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ABSTRACT

We introduce a concept of hereditary family of multi-indices,
and consider vector spaces of functions generated by families
associated to such sets of multi-indices, called hereditary
function spaces. Then, integral representations of some square
positive functionals on hereditary function spaces, in particular
truncated moment problems on hereditary spaces of
polynomials, are investigated.
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Notation

Some standard notation: R,C,N,Z,Z+ are the sets of real
numbers, complex numbers, positive integers, integers and
non-negative integers, respectively.

For a fixed integer n ∈ N, the Cartesian product Zn
+ is said to be

the set of multi-indices of lenght n.

Let k = (k1, . . . , kn) ∈ Zn
+, and t = (t1, . . . , tn) ∈ Rn be arbitrary.

Then tk means the monomial tk1
1 . . . tkn

n , and |k| = k1 + . . .+ kn.
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A Polynomial Moment Problem

Let B(Rn) denote the set of all Borel subsets of Rn, let K be an
arbitrary finite subset of Zn

+, and let Pn
K be the complex vector

space spanned by the set of monomials {tk : k ∈ K}. Let also
{γk; k ∈ K} be an arbitrary set of real numbers.

The K-truncated multidimensional moment problem consists of
finding a non-negative measure µ on B(Rn) such that each
monomial tk is µ-integrable, and

γk =

∫
tkdµ(t), k ∈ K. (1)

Author: Vasilescu Short Title: MPHFS



Introduction
Hereditary Function Spaces

Relative Multiplicativity
Dimensional Stability and Consequences

A Polynomial Moment Problem

Let B(Rn) denote the set of all Borel subsets of Rn, let K be an
arbitrary finite subset of Zn

+, and let Pn
K be the complex vector

space spanned by the set of monomials {tk : k ∈ K}. Let also
{γk; k ∈ K} be an arbitrary set of real numbers.

The K-truncated multidimensional moment problem consists of
finding a non-negative measure µ on B(Rn) such that each
monomial tk is µ-integrable, and

γk =

∫
tkdµ(t), k ∈ K. (1)

Author: Vasilescu Short Title: MPHFS



Introduction
Hereditary Function Spaces

Relative Multiplicativity
Dimensional Stability and Consequences

A General Moment Problem

The moment problems can be stated in a more abstract
context, for functions more general that polynomials.

Let (Ω,S) be a measurable space, and let F be a vector space
consisting of S-measurable complex-valued functions on Ω,
invariant under complex conjugation.

Given a linear map Λ : F 7→ C, we investigate the existence of a
positive measure µ on Ω such that

Λ(f ) =

∫
Ω

f (ω)dµ(ω), f ∈ F .

When such a measure exists, it is said to be a representing
measure for Λ.
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A Remark on the Finite Dimensionality

Thanks to an argument due to Stochel, in many situations of
interest we may restrict ourselves to the case when the space
F is finite dimensional. The finite dimensionality of the space F
leads to the possibility to replace an existing measure µ by
another one consisting of a finite number of atoms, via an idea
going back to Tchakaloff.
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More Notation

In the set Zn
+ we consider the order relation ”≤“ given by k ≤ p

whenever kj ≤ pj , j = 1, . . . ,n, where k = (k1, . . . , kn) and
p = (p1, . . . ,pn).

We define the maps Sj : Zn
+ 7→ Zn

+ via the formulas

Sj(k1, . . . , kj , . . . , kn) = (k1, . . . , kj + 1, . . . , kn) (2)

for all (k1, . . . , kj , . . . , kn) ∈ Zn
+, and j = 1, . . . ,n, which are, in

fact, mutually commuting shifts.
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Hereditary Sets

Definition 1 A subset K ⊂ Zn
+ is said to hereditary if for every

k ∈ K and r ∈ Zn
+ such that r ≤ k, we have r ∈ K.

Examples
(1) Let K = Km = {k ∈ Zn

+ : |k| ≤ m}, for some fixed m ∈ N.
Then K is hereditary.
(2) Let K = Kd = {k ∈ Zn

+ : k ≤ d}, where d ∈ Zn
+ is fixed.

