
- The F, G and J functions are also expressible in terms of k. In particular \qquad

$$
J(r)=\int k(u) \exp \left(-\alpha \int_{\|v\| \leq r} k(u+v) \mathrm{d} v\right) \mathrm{d} u
$$

whereby we deduce that $\exp (-\alpha) \leq J(r) \leq 1$.

Back to the Thomas process
Recall that k is the density of a $\mathcal{N}\left(0, \sigma^{2} l_{d}\right)$. Applying the previous results, we get (for the pcf)
\qquad
\qquad
$g(r)=1+\frac{1}{\left(4 \pi \sigma^{2}\right)^{d / 2}} \exp \left(-r^{2} /\left(4 \sigma^{2}\right)\right) / \kappa$

(similar developments can be done for the K, L, J functions and with more work for the Matérn process).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Four realizations of Thomas point processes
Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correponding Lestimates

\qquad

Notes
\qquad

- Inhomogeneous Neymann-Scott processes can be obtained by \qquad replacing the intensity parameter κ by a spatial function $\kappa(u)$.
- The natural extension of NS processes is given by shot-noise Cox processes which is a Cox process driven by

$$
Z(u)=\sum_{(c, \gamma) \in \Phi} \gamma k(c, u)
$$

where $k(\cdot, \cdot)$ is a kernel and Φ is a Poisson point process on $\mathbb{R}^{d} \times(0, \infty)$ with a locally integrable intensity function ζ. (see e.g. Møller and Waagepetersen 2004 for complements).

Notes
\qquad

Definition

Let X be a Cox process on \mathbb{R}^{d} driven by $Z=\exp Y$ where Y is a Gaussian random field. Then, X is said to be a \log Gaussian Cox process (LGCP).

Remarks :

- we could consider $Z=h(Y)$ for some non-negative function h, but the \exp leads to tractable calculations.
- another possibility : using a χ^{2} field, i.e. $Z(u)=Y_{1}(u)^{2}+\ldots+Y_{m}(u)^{2}$ are the Y_{i} 's are independent Gaussian fields with zero mean.
- LGCP are easy to simulate since the problem is transfered to generate a Gaussian field (which can be handled by several methods)
- The mean and covariance function of Y determine the distribution of X.
- In the following we let

$$
m(u)=\mathrm{E} Y(u) \quad \text { and } c(u, v)=\operatorname{Cov}(Y(u), Y(v))
$$

and we focus on the case where $c(u, v)$ depends only on $\|v-u\|$ (covariance function invariant by translation and by rotation). \qquad

- Conditions on c are needed to get a covariance function. Among functions satisfying these properties we find:
- the power exponential family satisfies these conditions

$$
c(u, v)=\sigma^{2} r(\|v-u\| / \alpha) \text { with } r(t)=\exp \left(-t^{\delta}\right), t \geq 0
$$

\qquad
with $\alpha, \sigma>0 . \delta=1$ is the exponential correlation function; $\delta=1 / 2$ is the stable correlation function ; $\delta=2$ is the \qquad
Gaussian correlation function.

- the cardinal sine correlation :

$$
c(u, v)=\sigma^{2} r(\|v-u\| / \alpha) \text { with } r(t)=\frac{\sin (t)}{t}, t \geq 0
$$

\qquad

Proposition

Let X be a LGCP then under the previous notation
(1) the intensition function of X is
\qquad

$$
\rho(u)=\exp (m(u)+c(u, u) / 2) .
$$

(2) The pair correlation function g of X is

$$
g(u, v)=\exp (c(u, v))
$$

Proof : based on the fact that for $U \sim \mathcal{N}\left(\zeta, \sigma^{2}\right)$, the Laplace transform of U is $E \exp (t U)=\exp \left(\zeta+\sigma^{2} t / 2\right)$.

- one to one correspondendce between (m, c) and (ρ, g).
- If c is translation invariant then X is second order reweighted stationary (stationary if m is constant, and isotropic if in addition $c(u, v)$ depends only on $\|v-u\|)$.

