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Introduction

The classical Cayley transform
κ(t) = (t− i)(t + i)−1 : R 7→ T \ {1}
is a bijective map. It can be extended
to (not necessarily bounded) symmet-
ric operators in Hilbert spaces, replac-
ing formally the real variable by such
an operator (von Neumann) or to some
linear relations (Labrousse and collabo-
rators), and to other situations as well.
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We can slightly modify the former def-
initions (also due to the author), which
allows us to get (in a simpler way) the
properties of the quaternionic Cayley
transform directly from those of von Neu-
mann’s Cayley transform, and refine some
former results. This new construction
does not require densely defined oper-
ators, which might be useful for poten-
tial applications; moreover, it applies to
a larger class of operators (in particu-
lar, to some differential operators with
2× 2 matrix coefficients, related to the
so-called Dirac operator.
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A strategy concerning the nor-
mal extensions: Let D be dense in
a Hilbert space H. Let also T be a
densely defined linear operator in H,
such that T and T ∗ are defined on D.
Writing T = A + iB, with A = (T +
T ∗)/2 and B = (T − T ∗)/2i, and so A
and B are symmetric on D, we consider

QT =

(
A B
−B A

)
.

It is known that T is normal inH if and
only if if QT is normal in H ⊕H. Us-
ing a quaternionic Cayley transform, we
give conditions to insure the existence of
a normal extension of QT , and we can
go back to T . In fact, we have results
for A and B symmetric, not necessarily
densely defined in H.
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1 Cayley transforms in the
algebra of quaternions

Consider the 2× 2-matrices

I =

(
1 0
0 1

)
, J =

(
1 0
0 −1

)
,

K =

(
0 1
−1 0

)
, L =

(
0 1
1 0

)
.

The Hamilton algebra of quaternions
H will be identified with theR-subalgebra
of the algebraM2 of 2×2-matrices with
complex entries, generated by the ma-
trices I, iJ, K and iL. The embedding
H ⊂ M2 allows us to regard the ele-
ments of H as matrices and to perform
some operations in M2 rather than in
H.
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We have J∗ = J, K∗ = −K, L∗ =
L, J2 = −K2 = L2 = I, JK = L =
−KJ, KL = J = −LK, JL = K =
−LJ, where the adjoints are computed
in the Hilbert space C2.
We also put E = iJ, F = iL, and we

we have E∗ = −E, E2 = −I, F∗ =
−F, F2 = −I

Definition 1.1 Let a, b, c ∈ R, and let

S = Sa,b,c = aI + bK + icL.

The E–Cayley transform of S is the
matrix

U = (S − E)(S + E)−1 ∈ H.
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Let again a, b, c ∈ R, and let

T = Ta,b,c = aI + bK + icJ.

The F–Cayley transform of T is the
matrix

V = (T − F)(T + F)−1 ∈ H.

Proposition 1.2 Let a, b, c ∈ R, and
let S = Sa,b,c. The matrix

U = (S − E)(S + E)−1

is unitary and U 6= I .
Conversely, given a unitary matrix U ∈

H with U 6= I, there are a, b, c ∈ R
such that S = Sa,b,c, where

S = (I + U)(I− U)−1E.

Moreover, the E–Cayley transform of the
matrix S is the unitary matrix U .
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Remark 1.3 Let a, b, c ∈ R, and let
S = Sa,b,c. A direct calculation shows
that the E–Cayley transform of S is
given by

U = (a2 + b2 + c2 + 1)−1

×((a2+b2+c2−1)I−2cK−2aiJ+2biL)

Conversely, if U ∈ H is unitary with
I 6= U , and so

U =

(
z1 z2
−z̄2 z̄1

)
,

with z1, z2 ∈ C and |z1|2 + |z2|2 = 1
and Rez1 6= 1, the matrix
S = (I + U)(I− U)−1E is given by

S =
1

Rez1 − 1

(
Imz1 iz2
iz̄2 Imz1

)
,

which is inverse E–Cayley transform of
the matrix U .
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2 Quaternionic Cayley transform
of unbounded operators revisited

The quaternionic Cayley transforms, may
be extended to some classes of unbounded
operators, acting on the Cartesian prod-
uct of two Hilbert spaces.
Let H be a complex Hilbert space,

whose scalar product is denoted by 〈∗, ∗〉,
and whose norm is denoted by ‖ ∗ ‖.
We especially work in the Hilbert space
H2 = H ⊕ H, whose natural scalar
product is denoted by 〈∗, ∗〉2, and whose
norm is denoted by ‖ ∗ ‖2.
The matrices from M2 naturally act

onH2. In particular, the matrices I,J,K,
L,E,F, act on H2, and we still have
similar properties.
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For an operator T acting inH, we de-
note by D(T ), R(T ), N(T ) the domain
of definition, the range the kernel, re-
spectively. If T is closable, the closure
of T will be denoted by T̄ . If T is
densely defined, let T ∗ be its adjoint.
If T2 extends T1, we write T1 ⊂ T2.
Lemma 2.1 Let S : D(S) ⊂ H2 7→
H2. Suppose that the operator JS is
symmetric. Then we have
‖(S±E)x‖22 = ‖Sx‖22+‖x‖22, x ∈ D(S).