Then K is hereditary.
(3) Let k1, . . . ,kr be fixed elements of Zn

+. Then the set

r⋃
j=1

{k ∈ Zn
+ : k ≤ kj}

is hereditary.
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More about Hereditary Sets

Lemma 1 Let Kj ⊂ Zn
+ (j = 1,2) be hereditary. Then

K = K1 + K2 ⊂ Zn
+ is also hereditary.

Remark 1 Let K ⊂ Zn
+ be a hereditary finite set. We define, by

recurrence, the sets of indices
Kr = {Spk : |p| ≤ r , k ∈ K}, r ≥ 0}, so K0 = K, and
S = (S1, . . . ,Sn) is given by formula (2).

Note that we have K0 ⊂ K1 ⊂ K2 ⊂ · · · . In fact,
Kr = {SpSk0, |p| ≤ r , k ∈ K} for all r ≥ 0.

Moreover, the set K∞ = ∪r≥0Kr is also hereditary.
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Function Spaces

Let (Ω,S) be a measurable space, and let alsoMS(Ω) be the
algebra of all complex-valued S-measurable functions on Ω

A vector subspace F ⊂MS(Ω) such that 1 ∈ F and if f ∈ F ,
then f̄ ∈ F , is said to be a function space.

Fixing a function space F , let F (2) be the vector space spanned
by all products of the form fg with f ,g ∈ F , which is itself a
function space. We have F ⊂ F (2), and F = F (2) when F is an
algebra.

If T ⊂ F is a function subspace, then RT designates the ”real
part“ of T , that is {f ∈ T ; f = f̄}.
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Some Examples

Important examples of function spaces are derived from the
space Pn of all polynomials in n ≥ 1 real variables, denoted as
above by t1, . . . , tn, with complex coefficients.

For every integer m ≥ 0, let Pn
m be the subspace of Pn

consisting of all polynomials p with deg(p) ≤ m. Both Pn
m and

Pn are function spaces on Rn.

In fact, Pn
m = Pn

Km
, with Km as in Example (1).

Similarly, Pn
d = Pn

Kd
, with Pn

Kd
as in Example (2) is also a

function space.
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Unital Square Positive Functionals

Definition 2 Let F be a function space and let Λ : F (2) 7→ C be
a linear map with the following properties:
(1) Λ(f̄ ) = Λ(f ) for all f ∈ F (2);
(2) Λ(|f |2) ≥ 0 for all f ∈ F ;
(3) Λ(1) = 1.
This is, a unital square positive functional, briefly a uspf.

An example of a uspf is given by a probability measure µ and a
functions space F on (Ω,S), consisting of square µ-integrable
functions. Then the map F (2) 3 f 7→

∫
Ω fdµ ∈ C is a uspf.
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An Associated Hilbert Space

Fixing a function space F and a uspf Λ : F (2) 7→ C, we have a
semi-inner product given by the equality

〈f ,g〉0 = Λ(f ḡ), f ,g ∈ F .

Then we set

IF = {f ∈ F ; 〈f , f 〉0 = 0} = {f ∈ F ; Λ(|f |2) = 0},

which is a vector subspace of F . Moreover, the quotient
HF := F/IF is an inner product space, with the inner product
given by

〈f̂ , ĝ〉 = Λ(f ḡ), f̂ = f + IF , ĝ = g + IF .

When the quotient HF is finite dimensional, it is actually a
Hilbert space, which will be said to be the Hilbert space
associated to (F ,Λ).
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The Moment Problem in this Context

Problem The moment problem for a given uspf Λ : F (2) 7→ C,
where F is a fixed function space on (Ω,S), means to find
necessary and sufficient conditions insuring the existence of a
probability measure µ, defined on S, such that F consists of
square µ-integrable functions and Λ(f ) =

∫
Ω fdµ, f ∈ F (2).

When such a measure µ exists, it is said to be a representing
measure of Λ (with support) in Ω.
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Tchakaloff’s Property

When F is finite dimensional, more generally if HF is finite
dimensional, and the uspf Λ on F (2) has an arbitrary
representing measure, then one expects that this measure may
be replaced by an atomic one. As previously mentioned, such a
property goes back to Tchakaloff.
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An Extreme Case

In an extreme case, the atomic representing measure is unique
provided it exists:

Proposition 1 Let F be a function space on Ω, and let
Λ : F (2) 7→ C be a uspf. Assume that the associated Hilbert
space HF is finite dimensional. Then there exists at most one
d-atomic representing measure of the uspf Λ, with support in Ω,
having d := dimHF atoms.
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Hereditary Function Spaces

Let F be a a function space on Ω. Let also K ⊂ Zn
+ be a subset

containing 0 = (0, . . . ,0), and let θ = (θ1, . . . , θn) be an n-tuple
of elements of RF .

