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Introduction

The classical Cayley transform
k(t) = (t—d)(t+i) R T\ {1}
is a bijective map. It can be extended
to (not necessarily bounded) symmet-
ric operators in Hilbert spaces, replac-
ing formally the real variable by such
an operator (von Neumann) or to some
linear relations (Labrousse and collabo-
rators), and to other situations as well.
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We can slightly modify the former def-
initions (also due to the author), which
allows us to get (in a simpler way) the
properties of the quaternionic Cayley
transform directly from those of von Neu-
mann’s Cayley transtform, and refine some
former results. This new construction
does not require densely defined oper-
ators, which might be useful for poten-
tial applications; moreover, it applies to
a larger class of operators (in particu-
lar, to some differential operators with
2 X 2 matrix coeflicients, related to the
so-called Dirac operator.



A strategy concerning the nor-
mal extensions: Let D be dense in
a Hilbert space H. Let also 1" be a
densely defined linear operator in H,
such that T and T are defined on D.
Writing T' = A 4+ 1B, with A = (T +
T*)/2 and B = (T —T7%)/2i, and so A
and B are symmetric on D, we consider

A B
QT — ( B A ) :
It is known that 7" is normal in H if and
only if if Q7 is normal in H & H. Us-
ing a quaternionic Cayley transform, we
give conditions to insure the existence of
a normal extension of Q, and we can

oo back to T'. In fact, we have results
for A and B symmetric, not necessarily

densely defined in H.
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1 Cayley transforms in the
algebra of quaternions

Consider the 2 x 2-matrices

=(on) 0= 0h),
<=( ) 1=(V0)

The Hamilton algebra of quaternions
H will be identified with the R-subalgebra
of the algebra My of 2 X 2-matrices with
complex entries, generated by the ma-
trices I, ¢J, K and ¢L. The embedding
H C My allows us to regard the ele-
ments of H as matrices and to perform

some operations in Mo rather than in

H.



We have J* = J, K* = —K, L™ =
L J=-K=L’!=1LJK=L=
—KJ, KL =J = —-LK, JL = K =
—LJ, where the adjoints are computed
in the Hilbert space C2.

We also put E =1J. F =L, and we
we have E* = —E, E2 = —I, F* =
—F, F?2=—1

Definition 1.1 Let a,b,c € R, and let
S =5¢pc=0al+ K +icL.

The E-Cayley transform of S is the
matrix

U=(S—E)(S+E)"!eH.



Let again a, b, c € R, and let

T'=T,pc=al+bK+icd.
The F-Cayley transform ot T is the

matrix
V=(T-F)(T+F) el
Proposition 1.2 Let a,b,c € R, and
let S = 5¢pc The matrix
U=(S—E)(S+E)!

is unitary and U £ 1 .
Conversely, given a unitary matriz U €

H with U # 1, there are a,b,c € R
such that S = Sy p ., where
S=(1+U)I-U)"'E

Moreover, the E-Cayley transform of the
matriz S 15 the unitary matriz U.
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Remark 1.3 Let a,b,c € R, and let
S = S54pc A direct calculation shows
that the E—Cayley transform of S is
given by
U= (a>+b°+c*+1)"!

(24074 —1)T1—2cK —2aiJ +2biL)

Conversely, if U € H is unitary with
I+# U, and so

< Y
U=< 12),
—Z92 <]

with 21,290 € C and |z1]* + |2]? = 1
and Rezy # 1, the matrix
S=(I+U)I-U)"'Eis given by

1 Imzy 129
S = - :
Rezy — 1\ 129 Imz

which is inverse E-Cayley transform ot
the matrix U.




2 Quaternionic Cayley transform
of unbounded operators revisited

The quaternionic Cayley transtorms, may
be extended to some classes of unbounded
operators, acting on the Cartesian prod-
uct of two Hilbert spaces.

Let ‘H be a complex Hilbert space,
whose scalar product is denoted by (x, %),
and whose norm is denoted by || * ||.
We especially work in the Hilbert space
H? = H ® H, whose natural scalar
product is denoted by (x, %), and whose
norm is denoted by || * ||,

The matrices from My naturally act
on H?2. In particular, the matrices I, J, K,

L.E.F, act on H2 and we still have
similar properties.



For an operator T acting in H, we de-
note by D(T'), R(T), N(T') the domain
of definition, the range the kernel, re-

spectively. If T is closable, the closure
of T will be denoted by T. If T is

densely defined, let T be its adjoint.
If T5 extends 17, we write 17 C T5.

Lemma 2.1 Let S : D(S) C H? —
M2 Suppose that the operator JS is
symmetric. Then we have

|(S£E)z3 = ||Sz[|3+]l3. = € D(S).

