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Abstract

The standard reduced bar complex B(A) of a differential graded algebra A
inherits a natural commutative algebra structure if A is a commutative algebra.
We address an extension of this construction in the context of E-infinity algebras.
We prove that the bar complex of any E-infinity algebra can be equipped with
the structure of an E-infinity algebra so that the bar construction defines a
functor from E-infinity algebras to E-infinity algebras. We prove the homotopy
uniqueness of such natural E-infinity structures on the bar construction.

We apply our construction to cochain complexes of topological spaces, which
are instances of E-infinity algebras. We prove that the n-th iterated bar com-
plexes of the cochain algebra of a space X is equivalent to the cochain complex
of the n-fold iterated loop space of X, under reasonable connectedness, com-
pleteness and finiteness assumptions on X.
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Introduction

This paper is concerned with the standard reduced bar complex B(A) de-
fined basically for an associative differential graded algebra A equipped with an
augmentation over the ground ring k. We also consider the natural extension
of the bar construction to A -algebras, differential graded algebras equipped
with a set of coherent homotopies that make the structure associative in the
strongest homotopical sense.

By a classical construction, the bar complex of an associative and commu-
tative algebra inherits a multiplicative structure, unlike the bar complex of a
non-commutative algebra, and still forms a differential graded associative and
commutative algebra. In this paper, we address a generalization of this con-
struction to E-algebras (E-infinity algebras in plain words), the notion, par-
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allel to the notion of an A..-algebra, which models a differential graded algebra
equipped with a set of coherent homotopies that make the structure associa-
tive and commutative in the strongest homotopical sense. Our main theorems,
Theorems [2.1.B}2.2.B] give the existence and the homotopy uniqueness of an
F.-algebra structure on the bar construction so that:

(1) The bar construction B(A) defines a functor from E..-algebras to E-
algebras.

(2) The E.-algebra structure of B(A) reduces to the standard commutative
algebra structure of the bar construction whenever A is a commutative
algebra.

To make these assertions more precise, a model of the category of FE..-
algebras has to be fixed. For this purpose, we use that the algebra structures
which occur in our problem are modeled by operads: an A, -algebra is equiv-
alent to an algebra over an A.,-operad, in our context a differential graded
operad weakly-equivalent to the operad of associative algebras; an E.-algebra
is an algebra over an E..-operad, a differential graded operad weakly-equivalent
to the operad of associative and commutative algebras (see [26] for the original
definition in the topological framework). Our existence and uniqueness theo-
rems give a functorial F..-algebra structure on the bar construction, for every
category of algebras over an F..-operad E, for any E..-operad E. To define the
action on the target, we just have to take a cofibrant replacement of E with
respect to the model structure of differential graded operads [7] [I7].

The overall idea of our construction is to use modules over operads to rep-
resent functors on categories of algebras over operads. The bar construction
itself is determined by a right module over a particular A..-operad, the chain
operad of Stasheff’s associahedra (Stasheff’s operad for short). The existence
and uniqueness of F.-algebra structures on the bar construction is proved at
the module level by techniques of homotopical algebra. The arguments rely on
the existence of a model structure for right modules over operads.

The existence of a dual F..-coalgebra structure on the cobar construction
has already been obtained by a different method in [34]. But: the modelling
of functors by modules over operads makes our construction more conceptual;
our uniqueness theorem makes the definition of an F.,-structure easier since a
simple characterization ensures us to obtain the right result.

Since the bar construction defines a functor from F,-algebras to E.-algebras,
we have a well-defined iterated bar complex B™(A) associated to any Foo-
algebra. Our motivation, explained next, is to have an iterated bar com-
plex B"(C*(X)), for any cochain algebra C*(X), for every pointed topological
space X, so that B"(C*(X)) is equivalent, under reasonable finiteness and con-
nectedness assumptions on the space X, to C*(Q"X), the cochain algebra of
the iterated loop space Q"X.

The usual cochain complexes C*(X) associated to topological spaces are
examples of objects equipped with an F.-algebra structure (see [I8] and the



more combinatorial constructions of [6] 27]). In positive characteristic, the exis-
tence of Steenrod operations represents a primary obstruction to the existence
of a genuine commutative algebra equivalent to C*(X) and one has to use Fo.-
algebras (or equivalent notions) to model faithfully the homotopy of a space X
by a cochain complex (see [25]).

According to classical results of Adams [I] and Adams-Hilton [2], the bar
complex B(C*(X)), where C*(X) is the cochain algebra of a topological space
X, is equivalent as a chain complex to C*(Q2X), the cochain complex of the loop
space QX. Since the cochain complex C*(X) forms an E..-algebra, we obtain
by our structure theorem that the bar complex B(C*(X)) comes equipped with
a well-defined E-algebra structure. To obtain the topological interpretation
of the iterated bar complex B™(C*(X)), we prove that B(C*(X)) is equivalent
to C*(2X) as an E-algebra.

For this aim, we prove that, for a cofibrant E,-algebra, the usual bar con-
struction is equivalent as an E.-algebra to a categorical version of the bar con-
struction in which tensor products are replaced by algebra coproducts. Then
we apply a theorem of Mandell [25] which asserts that the categorical bar con-
struction of a cofibrant replacement of C*(X) defines an E-algebra equivalent
to C*(QX).

The categorical bar construction preserves weak-equivalences between cofi-
brant F..-algebras only. Therefore we have to form a cofibrant replacement of
C*(X) in E-algebras in order to apply the categorical bar construction rea-
sonably. In contrast, the usual bar construction preserves weak-equivalences
between all E,-algebras which are cofibrant in the underlying category of dg-
modules (all Ey-algebras if the ground ring is a field). For this reason, we can
apply the usual bar construction to the cochain algebra itself C*(X), and not
only to a cofibrant replacement of C*(X), to still have an E.-algebra equivalent
to C*(2X).

The article [25] gives an attractive theoretical setting to model the homotopy
of spaces in positive characteristic, but in practice one has to face deep difficul-
ties to build cofibrant replacements in categories of F.-algebras. In this sense,
our construction gives an effective substitute for the categorical bar construction
used in [25].

According to [29], the bar complex of simplicial commutative algebras models
the suspension in the homotopy category of simplicial commutative algebras.
In passing, we prove that, in the differential graded setting, the bar complex of
F.-algebras yields a model of the suspension in categories of F..-algebras.

Other attempts to define an iterated bar construction occur in the literature
outside J.R.Smith’s memoirs [33, B4]. Usually, authors deal with the dual cobar
construction and chain complexes rather than cochain complexes. If we assume
reasonable finiteness assumptions on spaces, then this dual construction is equiv-
alent to the bar construction and nothing changes. To simplify we examine the
previous results of the literature in the context of the bar construction.

(1) The original geometrical approach of Adams [I] and Adams-Hilton [2] is
continued by Milgram in [28] and Baues in [3, 4, [5] to define a double bar



construction B?(C*(X)), for any cochain algebra C*(X), where X is a
simplicial set (see also the survey article [10]).

(2) In [22], Kadeishvili-Saneblidze use perturbation lemmas and the classi-
cal chain equivalence B(C*(X)) ~ C*(Q2X) to obtain an inductive con-
struction of an iterated bar complex B"(C*(X)) together with a chain
equivalence B"(C*(X)) ~ C*(Q"X), for every cochain algebra C*(X);
this approach is used by Rubio-Sergeraert in the Kenzo program [31] to
perform computer calculations.

(3) In [24], Karoubi uses ideas of non-commutative differential geometry and
non-commutative analogues of difference calculus to introduce new cochain
complexes D*(X) for which a modified iterated bar complex B™(D*(X))
can be defined so that B"(D*(X)) ~ D*(Q"X).

The difficulty in is to understand the geometry of certain cell complexes
in order to define higher iterated bar complex B"™(C*(X)) for n > 2 (see [4, §]).
In the approach of , and similarly in , the bar construction is only defined
for complexes of a particular type. In the approach of , one has to keep track
of a simplicial model of Q"X the iterated Kan construction G™(X), to define
the differential of B™(C*(X)).

In contrast, our theorems imply the existence of a well-characterized iterated
bar complex B™(A), for every E.-algebra A, and such that B™(A) incorporates
minimal information in itself. Besides, we have to use multiplicative structures
to relate the iterated bar complex B™(C*(X)) to the cochain complex of an
iterated loop space C*(2"X), but the iterated bar complex B"(A) can be de-
termined directly by using that a composite of functors associated to modules
over operads, like the iterated bar complex, forms itself a functor determined
by a module over an operad (see [I4]). This observation, beyond the scope of
this article, is the starting point of [I6].

In this introduction, we adopt the usual convention to apply the bar con-
struction to augmented unital algebras. In the context of the cochain complex
of a space X, the augmentation is determined by the choice of a base point
x € X. But in the definition of the bar complex we have to replace an algebra A
by its augmentation ideal A, which forms a non-augmented non-unital algebra,
and the cochain complex of a space C*(X) by the associated reduced complex
C*(X). Therefore it is more natural to use non-augmented non-unital algebras
for our purpose and we take this convention in the core sections of the article

(for details, see §1.1.2)and §1.1.4]).

Contents

In the first part of the paper, “Background”, we survey new ideas intro-
duced in [14] to model functors on algebras over operads by modules over op-
erads. These preliminaries are necessary to make the conceptual setting of our
constructions accessible to readers which are only familiar with standard defi-
nitions of the theory of operads.



The object of our study, the bar construction, appears in the second part,
“The bar construction and its multiplicative structure”, where we prove the main
results of the article. In the core sections, §§I}4] we define the bar module,
the module over Stasheff’s operad which represents the bar construction, we
prove the existence and uniqueness of a multiplicative structure on the bar
construction, and we give a homotopy interpretation of the bar construction in
the model category of F.-algebras. For a more detailed outline, we refer to the
introduction of this part.

In the concluding part, “The iterated bar construction and iterated loop
spaces”, we address topological applications of our results. As explained in
this introduction, we use the multiplicative structure of the bar construction to
define an iterated bar construction B™(C*(X)), for any cochain algebra C*(X),
so that B"(C*(X)) ~ C*(Q2"X). One aim of this part is to make explicit rea-
sonable finiteness, completeness and connectedness assumptions on X which
ensure this equivalence.

Background

Before studying the structure of the bar construction, we survey ideas intro-
duced in the book [14] to make the overall setting of our constructions accessible
to readers.

First, our use of functors and modules over operads motivates a review of
the categorical background of operad theory, to which are devoted. Then,
in we review the definition of an operad, of an algebra over an operad, and
the definition of categories of modules associated to operads. The correspon-
dence between modules over operads and functors is addressed in

Throughout the paper, we use extensively extension and restriction functors
in the context of algebras and modules over operads. The last subsection of this
part, is devoted to recollections on these topics.

0.1. Symmetric monoidal categories over dg-modules

As usual in the literature, we assume that operads consist of objects in a fixed
base symmetric monoidal category — for our purpose, the category of unbounded
differential graded modules (dg-modules for short) over a fixed ground ring k
(see §0.1.1)).

In contrast, we can assume that the underlying category of algebras over
an operad is not the base category itself, to which the operad belongs, but
some symmetric monoidal category over the category of dg-modules. Though
we only use specific examples of such categories in applications, the category of
dg-modules itself, the category of ¥,-modules, and categories of right modules
over an operad, for which alternative point of views are available (see §0.2)),
we prefer to review the definition of this general setting which gives the right
conceptual background to understand our arguments.



0.1.1. Symmetric monoidal categories over dg-modules

Let k be a ground ring, fixed once and for all. Throughout the paper, the
notation C refers to the category of dg-modules, where a dg-module consists of
a lower Z-graded k-module C' = ®,czC, equipped with an internal differential,
usually denoted by d§ : C' — C, that decreases degrees by 1. The usual convention
C* = C_, makes any upper graded module equivalent to an object of C.

The category of dg-modules is equipped with the standard tensor product of
dg-modules ® : C x C — C which provides C with the structure of a symmetric
monoidal category. The unit object of dg-modules is formed by the ground ring
itself k, viewed as a dg-module concentrated in degree 0.

For us, a symmetric monoidal category over C is a symmetric monoidal
category £ equipped with an external tensor product ® : C x £ — £ so that an
obvious generalization of relations of symmetric monoidal categories holds in &,
for any composite of the tensor products ® : EXE - Eand ® : C x E — &. For
details on this background we refer to [14] §1.1].

In principle, we assume that the internal tensor product of £, as well as
the external tensor product over dg-modules ® : C x £ — &, preserves colimits.
Under mild set-theoretic assumptions, these conditions are equivalent to the
existence of right adjoints for the internal tensor product and the external tensor
product of £. In the paper, we only use the existence of the external-hom

Homg(—,—): EP x & — C,
which satisfies
Morg(C ® E, F') = Morc(C,Homg (E, F)),

forCeC, E,Fect.