Definitions, Poissor

- pcf for the power exponential family : $\log g(r)=\sigma^{2} \exp \left(-\left(\frac{r}{\alpha}\right)^{\delta}\right), \quad \alpha, \sigma, \delta>0$ \qquad
- pcf for the cardinal sine correlation : $\log g(r)=\sigma^{2} \frac{\sin (r / \alpha)}{r / \alpha}, \quad \alpha, \sigma>0$ \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\begin{array}{llll}\text { Examples } & \text { Definitions, Poisson } & \text { Summary statistics } & \text { Modelling and inference }\end{array}$
Four realizations of (stationary) LGCP point processes
Notes
$\sigma=2.5, \alpha=0.01, \rho=100$ $\sigma=2.5, \alpha=0.005, \rho=100$
 function ($\delta=1$).
- The mean m of the Gaussian process is such that $\rho=\exp \left(m+\sigma^{2} / 2\right)$.

\qquad

Correponding Lestimates

\qquad

Correponding J estimates

Notes
\qquad

Definitions, Poiss
Summary statistic
Is likelihood available?

Assume (only here) that S is a bounded domain, then the density of X_{S} w.r.t a Poisson processes with unit rate is given by

$$
f(x)=\mathrm{E}\left[\exp \left(|S|-\int_{S} Z(u) \mathrm{d} u\right) \prod_{u \in x} Z(u)\right]
$$

\qquad
for finite point configurations $x \subset S$. Explicit expression of the expectation is usually unknown and the integral may be difficult to calculate.
\Rightarrow MLE is usually impossible to calculate (approximations or Bayesian should be used)

- In most of applications, we only observe the realization of X. $\Rightarrow Z$ should be considered as a latent process generating the point process, which is not observed.

Notes
\qquad

- Assume we observe the realization of a stationary Cox point process \qquad which belongs to a parametric family with parameter θ (ex : $\theta=\left(\alpha, \kappa, \sigma^{2}\right)$ for the Thomas process, $\theta=\left(\mu, \alpha, \sigma^{2}\right)$ for a LGCP with exponential correlation function).
- For most of Cox point processes, $\rho=\rho_{\theta}, K=K_{\theta}$ or $g=g_{\theta}$ functions are expressible in a closed form, for instance :
- for a planar $(d=2)$ Thomas process (NS process with Gaussian kernel) : $\rho=\alpha \kappa$ and

$$
g_{\theta}(r)=1+\frac{1}{\sqrt{4 \pi \sigma^{2}}} \exp \left(-r^{2} /\left(4 \sigma^{2}\right)\right) / \kappa \quad \text { and } \quad K_{\theta}(r)=\pi r^{2}+\left(1-\exp \left(-r^{2} /\left(4 \sigma^{2}\right)\right)\right) / \kappa
$$

- for a LGCP with exponential correlation function

$$
\rho=\exp \left(m+\sigma^{2} / 2\right) \quad \text { and } \quad \log g_{\theta}(r)=\sigma^{2} \exp (-r / a / p h a) .
$$

\qquad

- Then the idea is then to estimate θ using a minimum contrast
\qquad approach : i.e. define $\hat{\theta}$ as the minimizer of

$$
\int_{r_{1}}^{r_{2}}\left|\widehat{K}(r)^{q}-K_{\theta}(r)^{q}\right|^{2} \mathrm{~d} r \quad \text { or } \quad \int_{r_{1}}^{r_{2}}\left|\widehat{g}(r)^{q}-g_{\theta}(r)^{q}\right|^{2} \mathrm{~d} r
$$

\qquad
\qquad
where \qquad

- $\widehat{K}(r)$ and $\widehat{g}(r)$ are the nonparametric estimates of $K(r)$ and $g(r)$.
\qquad
- where $\left[r_{1}, r_{2}\right.$] is a set of r fixed values.
- q is a power parameter (adviced in the literature to be set to $q=1 / 4$ or $1 / 2$).
\qquad
\qquad
\qquad

