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ABSTRACT

We discuss a concrete moment problem, stated in the
framework of an algebra of rational functions on a hemisphere,
whose specificity imposes some constraints on the existence of
a representing measure. Trying to illustrate how to overtake
some inherent difficulties, we exhibit the most significant
arguments by inserting definitions and techniques related to a
quaternionic Cayley transform.
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The Moments of a Measure

In what follows, we restrict our discussion in the euclidean
space R3.

Let Σ be a Borel measurable subset in R3, and let µ be a
positive Borel measure on Σ. Let also (s, t ,u) denote the
variable in R3. Assuming the integrability of all monomials in
(s, t ,u) on Σ, the real numbers

γjkl :=

∫
Σ

sj tkuldµ(s, t ,u), j , k , l ∈ Z+,

are the moments of the measure µ.

The numbers (γjkl)j,k ,l∈Z+ may or may not determine the
measure µ.
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Formulation of the Problem

Some measurements in physics (or even in practice) may lead
to a 3-sequence of real numbers γ := (γjkl)j,k ,l∈Z+ . The
moment problem for such a sequence means to find a finite
positive Borel measure (initially on R3) having these numbers
as moments.

When such a measure exists, it is called a representing
measure for γ.

If, moreover, we ask the support of a representing measure to
be in a given Borel measurable subset Σ in R3, the moment
problem is said to be a Σ-moment problem.
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The Riesz Functional

The general moment problem, especially in several variables, is
still a difficult mathematical problem, generating numerous
open questions. To fix our particular framework in a more
suitable context, we shall use an equivalent formulation.

Let P3 be the algebra of all polynomials in s, t ,u, with complex
coefficients. Let also γ := (γjkl)j,k ,l∈Z+ be a 3-sequence of real
numbers. The assignment

sj tkul 7→ γjkl , j , k , l ∈ Z+,

extended by linearity, leads to a (linear) functional Λγ : P3 7→ C,
called the Riesz functional (associated to γ).
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Continuation

When the 3-sequence γ := (γjkl)j,k ,l∈Z+ has a representing
measure, it is easy to see that the associated Riesz functional
Λ : P3 7→ C has the properties
(1) Λγ(p̄) = Λγ(p),
(2) Λγ(|p|2) ≥ 0 for all p ∈ P3, and
(3) Λγ(1) > 0.

Note that if Λγ(1) = 0, then γ = 0 because of the positivity of
the representing measure, which is a trivial case to be, in
general, avoided.
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Square Positive Functionals

Inspired by the properties of the Riesz functional in the
presence of a representing measure, we give the following:

Definition A linear map Λ : P3 7→ C with the properties
(a) Λ(p̄) = Λ(p),
(b) Λ(|p|2) ≥ 0 for all p ∈ P3,
(c) Λ(1) > 1.
is said to be a square positive functional (briefly, a spf).

If, moreover,
(d) Λ(1) = 1,
we say that Λ is also unital (briefly, a uspf).
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Representing Measures

A representing measure for the spf Λ : P3 7→ C with support
in the measurable subset Σ ⊂ R3 is a positive measure µ on Σ
such that

Λ(p) =
∫

Σ pdµ all p ∈ P3.

Finding a representing measure for such a Λ means to solve a
Σ-moment problem.
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A Hemisphere as a Semi-Algebraic Set

Let S3 be the unit sphere of R3, and consider the hemisphere

S3
+={(s, t ,u) ∈ S3; 0 ≤ s ≤ 1}.

As we have

S3
+ = {(s, t ,u) ∈ R3; θ(s, t ,u) = 0, σ(s) ≥ 0, (1− σ)(s) ≥ 0},

where θ(s, t ,u) = 1− s2 − t2 − u2 and σ(s) = s, it follows that
S3

+ is a compact semi-algebraic set.
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A Consequence of Schmüdgen’s Theorem

For a given polynomial q ∈ P3 and a map Λ : P3 7→ C, we put
Λq(p) = Λ(qp) for all p ∈ P3.

A well-known theorm by K. Schmüdgen implies that a unital
square positive functional Λ : P3 7→ C has a representing
measure with support in S3

+ if and only if

Λθ = 0, and Λσ, Λ1−σ, Λσ(1−σ) are spf ′s. (P)
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A Moment Problem with Constraints

Let

Σ = {(s, t ,u) ∈ S3
+; 0 ≤ s < 1},

which is measurable, but noncompact.

Problem. Characterize those unital square positive
functionals Λ on P3, having a representing measure with
support in the set Σ, such that all functions
(1− s)−m(m ≥ 1 an integer) are integrable.

