An Idempotent Approach to Truncated Moment Problems

F.-H. Vasilescu

Department of Mathematics University of Lille 1, France

Timisoara, July 2-7, 2012

э

ъ

< < >> < </>

Outline

The study of truncated moment problems means, roughly speaking, that giving a finite multi-sequence of real numbers $\gamma = (\gamma_{\alpha})_{|\alpha| \leq 2m}$ with $\gamma_0 > 0$, where α 's are multi-indices of a given length $n \geq 1$ and $m \geq 0$ is an integer, one looks for a positive measure μ on \mathbb{R}^n such that $\gamma_{\alpha} = \int t^{\alpha} d\mu$ for all monomials t^{α} with $|\alpha| \leq 2m$. As Tchakaloff firstly proved, if such a measure exists, we may always assume it to be atomic.

ヘロン 人間 とくほ とくほ とう

Let S be a vector space consisting of complex-valued Borel functions, defined on a topological space Ω . We assume that $1 \in S$ and if $f \in S$, then $\overline{f} \in S$. For convenience, let us say that S, having these properties, is a *function space* (on Ω). Occasionally, we use the notation \mathcal{RS} to designate the "real part" of S, that is $\{f \in S; f = \overline{f}\}$.

Let also $S^{(2)}$ be the vector space spanned by all products of the form fg with $f, g \in S$, which is itself a function space. We have $S \subset S^{(2)}$, and $S = S^{(2)}$ when S is an algebra.

<ロ> (四) (四) (三) (三) (三)

Let S be a vector space consisting of complex-valued Borel functions, defined on a topological space Ω . We assume that $1 \in S$ and if $f \in S$, then $\overline{f} \in S$. For convenience, let us say that S, having these properties, is a *function space* (on Ω). Occasionally, we use the notation \mathcal{RS} to designate the "real part" of S, that is $\{f \in S; f = \overline{f}\}$.

Let also $\mathcal{S}^{(2)}$ be the vector space spanned by all products of the form fg with $f, g \in S$, which is itself a function space. We have $\mathcal{S} \subset \mathcal{S}^{(2)}$, and $\mathcal{S} = \mathcal{S}^{(2)}$ when \mathcal{S} is an algebra.

Let S be a function space and let $\Lambda : S^{(2)} \mapsto \mathbb{C}$ be a linear map with the following properties:

(1)
$$\Lambda(\overline{f}) = \overline{\Lambda(f)}$$
 for all $f \in S^{(2)}$;
(2) $\Lambda(|f|^2) \ge 0$ for all $f \in S$.
(3) $\Lambda(1) = 1$.

A linear map Λ with the properties (1)-(3) is said to be a *unital* square positive functional, briefly a *uspf*.

When S is an algebra, conditions (2) and (3) imply condition (1). In this case, a map Λ with the property (2) is usually said to be *positive (semi)definite*.

Condition (3) may be replaced by $\Lambda(1) > 1$ but (looking for probability measures representing such a functional) we always assume (3) in the stated form, without loss of generality.

ヘロト ヘアト ヘビト ヘビト

If $\Lambda:\mathcal{S}^{(2)}\mapsto\mathbb{C}$ is a uspf, we have the Cauchy-Schwarz inequality

$$|\Lambda(\mathit{fg})|^2 \leq \Lambda(|\mathit{f}|^2)\Lambda(|\mathit{g}|^2), \, p,q \in \mathcal{S}. \tag{1}$$

Putting $\mathcal{I}_{\Lambda} = \{f \in \mathcal{S}; \Lambda(|f|^2) = 0\}$, the Cauchy-Schwarz inequality shows that \mathcal{I}_{Λ} is a vector subspace of \mathcal{S} and that $\mathcal{S} \ni f \mapsto \Lambda(|f|^2)^{1/2} \in \mathbb{R}_+$ is a seminorm. Moreover, the quotient $\mathcal{S}/\mathcal{I}_{\Lambda}$ is an inner product space, with the inner product given by

$$\langle f + \mathcal{I}_{\Lambda}, g + \mathcal{I}_{\Lambda} \rangle = \Lambda(f\bar{g}).$$
 (2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Note that, in fact, $\mathcal{I}_{\Lambda} = \{f \in S; \Lambda(fg) = 0 \forall g \in S\}$ and $\mathcal{I}_{\Lambda} \cdot S \subset \ker(\Lambda)$. If S is finite dimensional, then $\mathcal{H}_{\Lambda} := S/\mathcal{I}_{\Lambda}$ is actually a Hilbert space. Let $n \ge 1$ will be a fixed integer. We freely use multi-indices from \mathbb{Z}_+^n and the standard notation related to them. The symbol \mathcal{P} will designate the algebra of all polynomials in $t = (t_1, \ldots, t_n) \in \mathbb{R}^n$, with complex coefficients. For every integer $m \ge 1$, let \mathcal{P}_m be the subspace of \mathcal{P} consisting of all polynomials p with deg $(p) \le m$, where deg(p) is the total degree of p. Note that $\mathcal{P}_m^{(2)} = \mathcal{P}_{2m}$ and $\mathcal{P}^{(2)} = \mathcal{P}$, the latter being an algebra.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Giving a finite multi-sequence of real numbers $\gamma = (\gamma_{\alpha})_{|\alpha| \leq 2m}, \gamma_0 = 1$, we associate it with a map $\Lambda_{\gamma} : \mathcal{P}_{2m} \mapsto \mathbb{C}$ given by $\Lambda_{\gamma}(t^{\alpha}) = \gamma_{\alpha}$, extended to \mathcal{P}_{2m} by linearity. The map Λ_{γ} is called the *Riesz functional associated* to γ .