Examples Definitions, Poisson	Summary statistics Modeling and inference
A short simulation	

Notes

- we generated 200 replications of a Thomas process with parameters
\qquad $\kappa=100, \sigma^{2}=10^{-4}$ and $\alpha=5$
- we estimated the parameters σ^{2} and κ using the minimimum contrast estimat based on the K function.
\qquad
\qquad
- Then α is estimated using $\widehat{\alpha}=\widehat{\rho} / \widehat{\kappa}$

	Parameter κ	
	$W=[0,1]^{2}$	$W=[0,2]^{2}$
Emp. mean	98.9	102.4
Emp. var.	251.9	78.1

	Parameter α	
	$W=[0,1]^{2}$	$W=[0,2]^{2}$
Emp. mean	4.9	4.9
Emp. var.	40.1	6.1

\qquad

	Parameter σ^{2}	
	$W=[0,1]^{2}$	$W=[0,2]^{2}$
Emp. mean	1.01×10^{-4}	9.7×10^{-5}
Emp. var.	1.5×10^{-5}	8.2×10^{-6}

- the objective of this section is to introduce a new class of point processes : the class of Gibbs point processes.
- Gibbs point process:
- are mainly used to model repulsion between point (but a few models allows also to produce aggregated models). That's why this kind of models are widely used in statistical physics to model particles systems.
- are defined (in a bounded domain) by a density w.r.t. a Poisson point process
\Rightarrow very easy to interpret the model and the parameters.
\qquad
\qquad
\qquad
their main drawback : moments are not expressible in a closed form and density known up to a scalar \Rightarrow specific inference methods are required.

Notes
\qquad
\qquad

- Throughout this chapter : we assume that the point process X is defined in a bounded domain $S \subset \mathbb{R}^{d}(|S|<\infty)$.
- Gibbs point processes defined on \mathbb{R}^{d} are of particular interest :
- in statistical physics because they can model phase transition
- in asymptotic statistics : if for instance we want to prove the convergence of an estimator as the window expands to \mathbb{R}^{d}
However, the formalism is more complicated and technical and this is not considered here.
\Rightarrow from now, X is a finite point process in S (bounded) taking values in N_{f} (space of finite configurations of points)

$$
N_{f}=\{x \subset S: n(x)<\infty\}
$$

Definitions, Poiss

Definition

A finite point process X on a bounded domain $S(0<|S|<\infty)$ is said to be a Gibbs point process if it admits a density f w.r.t. a Poisson point process with unit rate, i.e. for any $F \subseteq N_{f}$
\qquad

$$
\begin{aligned}
P(X \in F)= & \sum_{n \geq 0} \frac{\exp (-|S|)}{n!} \times \\
& \int_{S} \ldots \int_{S} \mathbf{1}\left(\left\{x_{1}, \ldots, x_{n}\right\} \in F\right) f\left(\left\{x_{1}, \ldots, x_{n}\right\}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}
\end{aligned}
$$

\qquad
\qquad
where the term $n=0$ is read as $\exp (-|S|) \mathbf{1}(\emptyset \in F) f(\emptyset)$.

- Gpp can be viewed as a perturbation of a Poisson point process. \qquad
- f is easily interpretable since it is in some sense a weight w.r.t. a Poisson process. \qquad

| Examples | Definitions, Poisson | Summary statistics |
| :--- | :--- | :--- | Modelling and inference

Notes
\qquad
\qquad
Poisson (S, ρ) (such that $\mu(S)<\infty$), we recall that X admits a density w.r.t. to a Poisson point process with unit rate given for any $x \in N_{f}$ by

$$
f(x)=\exp (|S|-\mu(S)) \prod_{u \in x} \rho(u) .
$$

In most of cases, f is specified up to a proportionality $f=c^{-1} h$ where $h: N_{f} \rightarrow \mathbb{R}^{+}$is a known function.
$\Rightarrow c$ is given by

$$
c=\sum_{n \geq 0} \frac{\exp (-|S|)}{n!} \int_{S} \ldots \int_{S} h\left(\left\{x_{1}, \ldots, x_{n}\right\}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}=\mathrm{E}[h(Y)]
$$

\qquad
\qquad
where $Y \sim \operatorname{Poisson}(S, 1)$.

