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ABSTRACT

Regarding quaternions as normal matrices, we firstly
characterize those 2× 2 matrix-valued functions, defined on
subsets of quaternions, whose values are quaternions. Then
we investigate the regularity of quaternionic-valued functions,
defined by the analytic functional calculus, eluding the
non-commutativity. Constructions of analytic functional calculi
for real linear operators, in particular for quaternionic linear
ones, are finally discussed.
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Motivation

The basic idea of the present paper to define the regularity
(that is, a sort of holomorphy) of a quaternionic-valued function
via the analytic functional calculus acting on quaternions. We
have chosen to consider the algebra of quaternions not as an
abstract object but as a real subalgebra of the complex algebra
of 2× 2 matrices with complex entries. Among the advantages
of this representation is that we may view the quaternions as
linear operators actually on complex spaces, commuting with
the complex numbers. Another one is to regard each
quaternion as a normal operator, having a spectrum which can
be used to define various compatible functional calculi,
including the analytic one.
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Hamilton’s Algebra of Quaternions

Introduced in science by W. R. Hamilton as early as 1843, the
quaternions form a unital non commutative division algebra,
with numerous applications in mathematics and physics. In
mathematics, the celebrated Frobenius theorem, proved in
1877, placed the algebra of quaternions among the only three
finite dimensional division algebras over the real numbers,
which is a remarkable feature shared with the real and complex
fields.
Abstract Hamilton’s algebra H0 is the 4-dimensional R-algebra
with unit 1, generated by {j,k, l}, where j,k, l satisfy

jk = −kj = l, kl = −lk = j, lj = −jl = k, jj = kk = ll = −1.
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Hamilton’s Algebra of Quaternions 2

In the algebra M2 of 2× 2 complex matrices we set

I =

(
1 0
0 1

)
, J =

(
i 0
0 −i

)
, K =

(
0 1
−1 0

)
, L =

(
0 i
i 0

)
,

with i2 = −1. As we have

J2 = K2 = L2 = −I,

JK = L = −KJ, KL = J = −LK, LJ = K = −JL,

and the assignment

H0 3 x0 + x1j + x2k + x3l 7→ x0I + x1J + x2K + x3L ∈M2 (1)

is an isometric unital R-algebra morphism , from now on the
algebra of quaternions, denoted by H, is identified with the
R-subalgebra of the algebra M2, generated by the matrices I, J,
K and L.
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Hamilton’s Algebra of Quaternions 3

The matrices from M2 act as linear maps on the space C2,
endowed with the natural scalar product 〈z,w〉 = z1w̄1 + z2w̄2
and the associated norm ‖z‖2 = |z1|2 + |z2|2, with
z = (z1, z2),w = (w1,w2) ∈ C2. We set

Q(z) =

(
z1 z2
−z̄2 z̄1

)
∈ H, z = (z1, z2) ∈ C2.

We have ‖Q(z)‖ = ‖z‖, z ∈ C2, and the map z 7→ Q(z), C2 7→ H
is a well-defined R-linear surjective isometry.
The algebra H has a natural involution, given by Q(z)∗ = Q(z∗),
with z∗ = (z̄1,−z2). We also have Q(z)Q(z)∗ = Q(z)∗Q(z) =
‖z‖2I for all z ∈ C2, and so Q(z) is a normal matrix for each
z ∈ C2, and every nonnull element of H is invertible.
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Skew Complex Conjugation

On the algebra M2 we define what we will call a skew complex
conjugation, setting

a∼ :=

(
ā4 −ā3
−ā2 ā1

)
,

for every

a =

(
a1 a2
a3 a4

)
∈M2.

The map a 7→ a∼ is conjugate homogeneous and additive, in
particular R-linear, multiplicative, unital, (a∼)∼ = a, and
(a∗)∼ = (a∼)∗. In addition, a = a∼ if and only if a is a
quaternion.
Being a ∗-automorphism R-linear, the map a 7→ a∼ must be an
isometry.
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Skew Complex Conjugation 2

Note that
a =

a + a∼

2
+ i

a− a∼

2i
, a ∈M2,

with a + a∼, i(a− a∼) ∈ H. In other words, M2 = H + iH. We
also have H ∩ iH = {0}. Indeed, if q = ir with q, r ∈ H, we have
q∼ = q = (ir)∼ = −ir = −q, whence q = 0, showing that the
decomposition

M2 = H + iH

is a direct sum.
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Algebra H as a Matrix Subalgebra

Summarizing, the space C2 is endowed with its natural scalar
product 〈∗, ∗〉, and norm ‖ ∗ ‖. The R-linear the map
C2 3 z 7→ Q(z) ∈ H is a bijective isometry, so giving q ∈ H
there is a unique zq ∈ C2 such that q = Q(zq).