Of course, the requirement on the integrability of the functions
(1− s)−m(m ≥ 1), makes Schmüdgen’s theorem invalid, in the
actual form. Nevertheless, this theorem remains a useful tool,
as an auxiliary result.
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Necessity of Condition (P)

Remark A solution to the previous Problem is, in particular, a
solution of the S3

+-moment problem concerning a uspf Λ. For
this reason, the condition (P) is necessary.

To solve the Problem, we need a condition stronger than (P). In
the sequel we shall present such a condition.
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A Restriction

From now on, let Λ : P3 7→ C be a uspf with the property (P).
This implies that Λ(q) = 0 for each polynomial q with q|S3

+ = 0,
via Schmüdgen’s theorem.

We denote by P3(S3
+) the algebra consisting of all (classes of)

functions of the form p|S3
+, p ∈ P3, modulo the ideal of those

polynomials q with q|S3
+ = 0. This allows us to define correctly

the map Λ+ : P3(S3
+) 7→ C by the formula

Λ+(p|S3
+) = Λ(p), p ∈ P3,

which is a uspf, in a slightly larger sense.
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A Useful Formula

To give a solution to the Problem, we should first extend the
map Λ+ to the algebra R(Σ) generated by the rational functions
sj tkul(1− s)−m restricted to Σ, where j , k , l ,m are nonnegative
integers.

First of all, we note the formula

1
(1− s)m+1 =

∑
r≥m

(
r
m

)
sr−m, (1)

valid for all integers m ≥ 0, where the series is convergent at
each point s ∈ [0,1).
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A Necessary Condition

The series (1) suggests the following supplementary
hypothesis on Λ:

Condition. Setting

pm,n(s) =
n∑

r=m

(
r
m

)
sr−m, (2)

for all nonnegative integers m,n (n ≥ m) and s ∈ [0,1), we
assume that

lim
n1,n2→∞

Λ(|pm,n1 − pm,n2 |
2) = 0 (L)

for all m ≥ 0.
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Remark

Condition (L), expressed only in terms of the given map Λ, is
necessary via the Lebesgue theorem of dominated
convergence.
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Sufficiency of Condition (L): Step 1

We shall prove in the following that condition (L) is also
sufficient.
Using (L), for each element p ∈ P(S3

+) and every integer m ≥ 0,
we may define

Λ̃(prm) = lim
n→∞

Λ(ppm,n), (3)

where rm(s) = (1− s)−m. Note that the limit exists via the
Cauchy-Schwarz inequality. Moreover,

Λ̃(prm1) = Λ̃((1− σ)m2−m1prm2) (4)

if m2 ≥ m1.
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Step 2

Let now p1,p2 ∈ P(S3
+), and let m1,m2 be nonnegative integers

such that r−1
m2

p1 − r−1
m1

p2 = q, where q|S3
+ = 0. Assuming, with

no loss of generality, that m2 ≥ m1, we infer
p2 = (1− σ)m2−m1p1 − qrm1 . This relation also shows that qrm1

is a polynomial, which is null on S3
+. Therefore, via (4),

lim
n→∞

Λ(p2pm2,n) = lim
n→∞

Λ(p1pm1,n).

Consequently,

Λ̃(p2rm2) = Λ̃(p1rm1) if (r−1
m2

p1 − r−1
m1

p2)|S3
+ = 0. (5)
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Step 3

Relation (5) shows that Λ̃ induces a map on the algebra of
fractions F(Σ) build from the algebra P3(S3

+), with
denominators in the set S = {(1− s)m; m ≥ 0}. This map,
denoted by Λ̃+, is given by

Λ̃+(p(1− σ)−m|Σ) = lim
n→∞

Λ(prm,n), p ∈ P3, m ≥ 0,

which clearly extends the map Λ+.
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Step 4

The map Λ̃+ : F(Σ) 7→ C is a uspf. Indeed, fixing
f = p/(1− σ)m|Σ, we have, via the properties of Λ,

Λ̃+(f̄ ) = lim
n→∞

Λ(p̄pm,n) = Λ(f ), Λ(|f |2) = lim
n→∞

Λ(|f |2p2m,n) ≥ 0,

Λ̃σ(|f |2) = lim
n→∞

Λ(σ|f |2p2m,n) ≥ 0, (6)

Λ̃1−σ(|f |2) = lim
n→∞

Λ((1− σ)|f |2p2m,n) ≥ 0,

where Λ̃σ(f ) = Λ̃+(σf ), and similar relations for Λ̃1−σ.
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Step 5

In particular, the map Λ̃+ : F(Σ) 7→ C satisfies the
Cauchy-Schwartz inequality, and so the set

IΛ = {f ∈ F(Σ); Λ(|f |2) = 0}
is an ideal in the algebra F(Σ).