Definition

The Papangelou conditional intensity for a point process X with density f is defined by
\qquad
\qquad
for any $x \in N_{f}$ and $u \in S(u \notin x)$, taking $a / 0=0$ for $a \geq 0$.
\qquad
\qquad

- λ does not depend on c. \qquad
- for Poisson $(S, \rho), \lambda(u, x)=\rho(u)$ does not depend on x !
- $\lambda(u, x) \mathrm{d} u$ can be interpreted as the conditional probability of observing a point in an infinitesimal region containing u of size $\mathrm{d} u$
\qquad
\qquad given the rest of X is x.

| Examples | Definitions, Poisson | Summary statistics |
| :--- | :--- | :--- | Modelling and inference

Notes
Attraction, repulsion, heredity
\qquad

Definition

We often say that X (or f) is
\qquad

- attractive if \qquad
- repulsive if
\qquad
$\lambda(u, x) \geq \lambda(u, y)$ whenever $x \subset y$. \qquad
- hereditary if \qquad

$$
f(x)>0 \Rightarrow f(y)>0 \text { for any } y \subset x
$$

\qquad

- if f is hereditary, then $f \Leftrightarrow \lambda$ (one-to-one correspondence).

Existence of a Gpp in $S(|S|<\infty)$

Proposition

Let $\phi^{\star}: S \rightarrow \mathbb{R}^{+}$be a function so that $c^{\star}=\int_{S} \phi^{\star}(u) \mathrm{d} u<\infty$. Let $h=c f$, we say that X (or f) satisfies the
\qquad

- local stability property if for any $x \in N_{f}, u \in S$ \qquad

$$
h(x \cup u) \leq \phi^{\star}(u) h(x) \Leftrightarrow \lambda(u, x) \leq \phi^{\star}(u) .
$$

\qquad

- the Ruelle stability property if for any $x \in N_{f}$ and for $\alpha>0$ \qquad

$$
h(x) \leq \alpha \prod_{u \in x} \phi^{\star}(u)
$$

local stability condition \Rightarrow Ruelle stability condition (and that f is hereditary) \Rightarrow existence of point process in S.

Proof : the first implication is obvious; for the last one it consists in checking that $c<\infty$.

Notes
\qquad
For simplicity, we focus on the isotropic case.

Definition

A istotropic parwise interaction point process (PIPP) has a density of the
\qquad form (for any $x \in N_{f}$)
\qquad
\qquad

$$
f(x) \propto \prod_{u \in x} \phi(u) \prod_{\{u, v\} \subseteq x} \phi_{2}(\|v-u\|)
$$

\qquad
where $\phi: S \rightarrow \mathbb{R}^{+}$and $\phi_{2}: \mathbb{R}_{*}^{+} \rightarrow \mathbb{R}+$.

- If ϕ is constant (equal to β) then the Gpp is said to be homogeneous (note that $\prod_{u \in x} \phi(u)=\beta^{n(x)}$).
\qquad
- ϕ_{2} is called the interaction function.
- this class of models is hereditary
- f is repulsive if $\phi_{2} \leq 1$, in which case the process is locally stable if $\int_{S} \phi(u) \mathrm{d} u$.