0.1.2. Symmetric monoidal model categories over dg-modules
The category of dg-modules C is equipped with a cofibrantly generated model
structure such that a morphism f : C' — D is a weak-equivalence if f induces
an isomorphism in homology, a fibration if f is degreewise surjective, and a
cofibration if f has the left lifting properties with respect to acyclic fibrations.
This model structure is symmetric monoidal (see |20} §4]) in the sense that:

MMO. The unit of the tensor product forms a cofibrant object in C.
MM1. The tensor product @ : C x C — C satisfies the pushout-product axiom —
explicitly: the natural morphism

(isju) : A9 DE@H B C— B®D
A®C

induced by cofibrations i : A — B and j : C — D forms a cofibration in
C, an acyclic cofibration if i or j is also acyclic.

In the paper, we use cofibrantly generated model categories & which are
symmetric monoidal over the base category of dg-modules C and such that the



analogues of axioms MMO0-MMI1 are satisfied at the level of £: the unit object
1 € & forms a cofibrant object in £ and the internal tensor product of &, as well
as the external tensor product of £ over the category of dg-modules C, satisfies
the pushout product axiom. In this context, we say that £ forms a cofibrantly
generated symmetric monoidal model category over dg-modules.

The books [19] [20] are our references on the background of model categories.
For the definition of a symmetric monoidal model category, we refer more par-
ticularly to [20, §4]. For the generalization of this notion to our relative setting,
we refer to [14, §11.3].

0.1.3. Enriched model category structures

The axioms of symmetric monoidal model categories are used implicitly when
we define the model category of operads and the model category of algebras over
an operad. In the article, we also use a dual version of the pushout-product ax-
iom which holds for the external hom functor of a symmetric monoidal category
over C:

MM1’. The natural morphism

Home (B, ) ), Homeg (A, C) Xttome (4. p) Home (B, D)
induced by a cofibration i : A — B and a fibration p : C — D forms a
fibration in C, an acyclic fibration if i or p is also acyclic.

The characterization of (acyclic) fibrations in a model category by the left lifting
property with respect to (acyclic) cofibrations and the definition of the exter-
nal hom imply readily that axiom MM1’ is formally equivalent to the pushout
product axiom MMI1 for the external tensor product ® : C x & — €.

0.2. Operads, algebras and modules over operads

In this subsection, we review basic definitions of the theory of operads in
the context of symmetric monoidal categories over dg-modules. To begin with,
we recall briefly the definition of a Y,-module, of an operad, and of module
structures associated to operads. For details, we refer to relevant sections of [14].

0.2.1. Operads and modules over operads

Throughout the paper, we use the notation M to refer to the category of
Y .-objects in dg-modules (X,-modules for short), whose objects are collections
M = {M(n)}nen, where M(n) is a dg-module equipped with an action of the
symmetric group in n letters X, for n € N.

In the classical theory, a module of symmetric tensors

S, E) = D(M(n) © B")s,

n=0

is associated to any ¥,-module M € M. The coinvariants (M(n) @ E®")s
identify the natural action of permutations on E®™ with their action on M (n).



For our purpose, we note that this construction makes sense in any symmetric
monoidal category £ over the category of dg-modules C, so that the map S(M) :
E — S(M,E) defines a functor S(M) : £ — €.

The category of ¥,-modules comes equipped with a composition product
o: Mx M — M such that S(M o N, E) = S(M,S(N, E)), for all M, N € M,
E € &, and for every symmetric monoidal category over dg-modules £. The
composition product of ¥,-modules is associative and unital. The composition
unit is defined by the X,-module

I(n):{k, ifn =1,

0, otherwise,

and we have S(I) = Id, the identity functor on &.

There are several equivalent definitions for the notion of an operad. Ac-
cording to one of them, an operad consists of a ¥,-module P equipped with an
associative product p : PoP — P, the composition product of P, together with
a unit represented by a morphism n : | — P.

The structure of a right module over an operad R is defined by a 3 .-module
M equipped with a right R-action determined by a morphism p: M o R — M
which is associative with respect to the operad composition product and unital
with respect to the operad unit. The category of right R-modules is denoted by
MR.

There is a symmetrically defined notion of left module over an operad P
consisting of a Y,-module N equipped with a left P-action determined by a
morphism A : PoN — N. One can also define the notion of a bimodule as a
Y,.-object N equipped with both a right R-action p : N oR — N and a left
P-action A : PoN — N that commute to each other. The notation p M refers
to the category of left P-modules and the notation p M g to the category of
P-R-bimodules.

Note that an operad R forms obviously a right module (respectively, left
module, bimodule) over itself.

The composition product of ¥,-modules is not symmetric since this opera-
tion is supposed to represent the composition of functors. For this reason, left
and right operad actions on X ,-modules have different nature though definitions
are symmetrical. In we observe that left modules (respectively, bimod-
ules) over operads are equivalent to algebras over operads and this equivalent
definition reflects the structure of left modules and bimodules more properly.

0.2.2. The symmetric monoidal category of X.-modules

The category of ¥,-modules, which defines an underlying category for op-
erads and modules over operads, gives our primary example of a symmetric
monoidal model category over dg-modules (outside the category of dg-modules
itself).

The unit of the tensor structure of X,-modules is the Y,-module 1 such
that 1(0) = k and 1(n) = 0 for n > 0. The tensor product C ® N € M of a



Y-module M € M with a dg-module C' € C is given by the obvious formula
(CeM)(r)=Ce M(r),

for r € N. The tensor product M @ N € M of X,-modules M, N € M is defined
by a formula of the form:

(M@ N)(r)= @ = ©n,xx, M(s) ® N(1),

s+t=r

for r € N. At the functor level, the tensor operations of ¥.-modules represent
the pointwise tensor products

S(M@N,E)=S(M,E)® S(N,E) and S(C®M,E)=C®S(M,E),

for any symmetric monoidal category over dg-modules £, where E € £ (we refer
to [14}, §2.1] for details on these recollections).

Since M forms a symmetric monoidal category over dg-modules, a ¥,-
module M gives rise to a functor S(M) : M — M on the category of ¥,-modules
itself. In fact, we have an identity S(M, N) = MoN, for all M, N € M (see [14]

§2.2]).

0.2.3. The symmetric monoidal category of right R-modules

According to [I4, §6.1], the tensor product M ® N of right modules over
an operad R inherits the structure of a right R-module and similarly for the
external tensor product C ® M of a dg-module C' € C with a right R-module
M € Mg. Hence the category of right R-modules forms a symmetric monoidal
category over dg-modules so that the forgetful functor U : Mg — M preserves
symmetric monoidal structures. In the context of right R-modules, the functor
S(M) : Mg — Mg is still given by the formula S(M,N) = M o N, for all
M e M, N € Mg, where M o N has an obvious right R-action induced by the
right R-action on N.

0.2.4. Symmetric monoidal model structures

The category of ¥ ,-modules M inherits a natural model structure such that
a morphism f : M — N is a weak-equivalence (respectively, a fibration) if
the underlying collection of dg-module morphisms f : M(n) — N(n) consists
of weak-equivalences (respectively, fibrations) in the category of dg-modules.
Cofibrations are determined by the right lifting property with respect to acyclic
fibrations. The model category M is also cofibrantly generated and symmetric
monoidal over dg-modules in the sense of (see [14], §11.4]).

In [T4, §14] we check that the category of right modules over an operad
R forms a cofibrantly generated symmetric monoidal model category over dg-
modules, like the category of ¥,-modules, provided that the underlying collec-
tion of the operad {R(n)},cn consists of cofibrant dg-modules. Throughout the
paper, we assume tacitely that an operad R satisfies this condition if we deal
with model structures of the category of right R-modules. As usual, we assume



that a morphism of right R-modules f : M — N is a weak-equivalence (re-
spectively, a fibration) if the underlying collection consists of weak-equivalences
(respectively, fibrations) of dg-modules f : M(n) — N(n) and we characterize
cofibrations by the left lifting property with respect to acyclic fibrations.

0.2.5. On algebras over operads

In standard definitions, one uses that the functor S(P) associated to an op-
erad P forms a monad in order to define the category of algebras associated
to P. The usual definition can readily be extended in the context of sym-
metric monoidal categories over dg-modules since according to the construction
of we have a functor S(P) : & — & for every symmetric monoidal category
& over the category of dg-modules C.

The structure of a P-algebra in £ consists of an object A € £ equipped with
an evaluation morphism X : S(P, A) — A that satisfies natural associativity and
unit relations. The definition of S(P, A) implies that the evaluation morphism
is also equivalent to a collection of equivariant morphisms

A:P(n)®A®" — A

formed in the category £. Throughout the paper, we use the notation p £ to
refer to the category of P-algebras in &.

For E € &, the object S(P,E) € £ is equipped with a natural P-algebra
structure and represents the free object associated to E in the category of P-
algebras. In the paper, we use the notation P(E) = S(P, E) to refer to the object
S(P, E) equipped with the free P-algebra structure and we keep the notation
S(P, E) to refer to the underlying object in &.

In the case &€ = M, we have an identity S(P,M) = PoM from which we
deduce that a P-algebra in Y,-objects is equivalent to a left P-module. In the
case & = MR, we obtain that a P-algebra in right R-modules is equivalent
to a P-R-bimodule. Our conventions for categories of algebras over operads is
coherent with the notation of for the category of left P-modules p M and
for the category of P-R-bimodules p M g.

In the paper, we use repeatedly the observation, made in that an
operad forms a bimodule over itself, and hence an algebra over itself in the
category of right modules over itself.

The categories of right modules over an operad carry the same structures as
usual categories of modules over algebras. The categories of left modules over
an operad, as well as the categories of bimodules, have structures of different
nature that the notion of an algebra in a symmetric monoidal category over
dg-modules reflects. The idea of an algebra in a symmetric monoidal category
over dg-modules is also more natural in constructions of this article. Therefore,
in this paper, we prefer to use the language of algebras in symmetric monoidal
categories for left modules and bimodules over operads.

0.2.6. Model categories of algebras over operads
Let P be a X,-cofibrant operad, an operad which forms a cofibrant object in
the underlying category of 3 ,-modules.

10



Let £ be a cofibrantly generated symmetric monoidal model category over
dg-modules. The category of P-algebras in £ inherits a semi-model structure
such that a morphism f : A — B defines a weak-equivalence (respectively, a
fibration) in p £ if f forms a weak-equivalences (respectively, fibrations) in the
underlying category £ (see [35], we also refer to [2I] for the notion of a semi-
model category). Roughly, all axioms of a model category are satisfied in p &,
including M4 and M5, as long as the source of the morphism f : A — B that
occurs in these properties is assumed to be cofibrant.

This assertion can be applied to the category of ¥,-modules &€ = M (re-
spectively, to the category of right modules over an operad £ = Mg) to obtain
that the left P-modules p M (respectively, the P-R-bimodules p Mg) form a
semi-model category.

0.2.7. Model categories of operads

The category of operads O carries a semi-model structure such that the for-
getful functor U : O — M creates fibrations and weak-equivalences (see [35]).
Thus, according to definitions for M, a morphism f : P — Q is a weak-
equivalence (respectively, a fibration) in O if the underlying morphisms of dg-
modules f : P(n) — Q(n), n € N, are all weak-equivalences (respectively, fibra-
tion) in the category of dg-modules. In the core sections of the paper, we use
operads P such that P(0) = 0. According to [7, [I7], the subcategory Oy C O
formed by these operads inherits a full model category structure.

As usual, we characterize cofibrations by the right lifting property with re-
spect to acyclic fibrations in O. In particular, an operad P € O is cofibrant as
an operad if the lifting exists in all diagrams of the form

R,
37 4i

o~lp
P—=S

where p : R — S is an acyclic fibration of operads.

Recall that an operad P is said to be X,-cofibrant if P forms a cofibrant
object in the underlying category of ¥,-modules. One can check that cofibrant
operads are X,-cofibrant (see [, Proposition 4.3]), but the converse assertion
does not hold.

0.3. Modules over operads and functors

In this subsection, we recall the definition and categorical properties of func-
tors associated to right modules over operads.

0.3.1. The functor associated to a right module over an operad
Let M be a right module over an operad R.

11



Let £ be any symmetric monoidal category over dg-modules. For an R-
algebra A € g &€, we form the coequalizer:

do
S(MoR,A) —/—=Z S(M,A) —— Sgr(M, A) ,
di

where dy is the morphism

S(p,A)
_

S(M o R, A) S(M, A)

induced by the right R-action on M and d; is the morphism

S(MoR,A) = $(M, S(R, A)) 28N, g
induced by the left R-action on A.

The map Sg(M) : A — Sgr(M, A) defines the functor Sg(M) : g€ — &
associated to M. Let F r denote the category of functors F : g€ — £. The
definition of Sg(M) is obviously natural in M so that Sg : M — Sgr(M) defines
a functor Sg : Mg — FrR.

The definition of the functor Sg(M) : € — £ can be applied to the category
of ¥,-modules &€ = M, or to another category of right modules £ = Ms,
for any operad S. In this context, the object Sg(M, N) is identified with the
classical relative composition product M og N of the operad literature. Indeed,
the relative composition product M og N is defined by a coequalizer of the
same form where the objects S(M, N) are replaced by the equivalent composites
S(M,N) = M o N in the category of ¥.-modules (see for instance [I3, §2.1.7]
for this definition).