The algebra H will be regarded as an R-subalgebra of the
C-algebra M2. In particular, every element qz = Q(z) is a
normal operator on the Hilbert space C2.

Notation For every complex space Banach X , and each
Banach space operator T on X , the symbol σ(T ) will designate
the spectrum of T , and the symbol ρ(T ) will be resolvent set of
the operator T .
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Lemma 1

Let z = (z1, z2) ∈ C2 be fixed. The spectrum σ(Q(z)) = {s±(z)}
of the normal operator Q(z) is given by

s±(z) = <z1 ± i
√

(=z1)2 + |z2|2. (2)

We have s+(z) = s−(z), and the points s+(z), s−(z) are distinct
if and only if Q(z) /∈ RI. Moreover:
(a) if z2 6= 0, the elements

ν±(z) =
1√

|z2|2 + |s±(z)− z1|2
(z2, s±(z)− z1) ∈ C2 (3)

are the eigenvectors corresponding to the eigenvalues {s±(z)}
respectively, and they form an orthonormal basis of the Hilbert
space C2;
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Lemma 1 cont.

(b) if z2 = 0 but =z1 6= 0, we have σ(Q(z)) = {s±(z)}, with
s+(z) = z1, s−(z) = z̄1, and ν+(z) = (1,0), ν−(z) = (0,1) are
eigenvectors corresponding the eigenvalues z1, z̄1,
respectively;
(c) if z2 = 0 and z = (x ,0) with x ∈ R, we have σ(Q(z)) = {x},
with s+(z) = s−(z) = x , and ν+(z) = (1,0), ν−(z) = (0,1) are
eigenvectors corresponding to the eigenvalue x .

The eigenvectors {ν±(z)} of Q(z) corresponding to the
eigenvalues {s±(z)} respectively, will be called the canonical
eigenvectors of Q(z).

Other notation: When q = Q(z) we put
σ(q) = σ(Q(z)) = {s±(z)}, s±(q) = s±(z) and ν±(q) = ν±(z).
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Example

Let S = {s = x1J + x2K + x3L; x1, x2, x3 ∈ R, x2
1 + x2

2 + x2
3 = 1},

that be the unit sphere of purely imaginary quaternions. Every
quaternion q ∈ H \ R can be written as q = x I + ys, for some
s ∈ S, where x , y are real numbers.

One can easily prove that for every q = x I + ys, x , y ∈ R, we
have σ(q) = {x ± iy}.

Note that the spectrum of q does not depend on s.
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Lemma 2

Let z = (z1, z2) ∈ C2, and let ν±(z) = (ν±1(z), ν±2(z)) ∈ C2 be
the canonical eigenvectors of Q(z). Then we have

|ν−1(z)|2 = |ν+2(z)|2, |ν−2(z)|2 = |ν+1(z)|2,
(∗)

ν−1(z)ν−2(z) + ν+1(z)ν+2(z) = 0

We note that equalities (∗) do not follow, in general, from the
orthogonality of ν+(z) and ν−(z).
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Remark 1

Given ζ ∈ C, we can determine all quaternions q with
σ(q) = {ζ, ζ̄}. Assuming =ζ ≥ 0, we look for the points
z = (z1, z2) ∈ C satisfying the equation

ζ = s+(z) = <z1 + i
√

(=z1)2 + |z2|2,

so ζ̄ = s−(z) = <z1 − i
√

(=z1)2 + |z2|2. Setting u = z2 as a
parameter, we obtain <z1 = <ζ, and (=z1)2 = (=ζ)2 − |u|2,
provided |u|2 ≤ (=ζ)2. The solutions are given by the set

{z = (<ζ ± i
√

(=ζ)2 − |u|2,u) ∈ C2, |u| ≤ =ζ},

so we have, for every such a z, σ(Q(z)) = {ζ, ζ̄} Lemma 1
If =ζ ≤ 0, we apply the previous discussion to ζ̄.
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Remark 2(1)

(1) A subset U ⊂ C is said to be conjugate symmetric if ζ ∈ U if
and only if ζ̄ ∈ U.
For an arbitrary conjugate symmetric subset U ⊂ C we put
UH = {q ∈ H;σ(q) ⊂ U}. Note that, for every ζ ∈ U and u ∈ C
with |u| ≤ |=ζ|, setting

q±ζ (u) := (<ζ ± i
√

(=ζ)2 − |u|2,u) ∈ C2, |u| ≤ |=ζ|,

we have

UH = {Q(q±ζ (u)); ζ ∈ U, u ∈ C, |u| ≤ |=ζ|},

via Remark 1.
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Remark 2(2)

(2) A subset A ⊂ H is said to be spectrally saturated if
σ(r) = σ(q) for some r ∈ H and q ∈ A implies r ∈ A.