Strauss point process
Among the class of PIPP, the main example is the Strauss point process defined by \qquad

$$
f(x) \propto \beta^{n(x)} \gamma^{s_{R}(x)} \quad \lambda(u, x)=\beta \gamma^{t_{R}(u, x)}
$$

where $\beta>0, R<\infty$, where $s_{R}(x)$ is the number of R-close pairs of points in x and $t_{R}(u, x)=s_{R}(x \cup u)-s_{R}(x)$ is the number of R-close neighbours of u in x

$$
s_{R}(x)=\sum_{\{u, v\} \in x} 1(\|v-u\| \leq R) \text { and } t_{R}(u, x)=\sum_{v \in x} \mathbf{1}(\|v-u\| \leq R)
$$

\qquad

The parameter γ is called the interaction parameter :

- $\gamma=1$: homogeneous Poisson point process with intensity β.
- $0<\gamma<1$: repulsive point process.
- $\gamma=0$: hard-core process with hard-core R; the points are prohibited from being closer han R.
- $\gamma>1$: the model is not well-defined (if there exists a set $A \subset S$ with $|A|>0$ and $\operatorname{diam}(A) \leq R$, then $\left.c>\sum_{n \geq 0} \frac{(\beta|A|)^{n}}{n!} \gamma^{n(n-1) / 2}=\infty\right)$.

Notes
\qquad

Corresponding L estimates
\qquad

Examples
Corresponding J estimates
Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Definition

A Gibbs point process X has a finite range R if the Papangelou \qquad
conditional intensity satisfies
\qquad

$$
\lambda(u, x)=\lambda(u, x \cap B(u, R)) .
$$

\qquad

- the probability to insert a point u into x depends only on some neighborhood of u.
- this definition is actually more general and leads to the definition of Markov point process (omitted here to save time).
\qquad
\qquad
- interesting property when we want to deal with edge effects.
- Finite range of the Strauss point process $=R$.
\qquad
\qquad

Notes
\qquad

- Strauss point process : $\phi_{2}(r)=\gamma^{1(r \leq R)}$. \qquad
- Piecewise Strauss point process: \qquad

$$
\phi_{2}(r)=\gamma_{1}^{1\left(r \leq R_{1}\right)} \gamma_{2}^{1\left(R_{1}<r \leq R_{2}\right)} \ldots \gamma_{p}^{1\left(R_{p-1}<r \leq R\right)}
$$

$$
\text { with } \gamma_{i} \in[0,1] \text { and } 0 \leq R_{1}<\ldots<R_{p}=R<\infty \text { (finite range } R \text {). }
$$

- Overlap area process:

$$
\phi_{2}(r)=\gamma^{|B(u, R / 2) \cap B(v, R / 2)|}
$$

with $r=\|v-u\|$ with $\gamma \in[0,1]$ (finite range R).

- Lennard-Jones process:

$$
\phi_{2}(r)=\exp \left(\alpha_{1}(\sigma / r)^{6}-\alpha_{2}(\sigma / r)^{12}\right)
$$

with $\alpha \geq 0, \alpha_{2}>0, \sigma>0$ (well-known example used in statistical physics, not locally stable but Ruelle stable) (infinite range).

- Geyer's triplet point process :

$$
f(x) \propto \beta^{n(x)} \gamma^{s_{R}(x)} \delta^{u_{R}(x)}
$$

$\beta>0, s_{R}(x)$ is defined as in the Strauss case and \qquad

$$
u_{R}(x)=\sum_{\{u, v, w\}} \mathbf{1}(\|v-u\| \leq R,\|w-v\| \leq R,\|w-u\| \leq R)
$$

\qquad

- (i) $\gamma \in[0,1]$ and $\delta \in[0,1]$: locally stable, repulsive, finite range R.
- (ii) $\gamma>1$ and $\delta \in(0,1)$: locally stable, neither attractive nor \qquad repulsive, finite range R.

Notes
\qquad

- Area-interaction point process :

$$
f(x) \propto \beta^{n(x)} \gamma^{-\left|U_{x, R}\right|}
$$

\qquad
\qquad
where $U_{x, R}=\cup_{u \in x} B(u, R), \beta>0$ and $\gamma>0$. It is attractive \qquad for $\gamma \geq 1$ and repulsive for $0<\gamma \leq 1$. In both cases, it is locally stable since

$$
\lambda(u, x)=\beta \gamma^{-\left|B(u, R) \backslash \cup_{v \in x: \| v-u \mid \leq 2 R} B(v, R)\right|}
$$

satisfies $\lambda(u, x) \leq \beta$ when $\gamma \geq 1$ and $\lambda(u, x) \leq \beta \gamma^{-\omega_{d} R^{d}}$ in the other case. (finite range $2 R$)

The following result is also a characterization of a Gibbs point process.