If, in addition, JD(S) C D(S), we
have

|(S£E)Ez||5 = ||Sz[5+]l«]5. = € D(S).

if and only if ||SJx||o = ||Sx||2 for all
xr e D(S).

Example 2.2 (1) Let A, B: D C H —
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‘H be symmetric operators. We put § =
S4B = Al+ BK, which is an operator
in H?, defined on D(S) = D@ D. The
operator JS is easily seen to be sym-
metric in HZ.

(2) Let H = L?*R) and let D C
L?(R) be the subset of all continuously
differentiable functions with compact sup-
port. Consider the operator

d
T = i1+ 0(t)K +iT(H)L

defined on D?, with values in H?2, where
o and 7 are continuous real-valued func-
tions on R. It is known that the opera-
tor J1' is symmetric. Moreover, J1" has
a self-adjoint extension, which is called
the Dirac operator.

Remark 2.3 Let S : D(S) € H? —
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H2 be such that JS is symmetric. Lemma
2.1 allows us to correctly define the op-
erator V' : R(S + E) — R(S — E),
VIS+E)x=(S—E)z, z¢€ D(5),
which 1s a partial isometry. In other
words, V = (S —E)(S+E)~!, defined
on D(V)=R(S+E).

The operator V' will be called the
E-Cayley transform ot S.

Similarly, if LS is symmetric, we can
define the F—Clayley transform ot S.

Let V : D(V) € H? — H? be a par-
tial isometry. Then the inverse V1 is
well defined on the subspace D(V 1) =
R(V).

As the two transforms are alike, we
mainly deal with the first one.

Remark 2.4 (1) Let S; : D(S;)
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H? be such that J5; 18 symmetric, and
let V; be the E-Cayley transform of
Si(j = 1,2). We have S7 C Sy if and
only if V1 C V5. In other words, the E-
Cayley transtorm is an order preserving
map.

(2) Suppose that the operator I — V
is injective. Then the operator
S R(E(V —1)) — H?, given by
SE(V -1)z)=(V+1Dz,x € D(V),
1s well defined and will be called the in-
verse Ei—Cayley transform of the partial
isometry V. In other words,
S=I+V)I-V)"'E on
D(S)=ERI-V).

Of course, we may define, in a similar
way, the inverse F-Cayley transform.

The properties of the quaternionic Cay-
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ley transform are summarized in the fol-
lowing result.

Theorem 2.5 The E-Cayley transform
s an order preserving bijective map as-
signing to each operator S with S : D(S)
C H? — H? and IS symmetric a par-
tial isometry V in in H? with I — V
injective. Moreover:

(1) the operator V' is closed if and only
of the operator S is closed;

(2) the equality V' = —KVK holds
if and only if the equality SK = KS
holds;

(3) the operator JS' is self-adjoint if
and only if V is unitary on H2.
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3 Unitary operators and the inverse
quaternionic Cayley transform

We are particularly intrested in those
unitary operators producing (unbounded)
normal operators, via the inverse E-—
Cayley transform.

Remark. We can prove that an op-
erator U on H? has the form

T iA
U= (z’A T*)’

with 7" normal, A self-adjoint, such that
TT* + A% = [ and AT = TA, if and
only if U is unitary, U* = — KUK and
U+UNE =EU+U").

The class of these unitary operators

will be denoted by Up(H?).
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Lemma 3.1 Let V' be a partial 1some-
try such that V™1 = —KVK and
I — V is injective. Let S be the in-
verse E—Cayley transform of V. We
have JD(S) C D(S) and ||SJx|l9 =
|Sx|l2 for all x € D(S) if and only
of there exists a surjective isometry G :
D(V)+— D(V) such that E(I — V) =
I-V)G.

Corollary 3.2 Let U be a unitary op-
erator on H? with the property U* =
—KUK, and such that I — U 1is injec-
tiwe. Let also S be inverse E—Cayley
transform of U. The operator S is nor-
mal if and only 1s there exists a unitary
operator Gy on H? with BE(I — U) =
(I—-U)Gy and (Gy)* = =G
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Theorem 3.3 Let U be a unitary op-
erator on H? with the property U™ =
—KUK., and such that 1 — U s in-
jective. Let also S be the inverse E—
Cayley transform of U. The operator S
is normal if and only if (U + U*E =
EU +U").

The next result gives a complete de-
scription of the unitary operator Gy,

Proposition 3.4 Let U € Up(H?). Then
the operator

( (iT*T —Re(T))O;"  A(I-T%0;!