For an arbitrary A ⊂ H, we put
S(A) = {ζ ∈ C;∃q ∈ A : ζ ∈ σ(q)}.
A subset A ⊂ H is spectrally saturated if and only if there exists
a conjugate symmetric subset S ⊂ C such that A = SH. In this
case, S = S(A).
If U ⊂ C is open and conjugate symmetric, the set UH is also
open (via the upper semi-continuity of the spectrum).
Conversely, if Ω ⊂ H is an open spectraly saturated set, one
can prove that S(Ω) ⊂ C is open.
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Remark 2(3)

(3) We finally note that, for a given conjugate symmetric subset
U ⊂ C, the set UH is precisely the circularization of U, so it is
axially symmetric, by an existing terminology. Nevertheless, we
continue to call such a set spectrally saturated, a name which
better reflects our spectral approach.

An important particular case is when
U = Dr := {ζ ∈ C; |ζ| < r}, for some r > 0. Because the norm
of the normal operator induced by q on C2 is equal to its
spectral radius, we must have UH = {q ∈ H; ‖q‖ < r}.

Author: Vasilescu Short Title: STQRC



Remark 2(3)

(3) We finally note that, for a given conjugate symmetric subset
U ⊂ C, the set UH is precisely the circularization of U, so it is
axially symmetric, by an existing terminology. Nevertheless, we
continue to call such a set spectrally saturated, a name which
better reflects our spectral approach.

An important particular case is when
U = Dr := {ζ ∈ C; |ζ| < r}, for some r > 0. Because the norm
of the normal operator induced by q on C2 is equal to its
spectral radius, we must have UH = {q ∈ H; ‖q‖ < r}.

Author: Vasilescu Short Title: STQRC



Notation

Let U ⊂ C be conjugate symmetric, and let F : U 7→M2. We
write

F (ζ) =

(
f11(ζ) f12(ζ)
f21(ζ) f22(ζ)

)
, ζ ∈ U,

with fmn : U 7→ C, m,n ∈ {1,2}, and set

F∼(ζ) =

(
f22(ζ) −f21(ζ)

−f12(ζ) f11(ζ)

)
, ζ ∈ U.

In other words, F∼(ζ) = (F (ζ))∼ for all ζ ∈ U, where ”∼“
designates the skew complex conjugation.
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A Class of M2-Valued Functions

We temporarily say that F is skew conjugate symmetric if
F (ζ̄) = F∼(ζ), ζ ∈ U.

Note that the function F is skew conjugate symmetric if and
only if F has the form

F (ζ) =

(
f1(ζ) f2(ζ)

−f2(ζ̄) f1(ζ̄)

)
, ζ ∈ U,

for some functions f1, f2 : U 7→ C.
In fact, the class of skew conjugate symmetric functions
coincides with the class known in the literature as that of stem
functions.
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A Conjugation on M2

To recall the concept of stem function, let us remark that the
tensor product H⊗R C may be identified with M2 = H + iH,
which is a direct sum, via the the map

H + iH 3 b + ic 7→ b⊗ 1 + c⊗ i ∈ H⊗R C,
using the decomposition
a = (a + a∼)/2 + i(a− a∼)/2i , a ∈M2, with
a + a∼, i(a− a∼) ∈ H.

The corresponding conjugation of M2 is in this case
a = b + ic 7→ ā = b− ic, where b,c ∈ H are uniquely
determined by a given a ∈M2.
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H + iH 3 b + ic 7→ b⊗ 1 + c⊗ i ∈ H⊗R C,
using the decomposition
a = (a + a∼)/2 + i(a− a∼)/2i , a ∈M2, with
a + a∼, i(a− a∼) ∈ H.
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Stem Functions

Usually, stem functions are defined on the tensor product
H⊗R C. With the identification from above, a stem function is a
map F : U 7→M2, where U ⊂ C is conjugate symmetric, with
the property F (ζ̄) = F (ζ) for all ζ ∈ U.
One can show that a function F : U 7→M2 is skew conjugate
symmetric if and only if it is a stem function.