(M, A)

0.3.2. Categorical operations on functors associated to right-modules over oper-
ads
To determine the functor Sg(M) : R € — &€ associated to a right R-module M,
we essentially use:

(1) For the unit object M = 1, the functor Sg(1) : r€ — & is the constant
functor Sr(1,4) =k.

(2) We have a natural isomorphism Sg(M ® N, A) = Sgr(M,A) ® Sr(N, A),
for all M, N € Mg, A € g€, and a natural isomorphism Sg(C ® M, A) =
C ® Sg(M,A), for all C € C, M € Mg, A € rE, so that the map
Sr @ M +— Sr(M) defines a functor of symmetric monoidal categories
over dg-modules Sg : (MR, ®,1) — (Fr,®,k), the tensor structure of
functors being defined pointwise.

(3) The functor Sg : M g — F g preserves colimits.

We refer to [14] §85-6] for the proof of these assertions.

The functor Sg : M — Sgr(M) is uniquely characterized by and asser-
tion of (use the form of generating objects in Mg, see [14], §7.1]). If
we forget algebra structures on the target, then this latter assertion implies:

(4) The functor Sr(R) : r € — £ associated to the operad R, viewed as a right
module over itself, represents the forgetful functor U : g€ — £.

12



0.8.3. On algebras in right-modules over operads and functors
The assertions of imply that the evaluation morphism of a P-algebra
in right R-modules
A:P(n)® N®" - N

give rise to natural evaluation morphisms at the functor level:
P(n) ® Sr(N, A)®" = Sg(P(n) ® N®", A) — Sr(N, A),

where A € g €. Thus we obtain that the map Sg(N) : A — Sr(N, A) defines a
functor Sg(N) : rE — p €.
According to [14, Observation 9.2.2]:

(1) The identity functor Id : € — rE is realized by the functor Sg(R) :
rE — R E associated to the operad R considered as an algebra over itself
in right modules over itself.

The definition of the functor Sg(N) : RE€ — p & is obviously natural in
N € p Mg so that the map N — Sg(N) defines a functor Sg : p Mg — p FR,
where p F r denotes the category of functors F': g€ — p £ from the category of
R-algebras in £ to the category of P-algebras in £. According to [I4] Proposition
9.2.1]:

(2) For a free P-algebra in right R-modules we have the identity Sg(P(M), A) =
P(Sr(M, A)), where on the right hand side we consider the free P-algebra
generated by the object Sr(M, A) € £ associated to A € g € by the functor
SR(M) : € — & determined by M € Mg.

(3) The functor Sg : p M g — p F R preserves colimits.

0.4. On extension and restriction of structure

Any operad morphism gives rise to adjoint extension and restriction functors
on module categories, as well as on algebra categories. The purpose of this
subsection is to recall the definition of these functors.

0.4.1. On extension and restriction of structure for right modules over operads
On module categories, the adjoint extension and restriction functors

h: Mr2 Mg

associated to an operad morphism v : R — S are very analogous to the classical
extension and restriction functors of linear algebra.

The right R-module ¥*N obtained by restriction of structure from an S-
module N is defined by the object underlying N on which the operad R acts
through S by way of the morphism ¢ : R — S. Usually, we omit marking
the restriction of structure in notation, unless this abuse of notation creates
confusion.

Recall that an operad S forms a bimodule over itself. By restriction, we
obtain that S is acted on by the operad R on the left so that S forms an R-S-
bimodule as well. The extension functor is defined by the relative composition
product ¥y M = M oR S.
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Usually, we use the expression of the relative composition product M ogr S
to refer to the object ¢ M. This convention has the advantage of distinguishing
extensions of structure on the right from extensions of structure on the left
(whose definition is recalled next, in and to stress the analogy with
extension of scalars in linear algebra. Nevertheless we keep using the notation
1y to refer to the extension of structure as a functor ¢, : Mg — Ms.

The right R-module ¥* N associated to a P-algebra in right S-module N €
p M s, where P is another operad, inherits an obvious P-algebra structure and
forms a P-algebra in right R-modules. In the converse direction, one checks that
the relative composition product M or S preserve tensor products, from which
we obtain that the right S-module Yy M = M or S associated to a P-algebra
in right R-modules M € p M g inherits a P-algebra structure and forms a P-
algebra in right S-modules. Finally, we have induced extension and restriction
functors

PhipMrEpMs:¢*

which are obviously adjoint to each other.

0.4.2. On extension and restriction of structure for algebras over operads
An operad morphism ¢ : P — Q yields adjoint extension and restriction
functors on algebra categories

¢g:pg<:>Qgt¢*,

for any symmetric monoidal category & over the base category of dg-modules C.

Again, the P-algebra ¢*B obtained by restriction of structure from a Q-
algebra B is defined by the object underlying B on which the operad P acts
through Q by the morphism ¢ : P — Q. In the other direction, the P-algebra
¢1 A obtained by extension of structure from a P-algebra A is just characterized
by the adjunction relation

Mor, ¢ (¢ A, B) = Mor, ¢ (A, ¢*B).

In fact, the P-algebra ¢ A can be identified with the object Sp(Q, A) € Q asso-
ciated to A by the functor Sp(Q) : p € — q & where the operad Q is considered
as an algebra over itself in right modules over P (use the restriction of structure

on the right of §0.4.1)).

In the case £ = M and £ = Mg, we obtain extension and restriction functors
for left modules over operads

oipME QM :o*
and extension and restriction functors on the left for bimodules over operads
GripMrEQMRg:d".

In the context of bimodules, the extension and restriction of structure on the
left commute with the extension and restriction of structure on the right.
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From the module point of view, the extension and the restriction of structure
on the left is defined in a symmetric fashion to the extension and the restriction
of structure on the right. In particular, for extension of structure, we have
an identity ¢M = QopM. Nevertheless we prefer to use the notation ¢M
to refer to an extension of structure on the left, rather than the notation of a
relative composition product, because we view the functor ¢, : M — ¢/ M as an
instance of an extension of structure of R-algebras and this point of view reflects
the nature of extensions of structure on the left more properly.

0.4.3. On extension and restriction of functors

According to [14] §7.2], extension and restriction of structure of modules
over operads reflect extension and restriction operations at the functor level.
For extensions on the right, we have natural isomorphisms

SS(M OR S,B) ~ SR(M,Qﬁ*B),
for every M € Mg and all B € &, as well as natural isomorphisms
SR(N7 A) = SS(Na ¢IA)5

for every N € M s and all A € g€, and similarly in the context of bimodules
over operads M € p Mg, N € p Ms (in this context, the identities hold in
the category of P-algebras). Symmetrically, for extensions on the left, we have
identities of P-algebras

Sr(¢1M, A) ~ ¢ Sr(M, A),
for every M € p Mg, and
SR(¢*N, A) ~ (b* SR(N, A)7

for every N € q MR, where in both cases A € g €.

The bar construction and its multiplicative structure

In this part, we apply the general theory recalled in §§0.1H0.4] to prove our
main results on the bar construction.

In §I] we recall the definition of the bar construction of differential graded
algebras and we check that this construction is an instance of a functor de-
termined by a module over an operad, the bar module. For this purpose, we
observe that a generalized bar construction is defined in the setting of modules
over operads. In fact, the bar module is an instance of a bar construction in
that category, where an operad is considered as an algebra over itself in right
modules over itself. This idea is also used to check homotopical properties of
the bar module associated to an operad.

The multiplicative structure of the bar complex is examined in where we
use constructions of to prove the existence and uniqueness of an E.-structure
on the bar complex of F.-algebras.
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In we recall the definition of a categorical analogue of the bar construc-
tion, where tensor products are replaced by categorical coproducts, and we check
that this categorical bar construction forms an instance of a functor determined
by a module over an operad. By [25] Theorems 3.2 and 3.5], the categorical
bar construction defines a model of the suspension in the homotopy category
of algebras over an operad. In §4] we use an equivalence of modules over op-
erads to prove that the usual bar construction is equivalent to the categorical
bar construction as an E,-algebra, from which we conclude that the usual bar
construction defines a model of the suspension in the homotopy category of
F.-algebras. This relationship is used in the next part to deduce from results
of [25] that the bar complex of a cochain algebra C*(X) is equivalent as an
E-algebra to C*(2X), the cochain algebra of the loop space of X.

Conventions

In the remainder of the article, the notation £ refers either to the category
of dg-modules £ = C or to a category of right modules over an operad & = Ms
and we do not consider other examples of symmetric monoidal categories over
dg-modules. The concept of a symmetric monoidal category over dg-modules is
essential to understand our arguments, but in applications we are only interested
in these examples.

From now on, we use the subcategory Oy C O formed by operads P such
that P(0) = 0, and we assume tacitely that any given operad satisfies this
condition. The assumption P(0) = 0 amounts to considering algebras without
0-ary operations A : P(0) — A. In the sequel, we say that an operad P which
has P(0) = 0 is non-unitary and that the associated algebras are non-unital.
This setting simplifies the definition of the bar complex (see and .

1. The bar construction and the bar module

Introduction

In this section, we check that the bar construction A — B(A) is identified
with the functor associated to a right module over Stasheff’s operad and we
check properties of this module.

For our needs, we study restrictions of the bar construction to categories of
algebras over operads R, where R is any operad under Stasheff’s operad K. In
this context, we prove:

Proposition 1.A. Let R be any operad under Stasheff’s operad K. There is a
right R-module naturally associated to R, the bar module B, such that B(A) =
SR(BR,A), for all A€ R€.

In we recall the definition of Stasheft’s operad K and the definition of
the bar construction for algebras over this operad. In §1.2] we study the bar

construction of a K-algebra in a category of right modules over an operad R.
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In we note that all E.-operads form operads under K. As a conse-
quence we obtain that all F.-algebras have an associated bar complex. In
we use the generalized bar complex of K-algebras in right modules over an op-
erad R to define the bar module Br associated to an operad R under K. For
this aim, we just observe that an operad under K forms a K-algebra in right
modules over itself. We study the structure of this right R-module Br and the
functoriality of the construction R — Bg.

1.1. On Stasheff’s operad and the bar complex

In this section, we use that the structure of an algebra over an operad P,
defined by a collection of evaluation morphisms

A:P(n) @A%™ — A,

amounts to associating an actual operation p : A®™ — A to any homogeneous
element p € P(n), at least in the case & = C, the category of dg-modules, and
& = MR, the category of right modules over an operad R.

For this purpose, we use the adjunction relation

Morg(P(n) @ A®™, A) = Mor¢(P(n), Homg (A®™, A))
and an explicit representation of the dg-hom
Homg(—,—): EPxE = C

on these categories.

In the context of dg-modules, an element f € Home(C, D) is simply a ho-
mogeneous map f : C' — D. In the context of right modules over an operad,
an element f € Homay, (M, N) consists of a collection of homogeneous maps
of dg-modules f : M(n) — N(n), n € N, which commute with the action
of symmetric groups and so that the action of the operad R is preserved by
f M — N. In general, the evaluation morphism of a P-algebra associates an
element p € Homg (A®", A) to any operation p € P(n).

The standard bar complex is an instance of a construction where the internal
differential of a dg-module C' is twisted by a cochain d € Home (C, C) to produce
anew dg-module, which has the same underlying graded module as C', but whose
differential is given by the sum §+0 : C'— C. One has simply to assume that a
twisting cochain 9 satisfies the equation §(9) + 9% = 0 in Hom¢(C, C) to obtain
that the map & + O verifies the equation of differentials (§ + 8)? = 0. This
construction makes sense in the context of right modules over an operad. In
this case, the twisting cochain 0 : M — M is supposed to represents an element
of Homp, (M, M) and this condition ensures that the sum 6 +9 : M — M
defines a differential of right R-modules (for details, compare with definitions
of [13], §2.1.11]).

From these observations, a bar complex in the category of right modules over
an operad can be defined in parallel to the standard bar complex in dg-modules.
Before doing this construction, we recall the definition of Stasheft’s operad, at
least for the sake of completeness.
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1.1.1. On the chain operad of Stasheff’s associahedra

The structure of Stasheff’s operad K is specified by a pair K = (F(M), 9),
where F(M) is a free operad and 0 : F(M) — F(M) is an operad derivation that
defines the differential of K. The generating .-module M is given by

M(r) 0, ifr=0,1,
r)=
¥, ®k pu., otherwise,

where p,. is a generating operation of degree r — 2. The derivation 9 : F(M) —
F(M) is determined on generating operations by the formula

o) = > {i F1s 04 ut}.

s+t—1=r i=1

Let A be operad of associative algebras. The Stasheff operad is endowed
with an operad equivalence € : K = A defined by €(u,) = 0 for » > 2 and
€(p2) = p, where p € A(2) is the operation which represents the product of
associative algebras.

1.1.2. The bar complex

Let A be a K-algebra in £, where £ = C, the category of dg-modules, or
€ = MR, the category right modules over an operad.