Georgii-Nguyen-Zeissin Formula

Let X be a finite and hereditary Gibbs point process defined on S. Then,
\qquad
for any function $h: S \times N_{f} \rightarrow \mathbb{R}^{+}$, we have \qquad

$$
\mathrm{E}\left[\sum_{u \in X} h(u, X \backslash u)\right]=\int_{S} \mathrm{E}[h(u, X) \lambda(u, X)] \mathrm{d} u
$$

Proof : we know that $\mathrm{Eg}(X)=\mathrm{E}[g(Y) f(Y)]$ where f is the density of a Poisson point process with unit rate Y. Apply this to the function $g(X)=\sum_{u \in X} h(u, X \backslash u)$

$$
\begin{aligned}
\mathrm{E}[g(X)] & =\mathrm{E}\left[\sum_{u \in Y} h(u, Y \backslash u) f(Y)\right] \\
& =\int_{S} \mathrm{E}[h(u, Y) f(Y \cup u)] \mathrm{d} u \quad \text { from the Slivnyak-Mecke Theorem } \\
& =\int_{S} \mathrm{E}[h(u, Y) f(Y) \lambda(u, Y)] \mathrm{d} u \quad \text { since } X \text { is hereditary } \\
& =\int_{S} \mathrm{E}[h(u, X) \lambda(u, X)] \mathrm{d} u .
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad

Proposition

(1) The intensity function is given by
\qquad

$$
\rho(u)=\mathrm{E}[\lambda(u, X)] .
$$

\qquad
(2) The second order intensity function is given by
\qquad
\qquad

$$
\rho^{(2)}(u, v)=\mathrm{E}[\lambda(u, X) \lambda(v, X)]
$$

- can be deduced from the GNZ formula.
\qquad
- Except for the Poissonian case, moments are not expressible in a closed form, e.g.
\qquad
rosed torm, e.g
\qquad

$$
\rho(u)=\frac{1}{c} \sum_{n \geq 0} \frac{\exp (-|S|)}{n!} \int_{S} \cdots \int_{S} \lambda\left(u,\left\{x_{1}, \ldots, x_{n}\right\}\right) h\left(\left\{x_{1}, \ldots, x_{n}\right\}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} .
$$

- Approximations can be obtained using a Monte-Carlo approach or using a saddle-point approximation (very recent).
efinitions, Pois
- we observe a realization of X on $W=S(|S|<\infty$; edge effects \qquad occur when $W \subset S$) of a parametric Gibbs point process with density which belongs to a parametric family of densities $\left(f_{\theta}=h_{\theta} / c_{\theta}\right)_{\theta \in \Theta}$ for $\Theta \subset \mathbb{R}^{p}$.
- Problem : estimate the parameter θ based on a single realization.
- MLE approach : the log-likelihood is $\ell_{W}(x ; \theta)=\log h_{\theta}-\log c_{\theta}$
\qquad

Pbm : Given a model h_{θ} can be computed but c_{θ} cannot be \qquad evaluated even for a single value of θ; asymptotic properties are only partial.
\Rightarrow several solutions exist
(1) Approximate c_{θ} using a Monte-Carlo approach.
(2) Bayesian approach, importance sampling method (to estimate a ratio of normalizing constants).
(3) Combine the MLE with the Ogata-Tanemura approximation.
(9) Find another method which does not involve c_{θ}.
\qquad
\qquad
\qquad
\qquad
Pseudo-likelihood