As the term ”stem function“ is currently used in literature, from
now on we shall designate a skew symmetric function as a
stem function, using, nevertheless, our equivalent definition.
Finally, note that a stem function is not necessarily H-valued. It
is H-valued if and only if f1(ζ̄) = f1(ζ) and f2(ζ̄) = −f2(ζ) for all
ζ ∈ U.
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Functional Calculus 1

For a fixed z = (z1, z2) ∈ C2 and each function f : σ(Q(z)) 7→ C
we may define the operator

f (Q(z))w = f (s+(z))〈w, ν+(z)〉ν+(z) + f (s−(z))〈w, ν−(z)〉ν−(z),

where w ∈ C2 is arbitrary, with a slight but traditional abuse of
notation.
We note that this formula is a particular case of the functional
calculus given by the spectral theorem for compact normal
operators.
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Functional Calculus 2

More generally, for a function F : σ(Q(z)) 7→M2, we may define
a matrix (with respect to the canonical basis of C2) by the
formula

F (Q(z))w = F (s+(z))〈w, ν+(z)〉ν+(z)+F (s−(z))〈w, ν−(z)〉ν−(z),

where w ∈ C2 is arbitrary. In fact, if U ⊂ C is conjugate
symmetric, the formula from above leads to a function
F : UH 7→M2.
In particular when q = sI, s ∈ R, then F (q) = F (s)I,
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The Main Result

When q = Q(z), so ν±(q) = ν±(z), s±(q) = s±(z), the formula
from above can be written as

F (q))w = F (s+(q))〈w, ν+(q)〉ν+(q) + F (s−(q)〈w, ν−(q)〉ν−(q),

where w ∈ C2 is arbitrary.

Theorem 1
Let U ⊂ C be a conjugate symmetric open set, and let
F : U 7→M2. The matrix F (q) is a quaternion for all q ∈ UH if
and only if F is a stem function.
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Idea of Proof

We fix a point ζ ∈ U. As ζ̄ ∈ U, we may assume, with no loss of
generality, that =ζ ≥ 0.
Case 1 We assume that =ζ > 0, and choose a quaternion
q ∈ UH with σ(q) = {ζ, ζ̄}. Writing q = Q(z) with
z = (z1, z2) ∈ C2, because =ζ > 0, we may assume z2 6= 0 Let
ν±(z) be the canonical eigenvectors of Q(z). We have
s+(z) = ζ, s−(z) = ζ̄.
We show first that F (Q(z)) ∈ H if and only if

F (s+(z))ν+(z) = F∼(s−(z))ν+(z).
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Idea of Proof cont.

Case 2 We assume that ζ ∈ U ∩ R, and put x = ζ. When
z = (x ,0) with x ∈ R, we have Q(z)) = x I and so
F (Q(z)) = F (x)I. In this case, it is obvious that F (x)I is a
quaternion if and only if F (x) = F∼(x).
Consequently, if F (q) ∈ H for all q ∈ UH, the function F is a
stem one.

Final Case To finish the proof, we have to show that if F is a
stem function, we must have F (q) ∈ H for all q ∈ UH.
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Consequences

Corollary 1 Let U ⊂ C be a conjugate symmetric subset, and
let f : U 7→ C. We have f (q) ∈ H for all q ∈ UH if and only if
f (ζ) = f (ζ̄) for all ζ ∈ U.

Proof. We apply Theorem 1 to the function F = f I : U 7→M2.
This function is a stem one if and only if f (ζ) = f (ζ̄) for all
ζ ∈ U.

Corollary 2 Let U ⊂ C be an open conjugate symmetric
subset, and let F : U 7→ H. Then we have F (q) ∈ H for all
q ∈ UH if and only if F (ζ) = F (ζ̄) for all ζ ∈ U.

Proof. The property F : U 7→ H implies that F∼ = F . Therefore,
F is a stem function if and only if F (ζ) = F (ζ̄) for all ζ ∈ U.
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Extension 1

Let U ⊂ C be a conjugate symmetric set, and let F : U 7→M2
be a stem function. The formula

F (q)w = F (s+(q))〈w, ν+(q)〉ν+(q) + F (s−(q))〈w, ν−(q)〉ν−(q),

where q ∈ UH and w ∈ C2 are arbitrary, is an ”extension“ of the
function F to UH, in a sense to be specified.
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Extension 2

Note that we have an embedding U 3 ζ 7→ qζ := Q((ζ,0)) ∈ H,
which is the restriction of an R-linear isometry. In fact, writing
ζ = x + iy , with x , y ∈ R unique, we have

qζ =

(
x + iy 0

0 x − iy

)
= x I + yJ,

allowing us to identify the set U with the set

UJ := {qζ ; ζ ∈ U} = {x I + yJ; x + iy ∈ U} ⊂ H.