The (reduced) bar complex of A is defined by the pair B(A) = (T°(2A),0)
formed by the (non-augmented) tensor coalgebra

oo

T°(2A) = P(zA4)*"

n=1

where YA is the suspension of A in &, together with a twisting cochain 9 €
Homg(T¢(XA), T°(XA)), called the bar coderivation, defined pointwise by the
formula

n n—r+1
8(a1®-~®an):2{ Z ial®"'®,U'T(aia'-~aai+r—1)®"‘®an}~
=2 =1

The internal differential of the bar complex B(A) is the sum §+ 9 of the natural
differential of the tensor coalgebra ¢ : T°(XA) — T¢(XA), induced by the
internal differential of A, with the bar coderivation 0 : T°(XA4) — T¢(XA),
determined by the K-operad action.

In the case of an associative algebra, the bar coderivation reduces to terms

n—1
8:Zial®...®M(ai’ai+1)®...®an
i=1

since the operations p, € K(r) vanish in A(r) for » > 2. Hence, in this case, we
recover the standard definition of the bar complex of associative algebras.

According to the definition, the bar complex forms naturally a coalgebra in
&, but we do not use coalgebra structures further in this article.
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1.1.3. Remark

In the context of right modules over an operad £ = Mg, we have essentially
to form the tensor coalgebra T¢(XA) in Mg. The suspension of an object M €
MR can be defined by a tensor product XM = N,(S') ® M, as in the context
of dg-modules, where N,(S?') is the reduced normalized chain complex of the
circle. The pointwise definition of the bar coderivation 0 : T°(XA) — T°(XA),
makes sense if we recall that (XA)®" is generated by tensors a3 ® -+ ® a,, €
YA(r1)®- - -®@XA(r,) (we apply the principle of generalized point-tensors of [14]
§0.5]). In both cases £ = C and £ = MR, the bar coderivation can be defined

as a sum of homomorphism tensor products
d®- @ pr ® - ®id € Homg ((ZA)®", (ZA)®""H)

as well.

1.1.4. Remark

The definition of is the right one for a non-unital algebra. Similarly,
we consider a non-augmented tensor coalgebra in the definition of B(A), or
equivalently the augmentation ideal of the standard tensor coalgebra, so that
our bar complex forms a non-unital object. In general it is simpler for us to deal
with non-unital algebras and therefore we take this convention. In the unital
context we have to assume that A is augmented and, in the definition of B(A),
we have to replace the algebra A by its augmentation ideal A.

1.2. The generalized bar complex

The bar construction gives by definition a functor B : £ — &, for £ = C and
& = MR. In this subsection we check that standard properties of the usual bar
construction of K-algebras in dg-modules hold in the context of right modules
over an operad R.

First, we have the easy propositions:

Proposition 1.2.1. Letvy : R — S be any operad morphism. For any K-algebra
in right R-modules M, we have a natural isomorphism B(M)ogrS ~ B(M orS)
in the category of right S-modules.

PRrROOF. Use simply that extension functors (M) = M or S commute with
tensor products to obtain this isomorphism (see [I4, §7.2] and recollections

in §0.4.1). O

Proposition 1.2.2. If ¢ : M — N s a fibration of K-algebras in right R-
modules, then the induced morphism B(¢$) : B(M) — B(N) defines a fibration
in the category of right R-modules

PROOF. Recall that fibrations in the category of right R-modules are created
in the category of dg-modules and, as such, are just degreewise epimorphisms.
Therefore the assertion is an immediate consequence of the definition of the bar
complex as a twisted module B(N) = (T°(XN), d). Note simply that the tensor
coalgebra T°(XN) preserves epimorphisms because the tensor product of right
R-modules, inherited from ¥ ,-modules, has this property. O
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Our main task is to check that the bar construction, preserves cofibrations,
acyclic cofibrations, and all weak-equivalences between K-algebras which are
cofibrant as a right R-module. For this aim we prove that the bar complex has
a natural cell decomposition.

Let D™ be the dg-module spanned by an element e, in degree n and an
element b,,_1 in degree n — 1 so that d(e,) = b,—1. Consider the submodule
C"~! ¢ D" spanned by b,_1. To define the cells, we use the dg-module em-
beddings i,, : C"~' — D™, which are generating cofibrations of the category of
dg-modules.

Lemma 1.2.3. For any K-algebra in right R-modules N, the bar complex B(N)
decomposes into a sequential colimit

- — colim,, B<,(N) = B(N)

so that B<,(N) is obtained from B<,_1(N) by a pushout of the form

cn—1l g N®n fn > By (N).

in i n
v

D" N&n > Bey(N)

This decomposition is also functorial with respect to N.
PROOF. Indeed, the object B(IN) has a canonical filtration

defined by

n

Ben(N) = TS, (EN) = P (EN)®™

m=1

The summand (X N)®™ is preserved by the natural differential of the tensor
coalgebra T°(XN). Moreover the bar coderivation satisfies

A(BN)®™) c PBEN) = T2, [ (EN).

r>2

Accordingly, we obtain that B<,, (V) forms a subobject of B(N) in the category
of (differential graded) right R-modules.
Besides, our observation implies that B<, () splits into a twisted direct
sum
Ben(N) = (Ben_1(N) & (SN)®", ),

where 9 : (XN)®" — B<,,_1(N) represents the restriction of the bar coderiva-
tion to the summand (XN)®" (compare with |14, §11.2.2]). By definition, the
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differential of such a twisted object is the sum of the internal differential of
B<,—1(N) @& (XN)®" with the twisting map 9 : (XN)®" — B<,_1(N) on the
summand (XN)®". Hence the identity B<,(N) = (B<,—1(N) @ (EN)®",9) is
obvious.

One checks readily that a twisted direct sum of this form is equivalent to a
pushout of the form of the lemma, where the attaching map f, : C* '@ N®"* —
B<,,—1(N) is yielded by the twisting map 9 : (XN)®" — B<,_1(N). Observe
simply that

B(C"t @ N9 = ¥*(N®™) = (ZN)®™

to obtain that any twisting map 0 : (X¥N)®" — B<,,_1(N), homogeneous of
degree —1, is equivalent to a morphism f,, : C"~! @ N®" — B,,_1(N), homo-
geneous of degree 0. O

Proposition 1.2.4. The bar complex B(N) associated to a K-algebra in right
R-modules N is cofibrant if the K-algebra N defines itself a cofibrant object in
the underlying category of right R-modules MRg.

PROOF. The axioms of monoidal model categories imply that the morphism
in @ N®" . C"~1 @ N®" — C™ ® N®" forms a cofibration in the category of
right R-modules Mg if M is cofibrant as a right R-module. As a consequence, we
obtain that the morphism j, : B<,—1(N) — B<y, (V) defines a cofibration, for
each n > 1, since this morphism is obtained by a pushout of i,,. The proposition
follows. O

A morphism of ¥,-modules i : M — N is called a C-cofibration (respectively,
an acyclic C-cofibration) if the morphisms i : M (n) — N(n), n € N, are cofibra-
tions in the category of dg-modules C. Similarly, a ¥,-module M is C-cofibrant
if its underlying collection consists of cofibrant dg-modules.

Lemma 1.2.5. Leti: M — N be a morphism of K-algebras in right R-modules
such that the K-algebra M is C-cofibrant.

The morphism B(i) : B(M) — B(N) induced by i forms a C-cofibration (re-
spectively, an acyclic C-cofibration) if i forms itself a C-cofibration (respectively,
an acyclic C-cofibration).

PROOF. The morphism B(i) : B(M) — B(N) can be decomposed naturally
into a sequential colimit of morphisms j,, : B<,—1(N/M) — B<,(N/M), where

B<n(N/M)=B(M) € B<n(N)
B<n(M)

and j, is induced componentwise by the morphisms
B(M) <—— B<pn-1(M) — B<n—1(N)

_l lmm iB@lm

B(M) B<n(M) B<n(N)
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One checks readily that j, fits a pushout of the form

n—1 n n n
CreN D preM™___p_ (v,

Cnfl ®M®n
i i
D" @ N®" B<n(N/M)

The underlying dg-modules of the tensor power M®", where M is any right
R-module, have an expansion of the form:

M®"(m) = @ i @, XX, M(mi) ® - ® M(m;)

mi+--+me=m

= @ (Zm/zml><-~-sz,,_)®M(m1)®-~-®M(mr),

mi+-tme=m

where the tensor product of the dg-module T'= M (m;) ® - - - @ M (m,.) with the
coset K = %, /S, X -+ X Xy, is defined by a sum of copies of T indexed by
K, as usual. By the monoidal model structure of dg-modules, we obtain that
the morphism " : M®" — N®" forms a C-cofibration (respectively, an acyclic
C-cofibration) if ¢ is so, as long as M is C-cofibrant. Under this assumption, the
pushout product-axiom in dg-modules implies that the left-hand side morphism
of the pushout above is a C-cofibration (respectively, an acyclic C-cofibration),
from which we deduce that our morphism j, : B<p—1(N/M) — B<,(N/M)
forms a cofibration (respectively, an acyclic cofibration) as well. The conclusion
follows. (Recall that the forgetful functor which maps a right R-module M to
its underlying collection of dg-modules {M(n)},en creates all colimits in Mg.
Hence we obtain that C-cofibrations and acyclic C-cofibrations are preserved by
pushouts in the category of right R-modules Mg.) O

Proposition 1.2.6. The morphism B(i) : B(M) — B(N) induced by a weak-
equivalence of K-algebras in right R-modules i : M = N forms itself a weak-
equivalence if the underlying collection of the K-algebras M and N consist of
cofibrant dg-modules.

PrOOF. Cofibrant algebras over operads form cofibrant objects in the underly-
ing category by [, Corollary 5.5] (see also [14, Proposition 12.3.2]). This asser-
tion enables us to use the standard Brown’s lemma (see for instance [20, Lemma
1.1.12]) to obtain the proposition as an immediate consequence of Lemmam

O

1.8. Operads under Stasheff’s operad and the bar complex

In this subsection, we examine restrictions of the bar complex to categories
of algebras associated to operads P equipped with a morphism n : K — P.
For our purpose, we record that any E..-operad E can be equipped with such a
morphism 7 : K — E, so that any algebra over an F,-operad has a bar complex.
By the way, we recall the definition of an F,-operad, at least to fix conventions.
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1.8.1. Operads under Stasheff’s operad and the bar complex

The category of (non-unitary) operads under K, for which we use the notation
O \ K, is the comma category of operad morphisms 7 : K — P, where P € Oy.
According to this definition, an operad under Stasheff’s operad K is defined
by a pair (P,n) formed by an operad P together with an operad morphism
1 : K — P. Usually, we omit abusively the morphism 7 : K — P in the notation
of an operad under K and we identify an object of Oy \ K with a non-unitary
operad P endowed with a morphism 7 : K — P given with P.

If P is an operad under K, then the category of P-algebras is equipped
with a canonical restriction functor n* : p £ — g € associated to the morphism
1 : K — P. As a consequence, the bar complex restricts naturally to a functor
on the category of P-algebras, for all operads P € Oy \ K. Formally, this functor
is given by the composite

pelete.

Observations of §1.1.2/imply that we recover the usual bar complex of associative
algebras in the case where P is the associative operad A together with the
canonical augmentation morphism € : K = A.

1.8.2. On E-operads as operads under Stasheff’s operad

By definition, an E.,-operad is an operad E equipped with a weak-equivalence
of operads ¢ : E = C, called the augmentation of E, where C denotes the (non-
unitary) commutative operad, the operad associated to the category of (non-
unital) associative and commutative algebras. In the literature, an E.-operad
is usually assumed to be X,-cofibrant and we take this convention as well. Ob-
serve that the augmentation € : E =5 C is automatically a fibration because C
is an operad in k-modules, equipped with a trivial differential.

In the introduction of this part, we mention that any F.,-operad E forms an
operad under Stasheff’s operad K. Recall that we have an operad morphism « :
A — C so that the restriction functor a* : ¢ £ — a € represents the embedding
from the category of associative and commutative algebras to the category of
all associative algebras. We simply fix a lifting

K" >E
A——C

in order to obtain an operad morphism 7 : K — E such that the restriction
functor n* : g £ — k € extends the standard category embedding a* : ¢ £ < o €
from commutative algebras to associative algebras. Observe that n: K — E is
uniquely determined up to homotopy only. Therefore, in this article, we assume
tacitely that such a morphism 7 : K — E is fixed for any given F.,-operad E.
By observations of §I.3.I] we obtain that the bar complex restricts to a
functor on the category of E-algebras. In addition, since we have a commutative
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diagram of restriction functors

*

g<" kE<"—¢E,

]

AE<"—CE

we obtain that the bar complex of E-algebras extends the usual bar complex on
the category of associative and commutative algebras.