Definition 3 If the family {θα : α ∈ K} spans the space F , we
say that the function space F is K-generated by θ.
If the set K is hereditary, we say that the function space F is
hereditary.

Note that if F is K-generated by θ, then F (2) is K2-generated
by θ, where K2 = K + K.
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If the set K is hereditary, we say that the function space F is
hereditary.

Note that if F is K-generated by θ, then F (2) is K2-generated
by θ, where K2 = K + K.
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A Structure Remark

Remark 2 If F is a function space on Ω which is K-generated
by an n-tuple θ = (θ1, . . . , θn) of elements of RF , we must have
the equality, F = {p ◦ θ; p ∈ Pn

K}, where θ is regarded as a
function from Ω into Rn, where Pn

K is the complex space of
polynomials K-generated by t = (t1, . . . , tn).
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Idempotents

We fix a function space F and a uspf Λ : F (2) 7→ C, having a
finite dimensional associated Hilbert space HF , whose norm is
denoted by ‖ ∗ ‖. We denote by RHF the real Hilbert space
given by the quotient RF/RIF .

Definition 4 An element ι ∈ RHF is said to be an idempotent
(associated to Λ) if

‖ι‖2 = 〈ι, 1̂〉. (3)

Set ID(HF ) := {ι ∈ RHF ; 〈ι, 1̂〉 6= 0}, that is, the family of all
nonnull idempotents of HF .
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Lemma 2 If {η1, . . . , ηd} ⊂ RHF is an orthonormal basis with
〈ηj , 1̂〉 6= 0, j = 1, . . . ,d , the set {〈η1, 1̂〉η1, . . . 〈ηd , 1̂〉ηd} is an
orthogonal basis of HF consisting of idempotents. Moreover,

〈η1, 1̂〉η1 + · · ·+ 〈ηd , 1̂〉ηd = 1̂,

where d = dimHF .
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Corollary 1 There are functions b1, . . . ,bd ∈ RF such that
‖bj‖20 = 〈bj ,1〉0 > 0, 〈bj ,bk 〉0 = 0 for all j , k = 1, . . . ,d , j 6= k ,
and every f ∈ F can be uniquely represented as

f =
d∑

j=1

〈bj ,1〉−1
0 〈f ,bj〉0bj + f0,

with f0 ∈ IF and d = dimHF .
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Definition 3 Let F be a hereditary function space K-generated
by θ = (θ1, . . . , θn) ⊂ RF , endowed with a uspf Λ : F (2) 7→ C.
Assume that the space HF is finite dimensional, and let
B = {b̂1, . . . , b̂d} be an orthogonal basis HF consisting of
idempotent elements.
We say that the tuple θ is B-multiplicative if

Λ(θpbj)Λ(θqbj) = Λ(bj)Λ(θp+qbj), (4)

whenever p + q ∈ K, j = 1, . . . ,d .
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Theorem 1
Let F be a hereditary function space K-generated by
θ = (θ1, . . . , θn) ⊂ RF , and endowed with a uspf Λ : F (2) 7→ C.
Assume that the space HF is finite dimensional.
The uspf Λ has a representing measure on Ω consisting of
d := dimHF atoms if and only if there exists an orthogonal
basis B = {b̂1, . . . , b̂d} of HF , consisting of idempotent
elements, such that θ is B-multiplicative, and
δ(θ̂) ∈ θ(Ω), δ ∈ ∆, where ∆ is the dual basis of B.
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A Consequence

Corollary 2 Let F be a function space on Ω, spanned by the
n-tuple θ. A uspf Λ : F (2) 7→ C has a representing measure on
Ω consisting of d := dimHF atoms if either
(1) there exists an orthogonal basis B of H consisting of
idempotent elements such that δ(θ̂) ∈ θ(Ω), δ ∈ ∆, where ∆ is
the dual basis of B, or
(2) θ(Ω) = Rn.
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A Natural Isometry

Remark 3 Let F be a function space, and let Λ : F (2) 7→ C be a
uspf. We assume that the quotient space HF = F/IF is finite
dimensional, that is, it is a Hilbert space. Let also G be a
function subspace of F , so Λ|G(2) is a uspf. If IG and HG are
defined by replacing F by G, we have an isometry

HG 3 g + IG 7→ g + IF ∈ HF . (5)

In particular, HG is also a Hilbert space, and dimHG ≤ dimHF
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Dimensional Stability

We use the previous notation.