Because F is a stem function, we must have

F (ζ) =

(
f1(ζ) f2(ζ)

−f2(ζ̄) f1(ζ̄)

)
, ζ ∈ U.
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Extension 3

A direct computation shows that

F (qζ) =

(
f1(ζ) f2(ζ̄)

−f2(ζ̄) f1(ζ)

)
, ζ ∈ U.

Let Fs(U,M2) = {F : U 7→M2; F (ζ̄) = F∼(ζ), ζ ∈ U}, which is
the R-algebra of M2-valued stem functions on U. Let also
F(U,H) = {G : U 7→ H}, which an R-algebra of H-valued
functions on U. Setting κ(ζ) = qζ , ζ ∈ U, we get an injective
unital morphism of R-algebras given by
Fs(U,M2) 3 F 7→ F ◦ κ ∈ F(U,H). Therefore, the map
UH 3 q 7→ F (q) ∈ H, which extends the map qζ 7→ F (qζ), may
be also regarded as an ”extension“ of F ∈ Fs(U,M2) (modulo
the map κ).
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Cauchy Domain

Regarding, as before, the quaternions as normal operators, we
now investigate some consequences of their analytic functional
calculus, in the classical sense. The frequent use of various
versions of the Cauchy formula is simplified by adopting the
following:

Definition Let U ⊂ C be open. An open subset ∆ ⊂ U will be
called a Cauchy domain (in U) if ∆ ⊂ ∆̄ ⊂ U and the
boundary ∂∆ of ∆ consists of a finite family of closed curves,
piecewise smooth, positively oriented.

Note that a Cauchy domain is bounded but not necessarily
connected.
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Notation

If U ⊂ C is open, the symbol O(U,M2) designates the algebra
of all analytic M2-valued functions in U.
We set O(U) the algebra of all analytic complex-valued
functions in U.
The algebra O(U,M2) is clearly a O(U)-modul.

If U ⊂ C is conjugate symmetric and open, we set
Os(U,M2) = {F ∈ O(U,M2); F stem function},

which is an R-vector space.
Let also
Os(U) = {f ∈ O(U); f (ζ̄) = f (ζ) ∀ζ ∈ U},

which is an R-algebra. In addition, Os(U,M2) is an
Os(U)-module.
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Gelfand-Dunford Formula

Lemma 3 Let U ⊂ C be a conjugate symmetric open set and
let F : O(U,M2). For every q ∈ UH we set

FH(q) =
1

2πi

∫
Γ

F (ζ)(ζI− q)−1dζ,

where Γ is the boundary of a Cauchy domain in U containing
the spectrum σ(q). Then we have FH(q) ∈ H for all q ∈ UH if
and only if F ∈ Os(U,M2).
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Remark 3

It follows from the proof of the previous lemma that the element
FH(q), given by formula Gelfand-Dunford formula coincides
with the element F (q) given by functional calculus for normal
operators.
Nevertheless, we keep the notation FH(q) whenever we want to
emphasize that it is defined via the Cauchy type integral from
above.
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Corollary 3

Let U ⊂ C be a conjugate symmetric open set and let
f : U 7→ C be an analytic function. For every q ∈ UH we set

fH(q) =
1

2πi

∫
Γ

f (ζ)(ζI− q)−1dζ,

where Γ is the boundary of a Cauchy domain in U containing
the spectrum σ(q). Then we have fH(q) ∈ H if and only if
f ∈ Os(U).