1.53.3. Remark

In our construction, we mention that the morphism 7 : K — E is unique up to
homotopy. Indeed, as usual in a model category, all morphisms 7y, : K — E
that lift the classical operad morphism « : A — C are connected by a left
homotopy in the category of dg-operads. By [I5, Theorem 5.2.2], the existence
of such a left homotopy implies the existence of a natural weak-equivalence
between the composite functors

L B
EE < kéE—E.

ny

To conclude, we have a well-defined bar complex functor B : g £ — £ once
the F.-operad E is provided with a fixed operad morphism 7 : K — E that lifts
the classical operad morphism « : A — C. Otherwise the bar complex functor
B: A~ B(A) is uniquely determined up to homotopy only.

1.4. The bar module

By definition, the bar construction of a K-algebra in right R-modules N €
kK MR returns a right R-module B(N), and this right R-module determines a
functor Sg(B(N)) : € — &. For our purpose, we note:

Proposition 1.4.1. Let £ = C, the category of dg-modules, or £ = Ms, the
category of right modules over an operad S. Let N be any K-algebra in right
R-modules. The bar complex of N in right R-modules satisfies the relation

Sr(B(N),A) = B(Sr(N, 4)),

for all A € R E, where on the right-hand side we consider the bar complex of the
K-algebra Sr(N, A) € & associated to A € rE by the functor Sg(N) : RE —
k € defined by N.

PROOF. Since the functor M +— Sgr(M) preserves internal tensor products of
the category of right R-modules and external tensor products over dg-modules,

we obtain

SR(T°(EN), A) = T°(Sg(EN, A)) = T°(S Sr(N, A)).
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The map 0 : Sg(T°(XN), A) — Sr(T°(XN), A) induced by the bar coderivation
of B(N) can also be identified with the bar coderivation of B(Sr(N, A)). This
identification is tautological as the action of K on Sgr(N, A) is induced by the
action of K on N and, hence, the operations pu, : Sr(N, A)®" — Sr(N, A) are
the maps induced by the operations y, : N®” — N on N. O

Recall that an operad R forms an algebra over itself in the category of right
modules over itself. If R comes equipped with a morphism 7 : K — R and forms
an operad under Stasheff’s operad K, then R also defines an algebra over K in
right modules over itself by restriction of structure on the left. The bar module
Bg is the bar complex Bg = B(N) of this K-algebra N = n* R. First, we check
that this object fulfils the requirement of Proposition [T.A}

Proposition 1.4.2. Let £ = C, the category of dg-modules, or &€ = Ms, the
category of right modules over an operad S. The functor Sr(BRr) : RE — &
associated to the bar module Br is naturally isomorphic to the bar construction
A B(A) on the category of R-algebras in E.

PROOF. According to Proposition we have Sg(Bgr, A) = B(Sr(n* R, A)),
where n* R is the K-algebra in right R-modules defined by the operad R. Recall
that Sgr(R) : RE — rE represents the identity functor of the category of R-
algebras. Moreover, we have an identity Sg(n*N,A) = n* Sr(N,A) for all
R-algebras N in right R-modules (see recollections of . Hence the object
Sr(n* R, A) represents the K-algebra associated to A € r& by restriction of
structure and we obtain finally Sg(Bgr, A) = B(Sr(n* R, A)) = B(A4). O

For our purpose, we examine the functoriality of this construction with re-
spect to the operad R. For this aim, we use the following formal observation:

Observation 1.4.3. Let ¢ : R — S be a morphism of operads under K.

(1) The map ¢ : R — S defines a morphism ¢y : R — S in the category of
K-algebras in right R-modules, where we use restrictions of structure on
the left to make R (respectively, S) into a K-algebra and restrictions of
structure on the right to make S into a right R-module.

(2) The morphism of K-algebras in right S-modules v, : Rog S — S adjoint to
Yy : R =S forms an isomorphism.

From this observation and Observation [[.2.1] we deduce that a morphism
of operads under K gives rise to a morphism 3 : Bk — Bs, in the category of

right R-modules and to an isomorphism 1, : Bg or S — Bs, which is obviously
adjoint to ¢4. Since we assume that weak-equivalences (respectively, fibrations)
are created by forgetful functors, we obtain that 14 : R — S defines a weak-
equivalence (respectively, a fibration) in the category of K-algebras in right R-
modules if 9 is a weak-equivalence (respectively, a fibration) of operads. Hence,
Proposition [T.:2.2 and Proposition [[.2.6] return:
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Proposition 1.4.4. The morphism vy : BR — Bs defines a fibration in the
category of right R-modules if ¥ : R — S is a fibration of operads under K.

The morphism 1)y : BR — Bs defines a weak-equivalence in the category of
right R-modules if 1 : R — S is a weak-equivalence of operads under K and the
underlying collections of the operads R and S consist of cofibrant dg-modules
R(n),S(n) € C, n € N. O

The isomorphism v, : Bg or S =, Bs has a natural interpretation at the
functor level. In §0.4.3] we recall that the functor Ss(M orS) : s € — &, where
M ogS is the extension of structure of a right R-module M, is isomorphic to the

composite

Sr(M)

55———> E——=E€,

where ¥* : € — g € is the restriction functor associated to ) : R — S. For an
operad under Stasheff’s operad, the bar complex functor B : g € — & is defined
precisely by a composite of this form:

Rgi)Kgig7

where we assume again £ = C or £ = Ms. Now suppose given a diagram
K
7N
_ >
R " S
so that 1 : R — S is a morphism of operads under K. The diagram of functors
B= SR(B/” Yss Bs)

% S S

commutes just because the relation 8 = vn implies that the diagram of restric-

tion functors
k&
& s&

commutes. Thus, for a morphism ¢ : R — S in Oy \ K, we have a natural
isomorphism Sg(Bg,*A) =~ Ss(Bs, A), for all A € g €. Moreover:

Proposition 1.4.5. Let ¥ : R — S be any morphism of operads under K. The
natural isomorphism
¥, : BRor S — Bs
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induces an isomorphism of functors Ss(v.) : Ss(Bror S) — Ss(Bs) that fits a
commutative diagram

SS(BR OR S,A) = SR(BR,w*A) )

Ss(%;xr“')"'”— N /

SS(BSaA)
forall Aesé.

PROOF. The proposition is a formal consequence of coherence properties be-
tween distribution isomorphisms (M ® N) og S =~ (M or S) ® (N or S) and the
functor isomorphisms Sg(M ® N) ~ Sg(M) @ Sgr(N). O

In particular, for the initial morphism 7 : K — R of an operad R € Op \ K,
the isomorphism 7, : Bk ok R ~ Bg reflects the definition of Sg(Bg) : RE — &
as the restriction of a functor B: k& — £.

To complete our results, observe that the operad R defines a cofibrant object
in the category of right modules over itself. Accordingly, Proposition
implies:

Proposition 1.4.6. The module Bgr forms a cofibrant object in the category of
right R-modules. O

2. The multiplicative structure of the bar construction

Introduction

In this section, we prove the existence and uniqueness of algebra structures
on the bar module of E.,-operads. Then we use the correspondence between
right modules and functors to obtain the existence and uniqueness of functorial
algebra structures on the bar construction itself B(A), for all algebras A over a
given Ey.-operad E.

To prove the existence of algebra structures on the bar module Bg the idea is
to use endomorphism operads of right modules over operads. Recall briefly that
the endomorphism operad of an object M in a category £ is a universal operad
in dg-modules Endj; such that the structure of a P-algebra on M is equivalent to
an operad morphism V : P — Endj;. In this section, we may specify P-algebra
structures by pairs (M, V), where V : P — End,, is the operad morphism that
determines the P-algebra structure of M, because we deal with objects which
are not endowed with a natural internal P-algebra structure.

In §2.1.2] we observe that the bar module B¢ of the commutative operad C
can be equipped with the structure of a commutative algebra, like the bar com-
plex of any commutative algebra. This structure is represented by an operad
morphism V. : C — Endp., from the commutative operad C to the endomor-
phism operad of Bc.

Our main existence theorem, proved in §2.1] reads:
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Theorem 2.A. Let E be any E-operad. Let Q be any cofibrant operad aug-
mented over the commutative operad C. Let ¢ : E — C and ¢ : Q — C denote
the respective augmentations of these operads.

There is an operad morphism V. : Q — Endp, which equips the bar module
Be with a left Q-action so that:

(1) The bar module Be forms a Q-algebra in right E-modules.
(2) The natural isomorphism of right C-modules Bg og C ~ B¢ defines an
isomorphism in the category of Q-algebras in right C-modules

(BEa ve) OF Cx~ d)*(BC, vc)7

where the Q-algebra structure of B¢ is obtained by restriction of its C-
algebra structure through the augmentation of Q.

The interpretation of this theorem at the level of the bar construction is
straightforward and is also established in

To prove Theorem we observe that condition is equivalent to a lifting
problem in the category of operads, for which axioms of model categories imply
immediately the existence of a solution.

In §2.2) we check that the isomorphism (Bg, V) og C ~ ¢*(Bc, V.) of con-
dition (2) implies, by adjunction, the existence of a weak-equivalence in the
category of Q-algebras in right E-modules

(BEa VE) :_) ¢*(BC7 VC)

From this assertion we conclude immediately that all solutions of the existence
Theorem [2.4] yield equivalent objects in the homotopy category of Q-algebras
in right E-modules. Then we apply the homotopy invariance theorems of [14]
§15] to obtain that all solutions of the existence Theorem give homotopy
equivalent structures on the bar construction. This gives our uniqueness result.

2.1. The existence theorem

This subsection is devoted to the existence part of our theorems.

To begin with, we examine the structure of the bar construction of commu-
tative algebras in the context of right modules over operads — we check that the
bar module B¢ of the commutative operad C forms naturally a commutative
algebra in right C-modules. Then we describe constructions which make Theo-
rem equivalent to a lifting problem in the category of operads and we solve
this lifting problem by arguments of homotopical algebra.

Recollection 2.1.1 (The shuffle product). The tensor coalgebra T°(XA) can

be equipped with a product —: T¢(XA) ® T°(XA) — T°(XA) defined compo-
nentwise by sums of tensor permutations

(ZA)®m ® (EA)®” M) (EA)®m+n

28



where w ranges over the set of (m, n)-shuffles in ¥, . This product is naturally
associative and commutative. For an associative and commutative algebra A,
the bar coderivation 9 : T(XA) — T°(XA) defines a derivation with respect to
—. Hence, in this case, we obtain that the bar complex B(A) = (T°(XA),0) is
still an associative and commutative algebra.

Clearly, this standard construction for commutative algebras in dg-modules
can be extended to algebras in a category of right modules over an operad R —
just use the symmetry isomorphism of the tensor product of right R-modules in
the definition of the shuffle product. Then we obtain that the bar complex B(N)
comes equipped with the structure of a commutative algebra in right R-modules
if N is so.

Recall that the map Sr(N) : A — Sgr(N,A) defines a functor from R-
algebras to commutative algebras if N is a commutative algebra in right R-
modules. As the map Sg: M +— Sr(M) defines a functor of symmetric monoidal
categories (check recollections in , we obtain that the shuffle product

(EN)®m ® (EN)®n 2 W (EN)®m+n

corresponds to the shuffle product

SR(EN, A)®™ © Sg(EN, )& Z2 ", gL (SN, A)Em+n
at the functor level. Hence we obtain finally:

Observation 2.1.2. Let & be the category of dg-modules € = C, or any category
of right modules over an operad € = Ms. For a commutative algebra in right
R-modules N, the bar complex B(N) comes equipped with the structure of a
commutative algebra in right R-modules so that the isomorphism of functors
SR(B(N), A) ~ B(Sr(N, A)) defines an isomorphism of commutative algebras,
for all A € RE.

We apply this observation to the commutative algebra in right C-modules
formed by the commutative operad itself, for which we have Sc(C) = Id, the
identity functor on the category of commutative algebras. We obtain that the
standard commutative algebra structure of the bar construction is realized by
the structure of a commutative algebra in right C-modules on the bar module
Bc.

Recall that, for any morphism ¢ : R — S in Op\ K, we have a natural
isomorphism v, : Bgr or S >~ Bs and this relation reflects the definition of
the bar complex B : g€ — & by the restriction of a functor B : k& — &
(see Proposition . In particular, for an E..-operad E, equipped with an
augmentation morphism € : E =+ C, we have an isomorphism ¢, : Bg o C ~ Bc.

Our aim is to lift the structure of the bar module B¢ of the commutative op-
erad C to the bar module Bg of any E.-operad E. Before proving our result, we
recall the definition of an endomorphism operad and we give an interpretation of
extensions and restrictions of structure in terms of morphisms on endomorphism
operads.

29



Recollection 2.1.3 (Endomorphism operads). The endomorphism operad
of an object M in a category £ is defined by the hom-objects

Endys(n) = Homg (M®™, M),

where the symmetric groups operate by tensor permutations on the source and
the operad structure of Endy; is deduced from the composition operation of en-
riched symmetric monoidal categories. For a P-algebra A, the operad morphism
V : P — Endy4, equivalent to the P-algebra structure of A, is defined simply by
the morphisms

V : P(n) — Homg(A%®™, A)

adjoint to the evaluation morphisms X : P(n) ® A®™ — A. We refer to [23]
or to [14], §3.4,86.3] for an explicit definition of End,; in the context of right
modules over operads. In the sequel, we only use general properties of Endp;,
arising from the abstract definition of hom-objects Homg (—, —).