Definition 4 We say that the uspf Λ is dimensionally stable at G
if dimHG = dimHF . In this case, the isometry (5) is surjective,
that is, (5) is a unitary transformation.

This is equivalent to the fact that for every f ∈ F there exists a
g ∈ G such that f − g ∈ IF . Note that if f ∈ RF , we can choose
g ∈ RG such that f − g ∈ RIF , because IF = RIF + iRIF .
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A Key Result

Lemma 3 Let F be a function space, let Λ : F (2) 7→ C be a uspf,
and let θ = {θ1, . . . , θn} be in RF . Let also G be a function
subspace of F such that θjG ⊂ F for all j = 1, . . . ,n, and that Λ
is dimensionally stable at G. Then

(
n∑

j=1

θjIF ) ∩ F ⊂ IF .

In particular, θjIG ⊂ IF for all j = 1, . . . ,n.
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Induced Multiplication Operators

Remark 3 Let J : HG 7→ HF be the unitary transformation given
by (5). We define the operators Mj : HG 7→ HF by the equalities
Mj(g + IG) = θjg + IF for all j = 1, . . . ,m and g ∈ G, which are
correctly defined. Next, we consider on the Hilbert space HF
the linear operators Tj = MjJ−1 for all j = 1, . . . ,n.

Note that, fixing f ∈ F and choosing g ∈ G such that
f − g ∈ IF , we have Tj(f + IF ) = θjg + IF for all j .
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Self-adjointness

Proposition 2 The linear maps Tj , j = 1, . . . ,n, are self-adjoint
operators, and T = (T1, . . . ,Tn) is a commuting tuple on HF .
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Consequence of Dimensional Stability

Theorem 2
Let G be a hereditary function space K-generated by
θ = (θ1, . . . , θn) ⊂ RG, where K ⊂ Zn

+ is finite. Let also
F =

∑n
j=0 θjG (θ0 = 1), and let Λ : F (2) 7→ C be a uspf such that

Λ is dimensionally stable at G. Then we have:
(1) there exists an orthogonal basis B = {b̂1, . . . , b̂d} of HF
consisting of idempotent elements such that θ = (θ1, . . . , θn) is
B-multiplicative;
(2) the uspf Λ has a d-atomic representing measure with
support in Ω, where d := dimHF , if and only δ(θ̂) ∈ θ(Ω), δ ∈ ∆,
where ∆ is the dual basis of B;
(3) if the uspf Λ has an atomic representing measure with
support in Ω, this atomic measure is uniquely determined.
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A Sequence of Hereditary Spaces

Remark 4 Fixing a K-generated space G by a family
θ = (θ1, . . . , θn) ⊂ RG, we have a sequence of hereditary
function spaces {Fr : r ≥ 0} given by

Fr =
n∑

j=0

θjFr−1 (θ0 = 1, r ≥ 1),

where F0 = G
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Extension of a USPF

Theorem 3
Let G be a hereditary function space K-generated by
θ = (θ1, . . . , θn) ⊂ RG in Ω, where K ⊂ Zn

+ is finite. Let also
Fr =

∑n
j=0 θjFr−1 (θ0 = 1, r ≥ 1), where F0 = G. We fix a uspf

Λ : F (2) 7→ C, supposed to be dimensionally stable at G, where
F = F1. Also set F∞ to be the space ∪r≥0Fr . Then F∞ is a
function space with F (2)

∞ = F∞, and the uspf Λ can be uniquely
extended to a uspf Λ∞ : F∞ 7→ C, having a d-atomic measure
in Ω, where d = dim(HG).
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A Final Remark

Remark 5 From the proof of the previous theorem, we deduce
that Hr := Fr/Ir (r ≥ 1) are unitarily equivalent Hilbert spaces.
This assertion is true even for r =∞.
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Merci beaucoup pour votre attention !
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