Moreover, the assignment (f ,g) 7→, Λ̃+(f ḡ) induces an inner
product on the quotient D0 = F(Σ)/IΛ.

The completion of the quotient D0 = F(Σ)/IΛ with respect to
the inner product (f ,g) 7→, Λ̃+(f ḡ) is a Hilbert space denoted by
H.
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Step 6

We now consider in H the multiplication operators B0,C0
induced by the functions −t/(1− s) and u/(1− s), respectively,
defined on D0. In other words,

B0f =

(
−t

1− s

)
f ,

C0f =
u

1− s
f ,

for all f ∈ D0. Clearly, B0,C0 are densely defined, leave
invariant the space D0 and commute.
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A Matricial Notation

To continue our investigation, we need some ingredients fro the
theory of quaterninic Cayley transform.
We use the notation

J =

(
1 0
0 −1

)
, K =

(
0 1
−1 0

)
, L =

(
0 1
1 0

)
,

which act as operators on H⊕H.
We also set E = iJ, and denote by I the identity on H⊕H.
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E-Cayley Transform

We denote by R(T ) the range of a given operator T .

Definition Let S : D(S) ⊂ H2 7→ H2 be such that JS is
symmetric. Then we may correctly define the operator

V : R(S +E) 7→ R(S−E), V (S +E)x = (S−E)x , x ∈ D(S),

which is a partial isometry.

In other words, V = (S − E)(S + E)−1, defined on
D(V ) = R(S + E).

The operator V is be called the E–Cayley transform of S.
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Properties of the E-Cayley Transform

We recall the properties of the E-Cayley Transform.

Theorem 1
The E-Cayley transform is an order preserving bijective map
assigning to each operator S with S : D(S) ⊂ H2 7→ H2 and JS
symmetric a partial isometry V in in H2 with I− V injective.
Moreover:
(1) V is closed if and only if S is closed;
(2) the equality V−1 = −KVK holds if and only if the equality
SK = KS holds;
(3) JS is self-adjoint if and only if V is unitary on H2.
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Step 7

Coming back to our notation, we set
S0 = B0I + C0K

defined on D0 ⊕ D0. In fact,

S0 =
1

1− s

(
−t u
−u −t

)
Then JS0, givn by

JS0 =
1

1− s

(
−t − u −u
−u −t + u

)
,

is symmetric on D0 ⊕ D0.
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E-Cayley Transform of some Matrices

Let a,b ∈ R, and let S = aI + bK. A direct calculation shows
that the E–Cayley transform of S is given by

U = (a2 + b2 + 1)−1((a2 + b2 − 1)I− 2aiJ + 2biL) =

1
a2 + b2 + 1

(
a2 + b2 − 1− 2ai 2bi

2bi a2 + b2 − 1 + 2ai

)
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Step 8

We apply the previous formula to
S0 = B0I + C0K

with a = −t(1− s)−1, and b = u(1− s)−1. Hence, denoting by
U0 the E-Cayley transform of S0, a direct computation shows
that U0 is the matrix multiplication operator

U0 =

(
s + it iu

iu s − it

)
,

defined on R(S0 + E).
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Step 9

Note that, for every pair g1,g2 ∈ D0, the system(
−t

1− s
+ i
)

f1 +
u

1− s
f2 = g1

(7)

−u
1− s

f1 +

(
−t

1− s
− i
)

f2 = g2

has the solution
f1 = −2−1((t + i − is)g1 + ug2),
f2 = 2−1(ug1 − (t − i + is)g2),

via the equality s2 + t2 + u2 = 1.
Consequently f1, f2 ∈ D0.
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Step 10

Then the system (7) is precisely the equation
(S0 + E)(f1 ⊕ f2) = g1 ⊕ g2,

showing that R(S0 + E) is equal to D0 ⊕ D0.
Hence, if U0 the E-Cayley transform of S0, the previous
discussion shows that the matrix multiplication operator

U0 =

(
s + it iu

iu s − it

)
,

is defined on the space D0 ⊕ D0, which is clearly invariant
under U0.
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A Special Class of Operators

Let S : D(S) ⊂ H2 7→ H2, with D(S) = D0 ⊕ D0, D0 ⊂ H. The
equality D(S) = D0 ⊕ D0 is equivalent to the inclusions
(i) JD(S) ⊂ D(S) and KD(S) ⊂ D(S).