If, in addition, JD(S) ⊂ D(S), we
have
‖(S±E)Ex‖22 = ‖Sx‖22+‖x‖22, x ∈ D(S),

if and only if ‖SJx‖2 = ‖Sx‖2 for all
x ∈ D(S).
Example 2.2 (1) LetA,B : D ⊂ H 7→
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H be symmetric operators. We put S =
SA,B = AI+BK, which is an operator
in H2, defined on D(S) = D⊕D. The
operator JS is easily seen to be sym-
metric in H2.
(2) Let H = L2(R) and let D ⊂

L2(R) be the subset of all continuously
differentiable functions with compact sup-
port. Consider the operator

T = i
d

dt
I + σ(t)K + iτ (t)L,

defined onD2, with values inH2, where
σ and τ are continuous real-valued func-
tions on R. It is known that the opera-
tor JT is symmetric. Moreover, JT has
a self-adjoint extension, which is called
the Dirac operator.

Remark 2.3 Let S : D(S) ⊂ H2 7→
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H2 be such that JS is symmetric. Lemma
2.1 allows us to correctly define the op-
erator V : R(S + E) 7→ R(S − E),
V (S + E)x = (S − E)x, x ∈ D(S),
which is a partial isometry. In other
words, V = (S−E)(S+E)−1, defined
on D(V ) = R(S + E).
The operator V will be called the

E–Cayley transform of S.
Similarly, if LS is symmetric, we can

define the F–Cayley transform of S.
Let V : D(V ) ⊂ H2 7→ H2 be a par-

tial isometry. Then the inverse V −1 is
well defined on the subspaceD(V −1) =
R(V ).
As the two transforms are alike, we

mainly deal with the first one.

Remark 2.4 (1) Let Sj : D(Sj) 7→
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H2 be such that JSj is symmetric, and
let Vj be the E–Cayley transform of
Sj (j = 1, 2). We have S1 ⊂ S2 if and
only if V1 ⊂ V2. In other words, the E–
Cayley transform is an order preserving
map.
(2) Suppose that the operator I − V

is injective. Then the operator
S : R(E(V − I)) 7→ H2, given by
S(E(V − I)x) = (V + I)x, x ∈ D(V ),
is well defined and will be called the in-
verse E–Cayley transform of the partial
isometry V . In other words,
S = (I + V )(I− V )−1E on
D(S) = ER(I− V ).
Of course, we may define, in a similar

way, the inverse F–Cayley transform.

The properties of the quaternionic Cay-
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ley transform are summarized in the fol-
lowing result.

Theorem 2.5 The E-Cayley transform
is an order preserving bijective map as-
signing to each operator S with S : D(S)
⊂ H2 7→ H2 and JS symmetric a par-
tial isometry V in in H2 with I − V
injective. Moreover:

(1) the operator V is closed if and only
if the operator S is closed;

(2) the equality V −1 = −KVK holds
if and only if the equality SK = KS
holds;

(3) the operator JS is self-adjoint if
and only if V is unitary on H2.
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3 Unitary operators and the inverse
quaternionic Cayley transform

We are particularly intrested in those
unitary operators producing (unbounded)
normal operators, via the inverse E–
Cayley transform.
Remark. We can prove that an op-

erator U on H2 has the form

U =

(
T iA
iA T ∗

)
,

with T normal, A self-adjoint, such that
TT ∗ + A2 = I and AT = TA, if and
only if U is unitary, U∗ = −KUK and
(U + U∗)E = E(U + U∗).
The class of these unitary operators

will be denoted by UC(H2).
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Lemma 3.1 Let V be a partial isome-
try such that V −1 = −KVK and
I − V is injective. Let S be the in-
verse E–Cayley transform of V . We
have JD(S) ⊂ D(S) and ‖SJx‖2 =
‖Sx‖2 for all x ∈ D(S) if and only
if there exists a surjective isometry G :
D(V ) 7→ D(V ) such that E(I − V ) =
(I− V )G.

Corollary 3.2 Let U be a unitary op-
erator on H2 with the property U∗ =
−KUK, and such that I − U is injec-
tive. Let also S be inverse E–Cayley
transform of U . The operator S is nor-
mal if and only is there exists a unitary
operator GU on H2 with E(I − U) =
(I− U)GU and (GU )∗ = −GU .
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Theorem 3.3 Let U be a unitary op-
erator on H2 with the property U∗ =
−KUK, and such that I − U is in-
jective. Let also S be the inverse E–
Cayley transform of U . The operator S
is normal if and only if (U + U∗)E =
E(U + U∗).