—A(I =T)07"  —i(T*T —Re(T)O7"

15 a densely defined isometry, where O =
I[—Re(T), and its extension to H* equals
the unitary operator Gr.
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Remark 3.5 Let
Nrc(H?) = {S: D(S) Cc H? = H)?
S normal, (JS)* =JS, KS = SK}.

The previous theorems show that the
map

Nro(H?) 3 S — (S—E)(S+E)™! € Up(H?)

is bijective. In addition, we have S &€
Nzo(H?) if and only if S is a densely
defined operator in H? having the form

A B
= (54);

where A and B are commuting self-adjoint
operators.
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4 Normal extensions

Remark 4.1 Let T : D(T) C H? —
H? such that

(i) JD(T) ¢ D(T) and KD(T) C
D(T).

In order that 1" have a normal exten-
sion S € N7o(H?), the following con-
ditions are necessary:

(ii) JT' is symmetric;

(i) TK = KT
(iv) |TIzlls = Tzl for all z €
D(T).

We denote by Sz (H?) the set of those
operators T : D(T) C H? — H? such
that (i)—(iv) hold.
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Let also Pe(H?) be the set of those
partial isometries V : D(V) C H? —
H? such that:

(a) V-1 = —~KVK;

(b) T — V is injective;

(c) ERI —V) = RI— V) and
(I—-V)"'E(I - V) is an isometry on
D(V).

The E-Cayley transtorm is a bijective
map from Sz (H?) onto Pe(H?). Note
also that Up(H?) C Po(H?).

The interesting question concerning the
existence of an extension S € N7 (H?)
of an operator T' € Syo(H?) is equiv-
alent to the description of those partial
isometries in Pp(H?) having extensions

in the family Up(H?).
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Proposition 4.2 Let U € Up(H?) and
let D C H? be a closed subspace with
the properties KU(D) C D and
EI-U)D) c I-U)D). IfV =
UD, £ = D+ and W = UIE, then
U=V&W and V,W € Po(H?)

We can characterize of those closed
subspaces of H2 which are domains of
definitions of partial isometries from Pp(H?).

Proposition 4.3 Let D C H? be a closed
subspace and let PIi = 2711 + iK).
There exists a V. € Peo(H?) with D(V) =
D if and only if there are two orthogonal

projection P~ in H? such that
(1) D= PT(H?*) @ P~ (H?):
(2) PE(H?) N P (H?) = {0};
(3) (PE+EPTE)(Pf(H?) C P(H?).
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Lemma 4.4 Let T € Sgo(H?) be densely
defined. Then T is closable and its clo-
sure T € Sgo(H?).

Theorem 4.5 Let T € Sto(H?) be densely
defined. The operator T' has an exten-
sion in N7o(H?) if and only if there
exists a W € Pe(H?), with D(W) =
R(T +E)*.

The next assertion concerns not nec-
essarily densely defined operators.

Corollary 4.6 Let T € Syo(H?) be closed
and let V' be the E-Cayley transform

of T'.  The operator T has an exten-
sion in Noo(H?) if and only if there
exists a W € Po(H?), with the proper-
ties D(W) = R(T + E)* and
RI-V)NRI-W)={0}.
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Remark 4.7 The results stated above
apply to a large class of linear opera-
tors in the Hilbert space H. Specifi-
cally, let A, B be a pair of linear opera-
tors having a joint domain of definition
Do C H. As already discussed, we as-
soclate this pair with a matrix operator

A B
= (5 3);
defined on D(T) = Dy @ Dy € H?.

We want to find equivalent conditions

on A, B such that T € Sz (H?).
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Clearly, JD(T) € D(T) and
KD(T) C D(T).
[t is easily seen that 71" is symmetric
if and only if both A, B are symmetric.
The equality KT' = TK is also easily
verified.
Finally, the equality | TJx||9 = || Tx||2
holds for all z € D(T) if and only if
(c)
(Au, Bu)+{Bv, Au) = (Bu, Av)+(Av, Bu)

for all w,v € Dy, which is a weak com-
mutativity condition. Consequently, if
A, B are symmetric and condition (c)
holds, then T € St(H?). In that case,
the E-Cayley transform of 71" is in the
class Pe(H?).
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As a direct consequence of the previ-
ous results, we obtain the following as-
sertion:

Let A, B be symmetric operators on a
dense joint domain of definition Dy C
H, satisfying condition (c). If the space

{((A+il)u+Bv)®((A—il)v—Bu);u,v € Dy}

is dense in H? , then the operators A
and B have commuting self-adjoint ex-
LensLons.

This result is, in fact, a version of a
celebrated theorem of Nelson’s concern-
ing the commuting self-adjoint exten-
sions of symmetric operators.
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