In order to have a normal extension of S (with some convenient
properties to be later mentioned), the following conditions are
necessary:
(ii) JS is symmetric;
(iii) SK = KS;
(iv) ‖SJx‖2 = ‖Sx‖2 for all x ∈ D(S).
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Step 11

The operator S0, previously defined, has the properties (i)-(iv).
One can verify that the closure S of S0 has similar properties. If
U is the E-Cayley transform of S, then U should be closed. As
U extends U0, U must be a unitary operator on H2.
Moreover, I− U is injective, as a E-Cayley transform, via
Theorem 1.
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Unitaries as Inverse E-Cayley Transforms

Theorem 2 Let U be a unitary operator on H2 with the property
U∗ = −KUK, and such that I− U is injective. Let also S be the
inverse E–Cayley transform of U. The operator S is normal if
and only if (U + U∗)E = E(U + U∗).

Any operator U as in Theorem 2 has necessarily the form

U =

(
T iA
iA T ∗

)
,

with T normal and A self-adjoint in H, such that TT ∗ + A2 = I
and AT = TA

Author: Vasilescu Short Title: NMQ



Formulation of the Problem
A Necessary and Sufficient Condition

Sufficiency of Condition (L)
E-Cayley Transform
Unitaries as Inverse E-Cayley Transforms
A Joint Spectral Measure
Conclusion

Unitaries as Inverse E-Cayley Transforms

Theorem 2 Let U be a unitary operator on H2 with the property
U∗ = −KUK, and such that I− U is injective. Let also S be the
inverse E–Cayley transform of U. The operator S is normal if
and only if (U + U∗)E = E(U + U∗).

Any operator U as in Theorem 2 has necessarily the form

U =

(
T iA
iA T ∗

)
,

with T normal and A self-adjoint in H, such that TT ∗ + A2 = I
and AT = TA

Author: Vasilescu Short Title: NMQ



Formulation of the Problem
A Necessary and Sufficient Condition

Sufficiency of Condition (L)
E-Cayley Transform
Unitaries as Inverse E-Cayley Transforms
A Joint Spectral Measure
Conclusion

Step 12

Let T ,A be the operators associated to U, via Theorem 2.

In fact, the operator T is an extension of the multiplication by
s + it on D0, and the operator A is an extension of the
multiplication by u on D0

Since I− U is injective, the operator I − Re(T ) must be also
injective.
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Step 13: A Joint Spectral Measure

Because the operators T ,A are commuting normal operators,
they must have a joint spectral measure in C2.

If E is the joint spectral measure of the pair (T ,A), then E must
be concentrated on the sphere S3. Indeed, if A is the unital
(commutative) C∗-algebra generated by T and A, the equality
T ∗T + A2 = I shows that the joint spectrum of the pair (T ,A)
may be identified with a compact subset of the sphere S3.
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Step 14

We can refine the conclusion of the previous Step.
Because 0 ≤ Re(T ) ≤ I, which is implied by the properties of
the square positive forms Λ̃σ and Λ̃1−σ given by (6), it results
that the measure E is concentrated in the set S3

+. As the
operator I − Re(T ) is injective, it follows that E({(1,0,0)}) = 0.
Consequently, the measure E is supported by the set Σ.
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Step 15

Since 1 + IΛ = (I − Re(T ))m((1− σ)−m + IΛ), it follows that
1 + IΛ is in the domain of (I − Re(T ))−m for all integers m ≥ 1.
Therefore, setting µ(∗) = 〈E(∗)(1 + IΛ),1 + IΛ〉, we obtain

Λ(prm) = 〈prm + IΛ,1 + IΛ〉 =

〈(p(Re(T ), Im(T ),A)(I −Re(T ))−m(1 + IΛ),1 + IΛ〉 =

∫
Σ

prmdµ,

for all f = prm ∈ F(Σ), showing that µ is a representing
measure for Λ : F(Σ) 7→ C.
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Last Step

Finally∫
Σ

(1− s)−2mdµ = ‖(I − Re(T ))−2m(1 + IΛ)‖2 <∞,

for all integers m ≥ 1, which completes our assertion.
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Conclusion

Summerizing all steps of the discussion, we obtain the following
statement:

Theorem 3

Let Λ : P3 7→ C be a unital square positive map, and let

Σ = {(s, t ,u) ∈ S3; 0 ≤ s < 1}.

There exists a uniquely determined positive measure on Σ such
that all functions (1− s)−m(m ≥ 1 an integer) are integrable if
and only if conditions (P) and (L) are fulfilled.
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Thank you very much for your attention !
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