Proof. The assertion is a direct consequence of Lemma 3,
applied to the the function f I.
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Notation

Let Ω ⊂ H be a spectrally saturated open set, and let
U = S(Ω) ⊂ C (which is also open !).
We put

R(Ω) = {fH; f ∈ Os(U)},

and
R(Ω,H) = {FH; F ∈ Os(U,M2)},

which are R-linear spaces. Using them, we get the following:
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Analytic Functional Calculus

Theorem 2
Let Ω ⊂ H be a spectrally saturated open set, and let
U = S(Ω) ⊂ C. The space R(Ω) is a unital commutative
R-algebra, the space R(Ω,H) is a right R(Ω)-module, and the
map

Os(U,M2) 3 F 7→ FH ∈ R(Ω,H)

is a right module isomorphism. Moreover, for every
polynomial P(ζ) =

∑m
n=0 anζ

n, ζ ∈ C, with an ∈ H for all
n = 0,1, . . . ,m, we have PH(q) =

∑m
n=0 anqn ∈ H for all q ∈ H.
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Corollary 4

Let Ω ⊂ H be a spectrally saturated open set, and let
U = S(Ω) ⊂ C. The map

Os(U) 3 f 7→ fH ∈ R(Ω)

is a unital R-algebra isomorphism. Moreover,
(a) for every polynomial p(ζ) =

∑m
n=0 anζ

n with an real for all
n = 0,1, . . . ,m, we have pH(q) =

∑m
n=0 anqn ∈ H for all q ∈ Ω;

(b) if f ∈ Os(U) has no zero in U, we have (fH(q))−1 = f−1
H (q)

for all q ∈ Ω.

Author: Vasilescu Short Title: STQRC



Corollary 5

Let r > 0 and let U ⊃ {ζ ∈ C; |ζ| ≤ r} be a conjugate symmetric
open set. Then for every F ∈ Os(U,M2) one has

FH(q) =
∑
n≥0

F (n)(0)

n!
qn, ‖q‖ < r ,

where the series is absolutely convergent.
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Derivatives 1

For every function F ∈ Os(U,M2), the derivatives F (n) also
belong to Os(U,M2), where U ⊂ C is a conjugate symmetric
open set. Next, fixing F ∈ Os(U,M2), we may define its
extended derivatives as follows

F (n)
H (q) =

1
2πi

∫
Γ

F (n)(ζ)(ζI− q)−1dζ,

for the boundary Γ of a Cauchy domain ∆ ⊂ U, n ≥ 0 an
arbitrary integer, and σ(q) ⊂ ∆.
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Derivatives

In particular, if F ∈ Os(Dr ,M2), and so we have a
representation as a convergent series F (ζ) =

∑
k≥0 akζ

k with
coefficients in H, then the previous formula gives the equality
F ′H(q) =

∑
k≥1 kakqk−1, which looks like a (formal) derivative of

the function FH(q) =
∑

k≥0 akqk .

In fact, the parallelism with the usual holomorphic functions
goes much further. We can obtain the Cauchy derivative
inequalities, properties of the zeros of such functions, and so
on. We omit the details
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Remark 4

The previous results suggest a definition for H-valued "analytic
functions“ as elements of the set R(Ω,H), where Ω is a
spectrally saturated open subset of H. Because the expression
"analytic function“ is quite improper in this context, the
elements of R(Ω,H) will be (temporarily) called Q-regular
functions on Ω. In fact, the functions from R(Ω,H) may be
also regarded as Cauchy transforms of the (stem) functions
from Os(U,M2), with U = S(Ω).
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Slice Regularity 1

As already mentioned, there exists a large literature dedicated
to quatrenionic analysis, in particular, to the concept of "slice
regularity“, which is a form of holomorphy in the context of
quaternions. We recall the two monographs quoted before.

[1] D. Alpay, F. Colombo, and I. Sabadini: Slice
Hyperholomorphic Schur Analysis, Operator Theory:
Advances and Applications Vol. 256, Birkhäuser/Springer
Basel, 2016.

[2] F. Colombo, I. Sabadini and D. C. Struppa:
Noncommutative Functional Calculus, Theory and
Applications of Slice Hyperholomorphic Functions:
Progress in Mathematics, Vol. 28 Birkhäuser/Springer Basel
AG, Basel, 2011.
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Slice Regularity 2

For M2-valued functions defined on subsets of H, the concept
of slice regularity is defined as follows.
Let S be the unit sphere of purely imaginary quaternions. Let
also Ω ∈ H be an open set, and let F : Ω 7→M2 be a
differentiable function. In the spirit of [2], we say that F is
(right) slice regular in Ω if for all s ∈ S,

∂̄sF (x I + ys) :=
1
2

(
∂

∂x
+ Rs

∂

∂y

)
F (x I + ys) = 0,

on the set Ω ∩ (RI + Rs), where Rs is the right multiplication of
the elements of M2 by s.
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Examples

(1) The convergent series of the form
∑

k≥0 akqk , on a set
{q ∈ H; ‖q‖ < r}, with ak ∈ H for all k ≥ 0, are H-valued slice
regular on their domain of definition. In fact, if actually ak ∈M2,
such functions are M2-valued right slice regular on their domain
of definition.