Note that endomorphism operads Endj; have a O-term

End(0) = M #0

in contrast to our conventions on operads, but this apparent contradiction does
not create any difficulty: in our constructions, one can replace any endomor-
phism operad Endj,s by a suboperad Endy; € Op such that

0, ifn =0,
Endps(n), otherwise,

mM(n) = {

because any operad morphism V : P — End;, where P € Oy, factors through End ;.

Recollection 2.1.4 (Endomorphism operads and extension functors).
Recall that an operad morphism v : R — S, gives rise to a functor of extension
of structure on the right

P :p MR —pMs

(see recollections in §0.4). Ome can also observe that the operad morphism
1 : R — S induces a morphism of endomorphism operads:

1/)1 : End]u — EIldMoRSa

for all M € Mg, essentially because the extension functor ¢ : M — M or S
preserves tensor products (see [14, Proposition 9.4.4] and recollections in .
For a P-algebra in right R-modules represented by a pair (N, V), where N €
Mpg and V : P — Endpy, we obtain that the P-algebra in right S-modules
Yi(N,V) = (N,V)or S, obtained from (N, V) by extension of structure on the
right, is represented by the pair ¢1(N,V) = (1N, 1h V) = (N og S,V or S),
where ¥V = V or S is the composite

P l EndN ﬂ EndNoRS .
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This assertion is proved by a formal verification (we refer to [14] §3.4,§9.4]).
The functor of restriction of structure on the left

¢* QMg — p Mg,

where ¢ : P — Q is an operad morphism, has an obvious simpler description
in terms of operad morphisms. Namely, for any Q-algebra in right R-modules
represented by a pair (N, V), where N € Mg and V : Q — Endy, the P-algebra
in right R-modules ¢*(N, V), obtained from (N, V) by restriction of structure
on the left, is represented by the pair ¢*(N,V) = (N, V¢), where V¢ is the
composite

P2 QY Endy.

For bar modules, we have an isomorphism ), : Bg or S — Bs and hence an
isomorphism of endomorphism operads

EndBRORS ~ EHdBS .

Accordingly, we obtain that any morphism ¢ : R — S in the category Og \ K of
operads under Stasheff’s operad K gives rise to a morphism

EndBR & El’ldBS .

One checks readily that the map v — 1, preserves composites and identities so
that the map R — Endp, defines a functor on Op \ K. In addition, we have:

Observation 2.1.5. Let E be any Eo-operad, equipped with an augmentation
e:E = C. Let Q be any operad together with an augmentation ¢ : Q — C.

Let V. : C — Endp. be the morphism of dg-operads determined by the
commutative algebra structure of the bar module Bc. Let V. : Q — Endp, be
an operad morphism which provides the bar module Bg with the structure of a
Q-algebra in right E-modules.

The natural isomorphism €, : Bg og C = B¢ defines an isomorphism in the
category of Q-algebras in right C-modules

€ : (BE, VE) OE C i ¢*(BC7 vc)

if and only if V¢ fits a commutative diagram

Q- Yﬁ> Endp, .

ﬁ |-

? EndBc

To solve the lifting problem arising from this assertion, we prove:
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Lemma 2.1.6. The functor R — Endpg, preserves fibrations and acyclic fibra-
tions between operads R € Oy \ K whose underlying collection R(n), n € N,
consists of cofibrant dg-modules.

PROOF. In this proof, we prefer to use the notation of the functor ¢, : Mg —
M to denote extensions of structure of right modules over operads rather than
the equivalent relative composition product Yy M = M or S. Similarly, we use
the notation of the functor ¢¥* : Mr — Mg to denote the restriction of structure
of right modules over operads.

In general, the morphism of endomorphism operads v : Endy; — Endy,
induced by an operad morphism v : R — S consists of morphisms

Homg (M®", M) 25 Homs (¢ M®", ¢ M)

formed by using that ¥ : M g — Mg defines a functor of symmetric monoidal
categories over dg-modules. We use the adjunction between extension and re-
striction functors ¢y : Mg & M : 9" to identify these morphisms with com-
posites

Homg (M®", M) LICCILR Homg(M®", ¢* M) — Homs (v, M ", 1 M),

where (M), refers to the morphism on hom-objects induced by the adjunction
unit n(M) : M — *ih(M).

For endomorphism operads of bar modules, we obtain that the morphism
¥« : Endp, — Endp,, induced by a morphism ¢ : R — S in O\ K, can be
defined by composites in diagrams of the form:

BR)« ~
}IOI’IIR(B;?T7 BR) u HOHIR<B§T, w*’(/J!BR) — Homs(wlBgr, ¢[BR> .

W(%)*l” J/N
(1hs) « i X
Homg (BE",¥* Bs) —=— Homs (/ B§", Bs)

Homs(BS", Bs)

Accordingly, to prove our lemma, we are reduced to check that the morphism

Homg(BE", Br) 2%, Homg(BE", 4" Bs)
induced by vy : Br — ¢*Bs forms a fibration (respectively, an acyclic fibration)
of dg-modules if ¢y : R — S is so.
In Lemma [1.4.6] we prove that Br forms a cofibrant right R-module. In
Proposition we record that vy : Br — 1*Bs forms a fibration (respec-
tively, an acyclic fibration) of right R-modules if ¢ is a fibration (respectively,
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an acyclic fibration) of operads. By axioms of symmetric monoidal model cate-
gories enriched over dg-modules, we can conclude from these assertions that the
morphism

Homg(BE", Br) ISR Homg(BE",¢* Bs)

forms a fibration (respectively, an acyclic fibration) if ¢ : R — S is so and this
proves the lemma. O

By axioms of model categories, Lemma implies immediately:

Lemma 2.1.7. Let E be any Eo-operad, equipped with an augmentation € :
E = C. Let Q be any operad together with an augmentation ¢ : Q — C. If Q is
cofibrant, then the lifting problem

Ve
s> EndBE

1

? EndBC

has a solution. O
From which we conclude:

Theorem 2.1.A (Claim of Theorem [2.A)). Assume that Q is cofibrant. Then
there is a morphism V. : Q — Endp,, which provides the bar module Bg with the
structure of a Q-algebra in right E-modules, and so that the natural isomorphism
of right C-modules €, : Bg o C = Bc¢ defines an isomorphism

€ : (BEa ve) OE C E_) ¢*(BC7 vc)
in the category of Q-algebras in right C-modules. O

The proof of Theorem [2.A]is now achieved. O
Theorem gives as a corollary:

Theorem 2.1.B. Suppose we have a morphism V. : Q — Endp, so that Bg
forms a Q-algebra in right E-modules as asserted in Theorem [2.1.4]

Then the bar compler B(A) = Sg(Bg, A), A € &, becomes equipped with
an induced Q-algebra structure such that:

(1) The operad Q acts on B(A) functorially in A.

(2) If A is a commutative algebra, then the action of Q on B(A) reduces to the
standard action of the commutative operad on B(A), the action determined
by the shuffle product of tensors.
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Proor. To obtain assertion , we use that the structure of a Q-algebra in right
E-modules gives rise to a Q-algebra structure at the functor level. Explicitly,
according to recollections of the evaluation morphism Q(n) ® BE"™ — Bg
gives rise to an evaluation morphism at the functor level

Q(n) X SE(BE, A) @n _, SE(BE7 A)
—_—— —_———
=B(A) =B(A)
so that the map A — B(A) determines a functor from the category of E-algebras
to the category of Q-algebras.

To obtain assertion (2)), we use the relationship, recalled in between
extensions and restrictions at the module and functor levels. In the context of
the theorem, for a commutative algebra A, we have a natural isomorphism in
the category of Q-algebras

Sc((Be,Ve),e"A) ~ Sc((Bg, V) og C, A)

=(B(A),Ve)

where the Q-algebra structure on the left-hand side comes from the bar module
Bg. On the other hand, we have a natural isomorphism

¢*(Sc((Bc,Ve), A)) ~ Sc(¢*(Bc, Ve), A),

=¢*(B(A),Ve)

where V. represents the standard commutative algebra structure of the bar
complex of A. Hence, if (Bg,V,) og C ~ ¢*(Bc, V.), then we have a natural
isomorphism of Q-algebras (B(A),V.) ~ ¢*(B(A),V.), for all A € ¢ €. O

2.2. The uniqueness theorem

In this subsection, we prove that all solutions of the existence Theorem
yield equivalent objects in the homotopy category of Q-algebras in right E-
modules, as well as equivalent structures on the bar construction at the functor
level.

For this aim, we use the morphism of right E-modules ¢; : Be — Bc, adjoint
to the natural isomorphism €, : Bg o C = Bc considered in Theorem By
Proposition this morphism €; : Be — B¢ defines an acyclic fibration since
the augmentation of an F.-operad € : E — C forms itself an acyclic fibration in
the category of operads. Furthermore:

Lemma 2.2.1. Suppose that the bar module Bg is equipped with the structure
of a Q-algebra in right E-modules so that the natural isomorphism €, : BgogC —
Bc, defines an isomorphism of Q-algebras in right C-modules

¢ : (Bg, V) og C = (Bc, V.),

as asserted in Theorem [2. 4l
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Then the morphism of right E-modules ey : Be — Bc, adjoint to €, : Bg op
C = Bc, defines a morphism of Q-algebras in right E-modules

€4 - (BEvve) - (BCavc)a
and, hence, forms an acyclic fibration in that category.

Proor. In we recall that the extension and restriction functors v :
Mg &= Ms : ¢* associated to any operad morphism 1 : R — S restrict to
functors on P-algebras, for any operad P, so that we have an adjunction relation:

PhipMrEpMs .
The lemma is an immediate corollary of this proposition. O
This lemma gives immediately:

Theorem 2.2.A. Suppose we have operad morphisms Vo, Vi : Q — Endp,
that provide the bar module Bg with the structure of a Q-algebra in accordance

with requirements of Theorem .

The algebras (Bg, Vo) and (Bg, V1) are connected by weak-equivalences
(Be, Vo) — + < (Bg, V1)
in the category of Q-algebras in right E-modules. O
As usual in a model category, the weak-equivalences
(Be, Vo) = « < (B, V1)
can be replaced by a chain of weak-equivalences of Q-algebras in right E-modules
(Be, Vo) = - = -+ = (Bg, V1)

in which all intermediate objects are cofibrant as Q-algebras in right E-modules,
and hence as right E-modules since any cofibrant algebra over a (cofibrant)
operad Q forms a cofibrant object in the underlying category (by [7, Corollary
5.5], [I4, Proposition 12.3.2]). Recall that the bar module Bg forms itself a
cofibrant E-module by Proposition

In [I4] §15], we prove that the natural transformation

Se(f,A) : Se(M, A) = Sg(N, A)

induced by a weak-equivalence f : M = N such that M, N are cofibrant right
E-modules forms a weak-equivalence for all E-algebras A which are cofibrant in
the underlying category (see Theorem 15.1.A in loc. cit.). Accordingly, in our
context, we obtain:
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Theorem 2.2.B. Suppose we have morphisms Vo, Vi @ Q — Endp., as in
Theorem[2.1.4], that yield functorial Q-algebra structures on the bar construction
B(A) as in Theorem[2.1.B

The Q-algebras (B(A), Vo) and (B(A), V1) can be connected by morphisms
of Q-algebras

(B(A),Vo) <= + = -+ = (B(A), V1),

functorially in A, and these morphisms are weak-equivalences whenever the E-
algebra A defines a cofibrant object in the underlying category £. O

3. The categorical bar module

Introduction

In the next section we prove that the bar construction B(A), equipped with
the algebra structure of Theorem [2.1.B] defines a model of the suspension in
the homotopy category of E,-algebras. For this aim we use a model of the
suspension, defined in the general setting of pointed simplicial model categories
and yielded by a categorical version of the bar construction.

The purpose of this section is to recall the definition of this categorical bar
construction C'(A4) in the context of algebras over an operad R and to define an
R-algebra in right R-modules Cg such that C(A) = Sg(CR, A). The plan of this
section parallels the plan of §If on the bar module Bg. In §3.1] we recall the
definition of the categorical bar construction C(A) in the context of algebras
over operads, where we take either the category of dg-modules &€ = C or a
category of right modules over an operad £ = Mg as an underlying symmetric
monoidal category; in we study the categorical bar construction of algebras
in right modules over operads; in we observe that the required R-algebra
in right R-modules Cg is returned by the categorical bar construction of the
R-algebra in right R-modules formed by the operad itself. Then we examine the
functoriality of the construction R — Cg and the homotopy invariance of the
categorical bar module Ckg.

3.1. Recollections: the categorical bar construction

The categorical bar complex C(A) is defined by the realization of a simpli-
cial construction C'(A) whose definition makes sense in any pointed category
(explicitly, in any category equipped with a zero object x). For our purpose,
we recall this definition in the context of algebras over a non-unitary operad
P, assumed to satisfy P(0) = 0, and where the underlying category £ is either
the category of dg-modules itself £ = C or a category of right modules over
an operad £ = Ms. Note simply that the zero object of £ is equipped with a
P-algebra structure if P is a non-unitary operad and defines obviously a zero
object in p £. Thus the category of P-algebras in £, where P is any non-unitary
operad, is tautologically pointed.