Notes
\qquad
\qquad

- To avoid the computation of the normalizing constant, the idea is to compute a likelihood based on conditional densities

$$
P L_{W}(x ; \theta)=\exp (-|W|) \lim _{i \rightarrow \infty} \prod_{j=1}^{m_{i}} f\left(x_{A_{i j}} \mid x_{W \backslash A_{i j}} ; \theta\right)
$$

where $\left\{A_{i j}: j=1, \ldots, m_{i}\right\} i=1,2, \ldots$ are nested subdivisions of W.
\qquad
\qquad
\qquad
\qquad

- By letting $m_{i} \rightarrow \infty$ and $m_{i} \max \left|A_{i j}\right|^{2} \rightarrow 0$ as $i \rightarrow \infty$ and taking the log, Jensen and Møller (91) obtained

$$
L P L_{W}(x ; \theta)=\sum_{u \in x_{W}} \lambda(u, x \backslash u ; \theta)-\int_{W} \lambda(u, x ; \theta) \mathrm{d} u
$$

\qquad
\qquad
\qquad
\qquad

Comments on the Pseudo-likelihood

The MPLE is the estimate $\widehat{\theta}$ maximizing

$$
L P L_{W}(x ; \theta)=\sum_{u \in x_{W}} \log \lambda(u, x \backslash u ; \theta)-\int_{W} \lambda(u, x ; \theta) \mathrm{d} u
$$

\qquad
\qquad
(1) Independent on c_{θ}, so the $L P L$ is up to an integral discretization and up to edge effects very to compute.
\qquad
(2) If X has a finite range R, then since x is observed in W, we can replace W by $W_{\ominus R}$ so that for instance $\lambda(u, x ; \theta)$ can always be computed for any $u \in W_{\ominus R}$ (border correction)
(3) If $\log \lambda(u, x ; \theta)=\theta^{\top} v(u, x)$ (exponential family - class of all examples presented before), then LPL is a concave function of θ.
\qquad
under suitable conditions $\widehat{\theta}$ is a consistent estimate and satisfies a
\qquad CLT (and a fast covariance estimate is available) as the window W expands to \mathbb{R}^{d}. [Jensen and Künsch'94, Billiot Coeurjolly and Drouilhet'08-'10, Coeurjolly and Rubak'12].
\qquad
\qquad
\qquad
\qquad

Examples	Definitions, Poisson	Summary statistics	Modelling and inference
Simulation example			

Notes

We generated 100 replications of Strauss point processes (a border correction was applied) :
(1) $\bmod 1: \beta=100, \gamma=0.2, R=.05$.
(2) $\bmod 2: \beta=100, \gamma=0.5, R=.05$.

Estimates of β
$W=[0,1]^{2} \quad W=[0,2]$

 | $\bmod 2$ | 99.28 | (20.48) | 98.21 | (8.53) |
| :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllll}\bmod 1 & 0.20 & (0.09) & 0.21 & (0.06) \\ \bmod 2 & 0.52 & (0.19) & 0.51 & (0.09)\end{array}$

\qquad

- Denote for any function h (eventually depending on θ)
$L_{W}(X, h ; \theta)=\sum_{u \in X_{W}} h(u, X \backslash u ; \theta)$ and $R_{W}(X, h ; \theta)=\int_{W} h(u, X ; \theta) \lambda(u, X ; \theta) \mathrm{d} u$
\qquad
- The GNZ formula states : $\mathrm{E}\left[L_{W}(X, h ; \theta)\right]=\mathrm{E}\left[R_{W}(X, h ; \theta)\right]$.
- Idea : if θ is a p-dimensional vector, \qquad
(1) choose p test function h_{i} and define the contrast

$$
U_{W}(X, \theta)=\sum_{i=1}^{p}\left(L_{W}(X, h ; \theta)-R_{W}(X, h ; \theta)\right)^{2}
$$

(2) Define $\widetilde{\theta}^{T F}=\operatorname{argmin}_{\theta} U_{W}(X, \theta)$.