(2) The matrix Cauchy kernel on the open set Ω ⊂ H, defined by

Ω 3 q 7→ (ζI− q)−1 ∈M2,

is slice regular on Ω ⊂ H, whenever ζ /∈ S(Ω).
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Equivalence

Theorem 3
Let Ω ⊂ H be a spectrally saturated open set, and let
Φ : Ω 7→ H. The following conditions are equivalent:
(i) Φ is a slice regular function;
(ii) Φ ∈ R(Ω,H), that is, Φ is Q-regular.

Some remarks
(1) Slice regular functions, as defined in [2], have a Cauchy
type representation, via a Cauchy type kernel, which is not
slight regular.

(2) Q-regular functions, defined via the analytic functional
calculus, have a Cauchy type representation via a Cauchy type
kernel (due to Gelfand and Dunford), which is commutative at a
fixed quaternion, and slice regular.
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Quaternionic Spectrum of Real Operators

For a real or complex Banach space V, we denote by B(V) the
algebra of all bounded R-( respectively C-)linear operators on
V. If necessary, the identity on V will be denoted by IV .
Using an idea which goes back to Kaplansky (see also [2]), we
give the folowing:
Definition Let X be a real Banach space. For a given operator
T ∈ B(X ), the set ρH(T ), given by the equality

{Q(z) ∈ H; z = (z1, z2), (T 2−(z1+z̄1)T +|z1|2+|z2|2)−1 ∈ B(X )}

is called the quaternionic resolvent (or simply the
Q-resolvent) of T .
The complement σH(T ) = H \ ρH(T ) is called the quaternionic
spectrum (or simply the Q-spectrum) of T .
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Remark 5

We note that if q = Q(z), with z = (z1, z2) ∈ C, setting
<q = <z1, we have

T 2 − (z1 + z̄1)T + |z1|2 + |z2|2 = T 2 − 2<q T + ‖q‖2,

and the right hand side is precisely the expression used in [2] to
define the spectrum of H-linear operators. Note also that the
definition of Q-spectrum applies to the class of R-linear
operators, which is larger that the class of H-linear operators.
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Remark 6

Looking at the definition of Q-spectrum, we observe that
Q(w) ∈ ρH(T ) whenever for some Q(z) ∈ ρH(T ) we have
σ(Q(w)) = σ(Q(z)).

In particular, Q(z) ∈ ρH(T ) if and only if Q(z∗) ∈ ρH(T ), where
z∗ = (z̄1,−z2) if z = (z1, z2), and Q(z) ∈ σH(T ) implies that
Q((s±(z),0)) ∈ σH(T ).
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Remark 7

The complex spectrum of the operator T ∈ B(X ) on the real
Banach space X is given by

σC(T ) := {λ ∈ C; Q((λ,0)) ∈ σH(T )}.

Because the Q-spectrum of T is spectrally saturated, we have
σH(T ) = σC(T )H.

We also have λ ∈ σC(T ) if and only if λ̄ ∈ σC(T ).

In addition λ ∈ ρC(T ) := C \ σC(T ) if and only if the operator
T 2 − 2<λT + |λ|2 is invertible.
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Complexification

Let X be a real Banach space, and let T ∈ B(X ). We denote by
XC the complexification of X , written as XC = X ⊕ iX , or simply
as X + iX .

The operator T can be extended to XC via the formula
TC(x + iy) = Tx + iTy for all x , y ∈ X . It is clear that TC is a
bounded C-linear operator.

Let T (2)
C be the 2× 2 diagonal operator with TC on the diagonal,

acting on X 2
C := XC ⊕XC. As for every z ∈ C2 the matrix Q(z)

also acts on X 2
C, we may state the following:
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Lemma 5

A quaternion Q(z) is in the set ρH(T ) if and only if the operators
T (2)
C −Q(z) and T (2)

C −Q(z∗) are invertible in B(X 2
C).

Example One of the simplest possible examples is to take
X = R and T the operator Tx = τx for all x ∈ R, where τ ∈ R is
fixed. We have XC = C, and TC is given by the same formula,
acting on C. The Q-spectrum of T is the set

{Q(z); z = (z1, z2) ∈ C,<z1 = τ,=z1 = z2 = 0} = {Q((τ,0))}.