Recall that Oy denotes the category of non-unitary operads.
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3.1.1. The simplicial categorical bar complex
To define the categorical bar construction Cp(A) of an algebra A € p &, we
form first a simplicial P-algebra C(A) such that

Q(A)n = AVn7

where V denotes the categorical coproduct in the category of P-algebras in £.
The faces and degeneracies of C'(A) are defined explicitly by formulas

0V AVR—L for i =0,
di=< A"ty vV vVAVRTiTl fori=1,...,n—1,
AVr=lyvo, for i = n,

s; =AY VOV A" for j=0,...,n,
where V: AV A — A denotes the codiagonal of A.

3.1.2. On normalized complezes
In the context of dg-modules & = C, we use the standard normalized chain
complex to associate a dg-module N,(C) to any simplicial dg-modules C.

For a simplicial X,-module C, the collection of normalized chain complexes
N.(C(n)), n € N, defines a X,-module N, (C) naturally associated to C. For a
simplicial right R-module C', we have an obvious isomorphism

N.(C)oR 2 N.(CoR),

so that N,(C) inherits the structure of a right R-module and defines an object
of MR.

In our constructions, we use the classical Eilenberg-Mac Lane equivalence,
which gives a natural morphism

N.(C)® N.(D) 2L, N,(C @ D),

for all simplicial dg-modules C, D. In the context of a category of right modules
over an operad £ = Mg, we have termwise Eilenberg-Mac Lane morphisms

%, @5,x3, No(C(5) @ No(D(F) =5 NS, @3, x5, C(s) @ D(t)),

inherited from dg-modules, which assemble to give an Eilenberg-Mac Lane mor-
phism in Mg

N.(C) @ N.(D) =% N.(C ® D),
and similarly as regards the external tensor product in Mg.

In all cases, if C = C is a constant simplicial object, then the Eilenberg-Mac
Lane morphism is identified with a natural isomorphism

C® N,(D) ~ N.(C® D).
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3.1.3. The normalized categorical bar construction

The categorical bar construction C(A) is defined by the normalized chain
complex

C(A) = N.(C(4)).

This object is equipped with the structure of a P-algebra, like the normalized
chain complex of any simplicial algebra over an operad. Formally, we have
evaluation products

P(n) ® C(A)®" — C(A)

defined by the composite of the Eilenberg-Mac Lane equivalences
N.(C(A4)*" 5 N (C(A4)°")
with the morphisms
P(n) ® N.(C(A)®") = N.(P(n) ® C(A)®") — N.(C(A))
induced by the evaluation product of C(A).

3.2. The categorical bar construction of algebras in right modules over operads

In this section, we study the categorical bar construction of P-algebras in
right modules over an operad R. In this context, the categorical bar construction
N — C(N) returns a P-algebra in right R-modules. As in we determine
the functor Sg(C(N)) : g € — p € associated to this object C'(N) € p M.

In the context of the standard bar construction, we use that the functor Sg :
Mg — F g preserves tensor products to identify the functor A — Sr(B(N), A)
associated to the bar complex of a K-algebra in right R-modules with the bar
complex B(Sgr(N, A)) of the K-algebra Sr(N, A) € k €. Similarly, as the functor
SR : p MR — p Fr preserves colimits of P-algebras (see , we obtain:

Lemma 3.2.1. Let p E2 be the category of simplicial P-algebras. Let N be a
P-algebra in right R-modules.

The functor Sg(C(N)) : rE — pES associated to the simplicial categorical
bar construction of N satisfies the identity

Sr(C(N),A) = C(Sr(N, 4)),

for all A € g E, where on the right-hand side we consider the simplicial categor-
ical bar complex of the P-algebra Sr(N, A) associated to A € g € by the functor
SR(N) : g€ — p & defined by N. O

As the normalized chain complex N, (C) of a simplicial object C' is defined
by a cokernel and the functor M — Sg(M) preserve colimits in right R-modules,
we have a natural isomorphism Sr(N. (M), A) ~ N,.(Sg(M, A)), for all A € g €.



This isomorphism commutes with Eilenberg-Mac Lane equivalences in the sense
that the coherence diagram

/ ®SR\

Sr(N.(C) ® N.(Sr(C, A)) ® N.(Sr(D, A))
EM\L EMl
Sr(N.(C ® D), A N.(Sr(C,A)® S(D, A))
SR C®D, A

commutes. As a consequence, if C' is a simplicial P-algebra in right R-modules,
then the functor identity Sr(N.(C), A) = N.(Sr(C, A)) holds in the category
of P-algebras.

From these observations, we conclude:

Proposition 3.2.2. Let N be a P-algebra in right R-modules.
The functor Sg(C(N)) : rE — p € associated to the categorical bar construc-
tion of N satisfies the relation

SR(O(N)aA) = C(SR(N> A)),

for all A € rE, where on the right-hand side we consider the categorical bar
complez of the P-algebra Sg(N, A) associated to A € g € by the functor Sr(N) :
rRE — p & defined by N. O

Remark 3.2.3. In we observe that the functor N +— B(N) commutes
with extensions and restrictions of structure on the right. The same assertion
holds for the functor N — C(N) defined by the categorical bar construction
just because both functors ¢ : p M gr & p M : 9* preserve coproducts. The
functor N +— C(N) also commutes with extensions of structure on the left, but
not with restrictions of structure on the left since this latter operation does not
preserve coproducts. Nevertheless, we still have a natural morphism C(¢*N) —
¢*C(N) induced by the natural transformations (¢*N)V™ — ¢*(NV™).

3.3. The categorical bar module

The categorical bar module of an operad R, like the bar module of is
the categorical bar construction of the R-algebra in right R-modules formed by
the operad itself. For the sake of coherence, we use the notation Cr for this
categorical bar module Cr = C(R) and we set similarly Cr = C(R).

In we recall that Sg(R) : R € — g € represents the identity functor on
the category of R-algebras. Hence, Proposition [3.2.2] gives:
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Proposition 3.3.A. The functor Sr(Cr) : RE — rE associated to Cr is nat-
urally isomorphic to the categorical bar construction A — C(A) in the category
of R-algebras. O

As in §1.4 we examine the structure of Cr and the functoriality of the
construction R — Ckg.

The categorical bar module Cr does not form a cofibrant object in right
R-modules, unlike the bar module Bg, but we prove that Cr is cofibrant as a
Y .-module provided that the operad R is so (according to our usual convention,
we say that Cgr is X,-cofibrant). Thus, we forget right module structures and
we examine the R-algebra in 3,-modules underlying the categorical bar module
CR. For the simplicial categorical bar module Cgr, we obtain:

Lemma 3.3.1. We have an identity
Cr=R(C()),

where R(C(1)) represents the free R-algebra on the categorical bar construction
of the unit X.-module | in the category of X.-modules.

PROOF. By construction, the forgetful functor U : M r — M preserves en-
riched monoidal category structures. By [14, Proposition 3.3.3], this assertion
implies that the forgetful functor U : R Mg — rM, from the category of
R-algebras in right R-modules to the category of R-algebras in ¥,-modules, pre-
serves colimits. As a consequence, we obtain that Cr agrees with the categorical
bar construction of R in ¥,-modules.

Observe that the operad R forms a free object in the category of R-algebras
in ¥,-modules: we have explicitly R = Rol = R(l). By adjunction, a coproduct
of free objects satisfies the relation R(M)VR(N) = RIM@&N), for all M, N € M.
Hence, we obtain readily:

(Cr)n = RY" =R()"™ = R(®"),

for all n € N. The determination of faces and degeneracies of the categorical
bar construction is also formal from the universal property of free objects, so
that we obtain the conclusion of the lemma. O

As a byproduct, we obtain:

Proposition 3.3.2. The categorical bar module CR is 3 -cofibrant if the operad
R s so.

PROOF. The assumption about the operad R implies that simplicial R-algebras
form a model category (see references of §0.2.6)). Lemma implies that the
simplicial categorical bar module Cr forms a cofibrant simplicial R-algebra in
Y-modules. By [7, Corollary 5.5], [14, Proposition 12.3.2], this assertion implies
that Cg is cofibrant in the underlying category of simplicial ¥,-modules, and
hence that the normalized chain complex Cr = N,(Cg) associated to Cg is
cofibrant as a X ,-module. O
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Construction 3.3.3 (Functoriality of the categorical bar module). In
we observe that a morphism of operads under K gives rise to a morphism of right
R-modules 9y : BrR — Bs. In this paragraph, we check that a morphism of op-
erads gives rise to an analogous morphism of R-algebras in right R-modules

Yy : Cr — Y*Cs,

where 1*Cs refers to the R-algebra in right R-modules obtained by a two-sided
restriction of Cs € s Ms. We prove next that vy defines a weak-equivalence
(respectively, a fibration) if ¢ is so.

Formally, we use that 1 determines a two-sided restriction functor ¥* :
sMs — rMpr and the operad morphism ¥ : R — S defines a morphism
1 : R — 9* Sin the category of R-algebras in right R-modules. As a consequence,
by functoriality of the categorical bar construction N — C(N), we obtain that
1 : R — S induces a natural morphism of R-algebras in right R-modules

CR) £ oy s).

On the other hand, for any algebra N € s M s, we have a morphism C()*N) —
¥*C(N) induced by the natural transformation (¢*N)V"™ — *(NV"). As a
consequence, we have a natural morphism

C*N) 25 4O (V).

between the categorical bar complex of N € s Mg and the categorical bar
complex of Y*N € rMRg. Our morphism vy : Cr — ¥*Cs is given by the
composite:

OR) Y o s) L wro(s).

If we forget right module structures, then we obtain readily:

Observation 3.3.4. The morphism

» *
Cr —5¢*Cs

associated to an operad morphism ¥ : R — S is given dimensionwise by the
natural morphism of free objects

Y(C())
R(C(I)) — S(C(D)
induced by ¢ : R — S.
We use this observation to prove:

Lemma 3.3.5. If ¢ : R — S is a weak-equivalence (respectively a fibration) of
operads, then the morphism

Yy : Cr — " Cs
defines a weak-equivalence (respectively a fibration) in g M g, for all non-unitary

operads R,S € Oy.
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PROOF. Since all forgetful functors create weak equivalences and fibrations, we
can forget right module structures in the proof of this lemma and we can use
the representation of Observation [3.3.4]

We deduce immediately from the form of the free R-algebra

R(C() = S(R,C(1)) = RoC(l)

that the morphism of simplicial dg-modules ¥(C(l)) = ¥ o C(l) : RoC(l) —
SoC(l) induced by a surjective morphism of dg-operads ¢ : R — S is surjective
as well. As a byproduct, so is the morphism induced by %(C(l)) on normalized
chain complexes. Thus we conclude that the morphism v : Ck — 1*Cs induced
by a fibration of dg-operads forms a fibration as well.

Recall that the composition product of X,-modules M o N preserves weak-
equivalences in M, provided that N(0) = 0 and the modules N(r), r > 0, are
cofibrant in dg-modules (see [I3] §2.3], see also [I4], §11.6]). From this assertion,
we deduce that the morphism of simplicial ¥,-modules ¥ (C(l)) = ¥ o C(I) :
RoC(l) — SoC(l) induced by a weak-equivalence of dg-operads ¢ : R — S
defines a weak-equivalence, and so does the morphism induced by (C(l)) on
normalized chain complexes. Hence, we conclude that the morphism vy : Cr —
1*Cs induced by a weak-equivalence of dg-operads 1) : R =+ S forms a weak-
equivalence. O

4. The homotopy interpretation of the bar construction

Introduction

In this section, we prove that, for cofibrant algebras over E..,-operads, the
usual bar construction B(A), equipped with the algebra structure given by
Theorem [2.1.B] is equivalent to the categorical bar construction C(A) as an Eoo-
algebra. Then we use that the categorical bar construction C(A) is equivalent
to the suspension 3 A in the homotopy categories of algebras over an operad to
conclude:

Theorem 4.A. Suppose that E forms itself a cofibrant Fs.-operad and set Q =
E.

Assume that the bar complex B(A) is equipped with the structure of an E-
algebra, for all A € &, and that this structure is realized at the module level,
as stated in Theorem[2.1.B, Then we have natural E-algebra equivalences

~ ~

B(A) — - — - %A

that connect B(A) to the suspension of A in the model category of E-algebras,
for all cofibrant E-algebras A. O

This theorem can easily be generalized to include the case where the operad
E is not itself cofibrant (see §4.2)).