The next result gives a complete de-
scription of the unitary operator GU ,

Proposition 3.4 Let U ∈ UC(H2). Then
the operator(

(iT ∗T − Re(T ))Θ−1
T A(I − T ∗)Θ−1

T
−A(I − T )Θ−1

T −i(T ∗T − Re(T ))Θ−1
T

)
,

is a densely defined isometry, where ΘT =
I−Re(T ), and its extension toH2 equals
the unitary operator GU .
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Remark 3.5 Let

NIC(H2) = {S : D(S) ⊂ H2→ H)2;

S normal, (JS)∗ = JS, KS = SK}.
The previous theorems show that the
map

NIC(H2) 3 S 7→ (S−E)(S+E)−1 ∈ UC(H2)

is bijective. In addition, we have S ∈
NIC(H2) if and only if S is a densely
defined operator in H2 having the form

S =

(
A B
−B A

)
,

whereA andB are commuting self-adjoint
operators.
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4 Normal extensions

Remark 4.1 Let T : D(T ) ⊂ H2 7→
H2 such that
(i) JD(T ) ⊂ D(T ) and KD(T ) ⊂

D(T ).
In order that T have a normal exten-

sion S ∈ NIC(H2), the following con-
ditions are necessary:
(ii) JT is symmetric;
(iii) TK = KT ;
(iv) ‖TJx‖2 = ‖Tx‖2 for all x ∈

D(T ).
We denote by SIC(H2) the set of those

operators T : D(T ) ⊂ H2 7→ H2 such
that (i)–(iv) hold.
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Let also PC(H2) be the set of those
partial isometries V : D(V ) ⊂ H2 7→
H2 such that:
(a) V −1 = −KVK;
(b) I− V is injective;
(c) ER(I − V ) = R(I − V ) and

(I − V )−1E(I − V ) is an isometry on
D(V ).
The E–Cayley transform is a bijective

map from SIC(H2) onto PC(H2). Note
also that UC(H2) ⊂ PC(H2).
The interesting question concerning the

existence of an extension S ∈ NIC(H2)
of an operator T ∈ SIC(H2) is equiv-
alent to the description of those partial
isometries in PC(H2) having extensions
in the family UC(H2).
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Proposition 4.2 Let U ∈ UC(H2) and
let D ⊂ H2 be a closed subspace with
the properties KU(D) ⊂ D and
E(I − U)(D) ⊂ (I − U)(D). If V =
U |D, E = D⊥ and W = U |E , then
U = V ⊕W and V,W ∈ PC(H2)

We can characterize of those closed
subspaces of H2 which are domains of
definitions of partial isometries fromPC(H2).

Proposition 4.3 Let D ⊂ H2 be a closed
subspace and let P±I = 2−1(I ± iK).
There exists a V ∈ PC(H2) withD(V ) =
D if and only if there are two orthogonal
projection P± in H2 such that

(1) D = P+(H2)⊕ P−(H2);
(2) P±(H2) ∩ P±I (H2) = {0};
(3) (P±+EP∓E)(P∓I (H2)) ⊂ P±I (H2).
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Lemma 4.4 Let T ∈ SIC(H2) be densely
defined. Then T is closable and its clo-
sure T̄ ∈ SIC(H2).

Theorem 4.5 Let T ∈ SIC(H2) be densely
defined. The operator T has an exten-
sion in NIC(H2) if and only if there
exists a W ∈ PC(H2), with D(W ) =
R(T + E)⊥.

The next assertion concerns not nec-
essarily densely defined operators.

Corollary 4.6 Let T ∈ SIC(H2) be closed
and let V be the E–Cayley transform
of T . The operator T has an exten-
sion in NIC(H2) if and only if there
exists a W ∈ PC(H2), with the proper-
ties D(W ) = R(T + E)⊥ and
R(I− V ) ∩R(I−W ) = {0}.
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Remark 4.7 The results stated above
apply to a large class of linear opera-
tors in the Hilbert space H. Specifi-
cally, let A,B be a pair of linear opera-
tors having a joint domain of definition
D0 ⊂ H. As already discussed, we as-
sociate this pair with a matrix operator

T =

(
A B
−B A

)
,

defined on D(T ) = D0 ⊕ D0 ∈ H2.
We want to find equivalent conditions
on A,B such that T ∈ SIC(H2).
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Clearly, JD(T ) ⊂ D(T ) and
KD(T ) ⊂ D(T ).
It is easily seen that T is symmetric

if and only if both A,B are symmetric.
The equality KT = TK is also easily
verified.
Finally, the equality ‖TJx‖2 = ‖Tx‖2

holds for all x ∈ D(T ) if and only if
(c)
〈Au,Bv〉+〈Bv,Au〉 = 〈Bu,Av〉+〈Av,Bu〉
for all u, v ∈ D0, which is a weak com-
mutativity condition. Consequently, if
A,B are symmetric and condition (c)
holds, then T ∈ SIC(H2). In that case,
the E–Cayley transform of T is in the
class PC(H2).
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As a direct consequence of the previ-
ous results, we obtain the following as-
sertion:
Let A,B be symmetric operators on a

dense joint domain of definition D0 ⊂
H, satisfying condition (c). If the space

{((A+iI)u+Bv)⊕((A−iI)v−Bu);u, v ∈ D0}
is dense in H2 , then the operators A
and B have commuting self-adjoint ex-
tensions.
This result is, in fact, a version of a

celebrated theorem of Nelson’s concern-
ing the commuting self-adjoint exten-
sions of symmetric operators.
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