Consequently, σH(T ) = {Q((τ,0))}, and σC(T ) = {τ}.
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Conjugation

Let X be a real Banach space, and let XC be its
complexification. For every u = x + iy ∈ XC with x , y ∈ X we
put ū = x − iy . In other words, the map XC 3 u 7→ ū ∈ XC is a
conjugation, also denoted by C. Hence C is R-linear and C2 is
the identity on XC.

Fixing an operator S ∈ B(XC), we define the operator
S[ ∈ B(XC) to be equal to CSC. The map
B(XC) 3 S 7→ S[ ∈ B(XC) is a unital conjugate-linear
automorphism, whose square is the identity on B(XC).

We have S[ = S if and only if S(X ) ⊂ X . In particular, if
T ∈ B(X ), we have T [

C = TC.
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Lemma 6

Let X be a real Banach space, and let T ∈ B(X ). We have the
equality σC(T ) = σ(TC).

If T ∈ B(X ), X real, we have the usual analytic functional
calculus for the operator TC ∈ B(XC). That is, if U ⊃ σ(TC) is an
open set in C and F : U 7→ B(XC) is analytic, we may put

F (TC) =
1

2πi

∫
Γ

F (ζ)(ζ − TC)−1dζ,

where Γ is the boundary of a Cauchy domain containing σ(TC)
in U, where we may assume that both U and Γ are conjugate
symmetric.
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Invariance

Natural question: When do we have F (TC)[ = F (TC), implying
F (TC)(X ) ⊂ X ), that is, the invariance of X?

Before trying to give an answer to this question we note a
standard property of the spectra defined above.

Remark If X is a real Banach space, and T ∈ B(X ), both σH(T )
and σC(T ) are nonempty compact subset of H, C, respectively.

An answer to the previous question is given by the following:

Theorem 3

If F : U 7→ B(XC) is analytic and F (ζ)[ = F (ζ̄) for all ζ ∈ U, then
F (TC)[ = F (TC) for all T ∈ B(X ).
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Remark 8(1)

(1) Let U ⊂ C be a conjugate symmetric open set, and let X be
a real Banach space. We denote by Oc(U,B(XC)) the set of all
analytic maps F : U 7→ B(XC) such that F (ζ)[ = F (ζ̄) for all
ζ ∈ U. When X = R, we put Oc(U,B(XC)) = Oc(U). In this
case, we have Oc(U) = Os(U), and Oc(U,B(XC)) is a
Oc(U)-module.
Moreover, Oc(U,B(XC)) is a unital R-algebra, containing all
polynomials P(ζ) =

∑m
k=0(Ak )Cζ

k , with Ak ∈ B(X ).
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Remark 8(2)

2) The injective linear map M2 3 a 7→ Ma ∈ B(X ), given
Mab = ab, b ∈M2 induces an injective linear map of
Os(U,M2)) into Oc(U,B(M2)). Specifically, given
F ∈ Os(U,M2)), that is, an analytic stem function, we have
MF ∈ Oc(U,B(M2)), where MF (ζ)b = F (ζ)b for all ζ ∈ U and
b ∈M2. This remark shows that the space Os(U,M2)) may be
regarded as a subspace of Oc(U,B(M2)).

Fixing F ∈ Oc(U,B(XC)), we have F (TC)[ = F (TC) for all
T ∈ B(X ). This allows us to define F (T ) = F (TC)|X , because
X is invariant under F (TC). In addition, we have the following.
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Analytic Functional Calculus

Theorem 4
For every T ∈ B(X ), the map

Oc(U,B(XC)) 3 F 7→ F (T ) ∈ B(X )

is R-linear and has the property (Ff )(T ) = F (T )f (T ) for all
f ∈ Oc(U) and F ∈ Oc(U,B(XC)). Moreover,
P(T ) =

∑m
k=0 AkT k for any polynomial

P(ζ) =
∑m

k=0 Akζ
k , ζ ∈ C, with coefficients Ak ∈ B(X ).
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Definition Let X be a real Banach space. We say that X is a
(left) H-module if there exists a unital R-algebra morphism of
H into B(X ). In this case, the elements of H in B(X ) may
regarded as R-linear operators.

Corollary
If X is a H-module, for every polynomial
P(ζ) =

∑m
k=0 Akζ

k , ζ ∈ C, with coefficients Ak ∈ H, we have
P(T ) =

∑m
k=0 AkT k .
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Thank you very much for your attention !
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