Again we realize the equivalence between B(A) and C(A) at the module
level. To be explicit, let E be any Fo.-operad (possibly not cofibrant), let Q be

42



any cofibrant F..,-operad, and assume that the bar module B is equipped with
the structure of a Q-algebra in right E-modules, as asserted in Theorem
Recall that the categorical bar module Bg forms an E-algebra in right E-modules.
Since Q is supposed to be cofibrant, we can pick an operad morphism in the

lifting diagram
E
v 7 i )
—C

=3

to make any E-algebra in right E-modules into a Q-algebra in right E-modules
by restriction of structure. In we check that Bg and Cg define equivalent
objects in the homotopy category of Q-algebras in right E-modules. Thus we
have a chain of weak-equivalences of Q-algebras in right E-modules

Be & - o 25 G

In we use a theorem of [I4] §15] to obtain that these weak-equivalences
give rise to weak-equivalences at the functor level

Se(Bg,A) <~ - = ... 5 Se(Cg, A)
——— ——
=B(A) =C(A)

for all cofibrant E-algebras A € g€ and our conclusion follows.

4.1. The equivalence of bar constructions

First we prove the existence of equivalences between the bar modules Bg and
Ck associated to an FE.-operad E. This result is a consequence of the following
observation:

Lemma 4.1.1. For the commutative operad C, we have an identity of C-algebras
in right C-modules B¢ = Cc.

PRrROOF. This observation is a consequence of the definition of the coproduct in
the category of non-unitary commutative algebras. Explicitly, for non-unitary
commutative algebras in dg-modules, and more generally in any symmetric
monoidal category, we have an identity: AV B =A® B® A® B. As a con-
sequence, for the simplicial categorical bar complex C(N) of any commutative
algebra N in right C-modules, we obtain

C(N),=(N®:--® N) @ (degeneracies).

Thus, at the level of normalized chain complexes, we obtain the relation C(N) =
N.(C(N)) = B(N). The case N = C gives the announced identity Bc = Cc. O
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Roughly, for an F..-operad E, we lift the isomorphism of this lemma to a
weak-equivalence of E-algebras in right E-modules.

Suppose we have a cofibrant E..-operad Q together with an augmentation
¢ : Q= C. Assume that the bar module B is equipped with the structure of a
Q-algebra in right E-modules as asserted in Theorem In Proposition [2.2.1}
we observe that the obtained Q-algebra Bg is endowed with a weak-equivalence

€4 : BE = ¢*BC

in the category of Q-algebras in right E-modules.
On the other hand, we observe in Proposition |3.3.5] that the categorical bar
module CE is endowed with a weak-equivalence

e : Ck = e Ce

in the category of E-algebras in right E-modules. As explained in the intro-
duction of this section, since Q is cofibrant, we can pick a lifting in the operad
diagram

E
v 7 iN
QT)C

to obtain a morphism ¢ : Q — E in Oy /C. By restriction of structure, the
equivalence € : Cg = €*C¢ gives rise to an equivalence

V* (&) 1 ¥*Ce = ¢*e"Cc = ¢*Cc

in the category of Q-algebras in right E-modules.
Therefore, we obtain:

Theorem 4.1.2. Assume that the bar module Bg is equipped with the structure
of a Q-algebra in right E-modules as in Theorem [2.Al Then we have weak-
equivalences

Be = ¢*Bc = ¢*Cc <~ ¢*Ce

in the category of Q-algebras in right E-modules. O
Again, we can use model category structures to replace the weak-equivalences
Be = - < ¢*Ce
by a chain of weak-equivalences
BE<—N— AN L¢*CE

in which all intermediate objects are cofibrant objects of the category of Q-
algebras in right E-modules. Recall that a right E-module M is called X,-
cofibrant, like an operad, if M is cofibrant as a ¥,-module. By [I4], Proposition
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14.1.1], any cofibrant right E-module is ¥,-cofibrant since the E..-operad E is
supposed to be X,-cofibrant. Accordingly, the bar module Bg is X,-cofibrant.
The categorical bar module Cg is also X,-cofibrant by Proposition[3.3:2] Since a
cofibrant Q-algebra in right E-modules forms a cofibrant object in the underlying
category of right E-modules by [7, Corollary 5.5], [I4, Proposition 12.3.2], and
hence a X,-cofibrant module by [14, Proposition 14.1.1], we conclude that all
objects in our chain of weak-equivalences are X,-cofibrant. At the functor level,
we obtain that these weak-equivalences give rise to:

Theorem 4.1.3. The bar construction B(A) is connected to the categorical bar
construction C(A) by natural weak-equivalences of Q-algebras

B(A) & - = o0 Sp*C(A),

for all cofibrant E-algebras A, where we use a restriction of structure to make
the E-algebra C(A) into a Q-algebra. O

PROOF. In [14] §15], we prove that a weak-equivalence ¢ : M — N between ¥,-
cofibrant right R-modules M and N induces a weak-equivalence at the functor
level:

Sr(6, A) : Sr(M, A) = Sr(N, A),

for all cofibrant R-algebras A. Accordingly, the morphisms
BE; L. L,w*CE

induce weak-equivalences of Q-algebras

Sg(Bg, A) «— - = -+ = Se(¥*CE, A).
for all cofibrant E-algebras A.
Recall that the functor N — Sg(N) commutes with restrictions of structure
on the left. Therefore we have weak-equivalences between

B(A) = Se(Be, A)
and
QZJ*C(A) = 7/}* SE(CEaA) = SE(QZJ*CEaA)

as required. O

4.2. The equivalence with suspensions
The next assertion is proved in [25] (in the context of dg-modules, but the
generalization to any category over dg-modules & is straightforward):

Fact 4.2.1 (See [25,, §3, §14]). Assume that P is a ¥, -cofibrant operad in dg-
modules so that the category of P-algebras in £ forms a semi-model category.
For every cofibrant P-algebra in £, the P-algebra C(A) is connected to LA,
the suspension of A in the model category of P-algebras in £, by weak-equivalences
of P-algebras
C(A) & - = ... %A,

functorially in A.
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From this assertion and Theorem [.1.3] we conclude:

Theorem 4.A (Claim of Theorem . Suppose that E is a cofibrant Eo, -
operad and set Q = E.

Assume that the bar complex B(A) is equipped with the structure of an E-
algebra, for all A € g€, and that this structure is realized at the module level,
as stated in Theorem [2.A] Then we have natural E-algebra equivalences

B(A) & X Txa

that connect B(A) to the suspension of A in the model category of E-algebras,
for all cofibrant E-algebras A. O

To complete this result, recall that the extension and restriction functors
qbg:pg;}Qgt(ﬁ*.

associated to a weak-equivalence of X,-cofibrant operads ¢ : P — Q define
Quillen adjoint equivalences of model categories (see [7] or [14, §16]). As a
byproduct, Theorem [£-A] can be generalized to cover the case where the E..-
operad E is not cofibrant as an operad. In this context, we obtain weak-
equivalences of Q-algebras

B(A) & - 2 g (RA),

for all cofibrant E-algebras A, where YA is the suspension of A in the model
category of E-algebras.

The iterated bar construction and iterated loop spaces

In this concluding part, we study applications of our results to cochain com-
plexes of spaces and iterated loop spaces.

To fix our framework, a space X refers to a simplicial set and we consider the
normalized cochain complex N*(X) with coefficients in the ground ring k. One
proves that N*(X) can be equipped with the structure of a (unitary) E-algebra,
for some F.-operad E, for all X € S, so that the map X — N*(X) defines
a functor from the category of simplicial sets S to the category of E-algebras
eC (see [18] for a first proof of this result and [6, [27] for more combinatorial
constructions). In the context of pointed spaces, we replace N*(X) by the
reduced cochain complex N*(X) to use objects without unit. Then we obtain
that N*(X) comes equipped with the structure of an E-algebra, for some non-
unitary Fs.-operad E, in accordance with our conventions.

Let Fx be any cofibrant replacement of N*(X) in the model category of
E-algebras. According to results of [25], the suspension X Fx is equivalent to
N*(2X) in the homotopy category of E-algebras provided that X is connected
and under standard finiteness and completeness assumptions on X (see [25]
Theorem 1.2] and its proof in loc. cit.). For our needs, we also have to record
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that the equivalence YFx ~ N(QX) is natural in the homotopy category of
E-algebras.

Theorem [2.4] implies the existence of a well-defined iterated bar complex
B™(A) for all E-algebras A. Theorem implies that this iterated bar com-
plex B™(A) is equivalent to the iterated suspension X"A if A is a cofibrant
E-algebra. Thus, in the case of a cochain algebra N*(X), we obtain equiva-
lences B"(N*(X)) ~ B"(Fx) ~ X"Fx and we have ¥"Fy ~ N*(Q"X) by an
inductive application of the results of [25]. The assumptions which are made
explicit in loc. cit. are reasonable for a single loop space (2.X, but give needlessly
conditions in the case of higher iterated loop spaces, at least in the context where
the ground ring is a finite primary field k = IF,. The actual purpose of this part
is to review shortly the arguments of loc. cit. and to examine assumptions on
the space X which ensure the equivalence B"(N*(X)) ~ N*(Q"X).

One checks by a careful inspection of [25, §3, §5] that the suspension L Fx
is equivalent to N*(2X) in the homotopy category of E-algebras as long as the
cohomological Eilenberg-Moore spectral sequence of the path space fibration

By = Tor? (X9 (k k) = H*(QX,k)

converges. By induction, we obtain that the n-fold suspension X" Fx is equiva-
lent in the homotopy category of E-algebras to N*(Q"X), the cochain algebra
of the n-fold iterated loop space of X, if the cohomological Eilenberg-Moore
spectral sequence of the path space fibration converges for all loop spaces Q27X
where 1 < m < n. Record simply the next usual conditions which ensure this
convergence in the context where the ground is either the rational field k = Q
or a finite primary field k = IF,:

Fact 1 (See [12, 32]). Let n > 1. Suppose that:

(1)o The homotopy groups m.(X) are trivial for all x <n (case k = Q).

(1), The homotopy groups m.(X) are finite p-groups for all «* < n (case k =
F,).

and

(2) The homotopy groups m.(X) are finitely generated in every degree x > 0.

Then the cohomological Filenberg-Moore spectral sequence
By = Tor™ " X9 (k k) = H*(Q™ X k)
converges for every m < n.

The finiteness assumptions on homotopy groups imply that H,(Q™X, k)
forms a finitely generated k-module, in every degree x > 0, for every m < n (to
check this folk claim, proceed by induction on the Postnikov tower of Q" X).
Therefore the assumptions of Fact [1| imply the convergence of the Eilenberg-
Moore spectral sequence by [12], even if we deal with non-connected spaces
by [32)].

As a corollary, we obtain:
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Fact 2. In the situations of Fact we have a natural equivalence X" Fx ~
N(Q"X) in the homotopy category of E-algebras.

This assertion can also be proved by using models of Postnikov towers in
the category of E-algebras (we also refer to [25] for the definition of this model).
This finer argument would show that assumptions on lower homotopy groups
Tm(X), for m < n, are unnecessary and can be dropped. Thus the assertion of
Fact [2| holds under the finiteness assumption of Fact |1| as long as the group
(X)) is trivial in the case k = Q, a finite p-group in the case of a finite field
k =T,.

As regards the iterated bar complex, the existence of weak-equivalences
B"(N*(X)) ~ B"(Fx) ~ £"Fx and Fact [2] imply:

Theorem 3. Under the assumptions of Fact[1, we have a natural isomorphism
H*(B"N*(X)) ~ H*(Q"X,k),
for everyn > 1. O

In the case k = F,,, one can use the classical Bousfield-Kan tower {R; X} to
improve Theorem

Recall simply that H*(X,F,) ~ colims H*(RsX,F,) (see [9, Proposition
11.6.5] and [11]). Equivalently, the natural morphism colims N*(RsX) —
N*(X) defines a weak-equivalence in the category of E-algebras. Note that
the bar complex commutes with sequential colimits so that the natural mor-
phism colimg B"(N*(RsX)) — B"(N*(X)) defines a weak-equivalence as well.
Recall also that the spaces R;X satisfy assumptions and of Fact [1)if the
cohomology modules H*(X,F,) are degreewise finite (this folk assertion follows
from a standard application of the spectral sequence of [9, §X.6]).

Hence Theorem |3 implies:

Theorem 4. Let X be a pointed space whose cohomology modules H*(X,Fp)
are degreewise finite. Let RsX denote Bousfield-Kan’ tower of X (where R =
F,). Then we have a natural isomorphism

H*(B"N*(X)) ~ colimsy H*(Q"R; X, F,),
for everyn > 1. O

This result can be improved in good cases. For instance, if X is a nilpotent
space whose homotopy groups are degreewise finitely generated, then theorems
of [32] imply:

colimg H*(Q{ Rs X, Fp,) = H*(Q§ Roo X, Fp),

where R, X refers to Bousfield-Kan’ p-completion of X and Q3Y denotes the
connected component of the base point of "Y', for any pointed space Y. Ob-
serve also that Q™Y ~ m,(Y) x Q7Y and note that

colim, A°(Q" R, X, F,) = colim, FF»(R:X) = (=%
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n(Roo X))
where the notation IF;,r ( » refers to the module of maps o : T, (Roc X) — F,

which are continuous with respect to the p-profinite topology (see [9, §§III-VT],
see also [30] for a conceptual setting to do p-profinite topology).
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