Examples	Definitions, Poisson
Takacs-Fiksel	(2)

General comments :

- like the MPLE :
- independent of c_{θ}, border correction possible in case of X has a finite range
- consistent and asymptotically Gaussian estimate (Coeurjolly et al.'12).
- Another advantage : interesting choices of test functions cal least to a decreasing of computation time.
$\mathrm{Ex}: h_{i}(u, X)=n\left(B\left(u, r_{i}\right)\right) \lambda^{-1}(u, X ; \theta) \Rightarrow R_{W}$ independent of θ.
\qquad
\qquad
- Actually : MPLE $=$ TFE with $h=\left(h_{1}, \ldots, h_{p}\right)^{\top}=\lambda^{(1)}(\cdot, \cdot ; \theta)$. Indeed (assume $\log \lambda(u, X ; \theta)=\theta^{\top} v(u, X)$ (for simplicity)

$$
\nabla L P L_{W}(X ; \theta)=\sum_{u \in X_{W}} v(u, X \backslash u)-\int_{W} v(u, X) \lambda(u, X ; \theta) \mathrm{d} u
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Recall that the Papangelou conditional intensity of a Strauss point process is \qquad

$$
\lambda(u, X)=\beta \gamma^{t_{R}(u, X)} \text { with } t_{R}(u, X)=\sum_{v \in X} 1(\|v-u\| \leq R)
$$

\qquad

Choose $h_{1}(u, X)=\mathbf{1}(n(B(u, R)=0))$ and
$h_{2}(u, X)=\mathbf{1}(n(B(u, R)=1))$, then
\qquad

- $L_{W}\left(X, h_{1}\right)=L_{1}$ and $R_{W}\left(X, h_{1}\right)=\beta \int_{W} \mathbf{1}(n(B(u, R)=0))=\beta I_{1}$.
- $L_{W}\left(X, h_{2}\right)=L_{2}$ and $R_{W}\left(X, h_{2}\right)=\beta \gamma \int_{W} \mathbf{1}(n(B(u, R)=1))=\beta I_{2}$.

Then, the contrast function rewrites \qquad

$$
U_{W}(X)=\left(L_{1}-\beta l_{1}\right)^{2}+\left(L_{2}-\beta \gamma I_{2}\right)^{2}
$$

\qquad
which leads to the explicit solution

$$
\widehat{\beta}=\frac{L_{1}}{I_{1}} \quad \text { and } \widehat{\gamma}=\frac{L_{2}}{l_{2}} \times \frac{I_{1}}{L_{1}} .
$$

\qquad
\qquad

| Examples | Definitions, Poisson | Summary statistics |
| :--- | :--- | :--- | Modelling and inference

Notes

Other parametric approaches

- Variational approach : (Baddeley and Dereudre'12)
- Method based on a logistic regression likelihood (Baddeley, Coeurjolly, Rubak, Waagepetersen'13).

Model fitting :

- Monte-Carlo approach : we can compare a summary statistic e.g. L with $L_{\widehat{\theta}}$.
Pbm : L_{θ} not expressible in a closed form and must be approximated.
- We can still use the GNZ formula : given a test function h, we can construct

$$
L_{W}(X, h ; \widehat{\theta})-R_{W}(X, h ; \widehat{\theta})=: \operatorname{Residuals}(\mathrm{X}, \mathrm{~h}) .
$$

\qquad
If the model is correct, then Residuals(X, h) should be close to \qquad

General Conclusion

Notes

The anaysis of spatial point pattern

- very large domain of research including probability, mathematical statistics, applied statistics \qquad
- own specific models, methodologies and software(s) to deal with.
- is involved in more and more applied fields : economy, biology, physics, hydrology, environmetrics,...

Still a lot of challenges

\qquad

- Modelling : the "true model", problems of existence, phase transition.
- Many classical statistical methodologies need to be adapted (and proved) to s.p.p. : robust methods, resampling techniques, multiple
\qquad hypothesis testing.
- High-dimensional problems : $S=\mathbb{R}^{d}$ with d large, selection of variables, regularization methods,... \qquad
- Space-time point processes.

Notes
\qquad

[^0]: - Asymptotic results are more awkward to derive and depend on mixing coefficients of the spatial point process X.