We clearly have $\Lambda_{\gamma}(1) = 1$ and $\Lambda_{\gamma}(\bar{p}) = \overline{\Lambda_{\gamma}(p)}$ for all $p \in \mathcal{P}_{2m}$. If, moreover, $\Lambda_{\gamma}(|p|^2) \ge 0$ for all $p \in \mathcal{P}_m$, then Λ_{γ} is a uspf. In this case, we say that γ itself is *square positive*.

Conversely, if $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ is a uspf, setting $\gamma_{\alpha} = \Lambda(t^{\alpha}), |\alpha| \leq 2m$, we have $\Lambda = \Lambda_{\gamma}$, as above. The multi-sequence γ is said to be the *multi-sequence associated to the uspf* Λ .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let $\Xi = \{\xi^{(1)}, \dots, \xi^{(d)}\} \subset \mathbb{R}^n$ and let $\ell^{\infty}(\Xi)$ be the (finite dimensional) C^* -algebra of all complex-valued functions defined on Ξ , endowed with the sup-norm. For every integer $m \ge 0$ we have the restriction map $\mathcal{P}_m \ni p \mapsto p | \Xi \in \ell^{\infty}(\Xi)$. Let us fix an integer *m* for which this map is surjective. (Such an *m* always exists via the Lagrange or other interpolation polynomials.) Let also $\mu = \sum_{j=1}^d \lambda_j \delta_{\xi^{(j)}}$, with $\lambda_j > 0$ for all $j = 1, \dots, d$ and $\sum_{j=1}^d \lambda_j = 1$. We put $\Lambda(p) = \int_{\Xi} p d\mu$ for all $p \in \mathcal{P}_{2m}$, which is a uspf, for which μ is a representing measure.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let now $f \in \ell^{\infty}(\Xi)$ be an idempotent, that is, the caracteristic function of a subset of Ξ . Then there exists a polynomial $p \in \mathcal{P}_m$, supposed to have real coefficients, such that $p|\Xi = f$. Consequently, $\Lambda(p^2) = \int_{\Xi} p^2 d\mu = \int_{\Xi} p d\mu = \Lambda(p)$. This shows that the solutions the equation $\Lambda(p^2) = \Lambda(p)$, which can be expressed only in terms of Λ , play an important role when trying to reconstruct the representing measure μ .

This remark is the starting point of our approach to truncated moment problems.

Idempotents (with respect to a given uspf Λ) will be objects related to the solutions of the equation $\Lambda(p^2) = \Lambda(p)$, where where *p* is a polynomial with real coefficients.

The formal definition of idempotents will be later given.

(日)

Let now $f \in \ell^{\infty}(\Xi)$ be an idempotent, that is, the caracteristic function of a subset of Ξ . Then there exists a polynomial $p \in \mathcal{P}_m$, supposed to have real coefficients, such that $p|\Xi = f$. Consequently, $\Lambda(p^2) = \int_{\Xi} p^2 d\mu = \int_{\Xi} p d\mu = \Lambda(p)$. This shows that the solutions the equation $\Lambda(p^2) = \Lambda(p)$, which can be expressed only in terms of Λ , play an important role when trying to reconstruct the representing measure μ .

This remark is the starting point of our approach to truncated moment problems.

Idempotents (with respect to a given uspf Λ) will be objects related to the solutions of the equation $\Lambda(p^2) = \Lambda(p)$, where where *p* is a polynomial with real coefficients.

The formal definition of idempotents will be later given.

For a complex vector space \mathcal{V} , we denote by \mathcal{V}^* its (algebraic) dual. First of all, we extend the concept of representing measure to arbitrary functionals from \mathcal{V}^* . In fact, this is a sort of demystification of the concept of representing measure. **Definition 1** We say that $\phi \in \mathcal{V}^*$ has an *integral representation* on a subset $\Delta \subset \mathcal{V}^*$ if there exists a probability measure μ on Δ such that

$$\phi(\mathbf{x}) = \int_{\Delta} \delta(\mathbf{x}) d\mu(\delta), \ \mathbf{x} \in \mathcal{V}.$$

The measure μ is said to be a *representing measure* for the functional ϕ . The measure μ is said to be *d*-atomic if the support of μ consists of *d* distinct points in Δ . Such integral representations can be easily obtained for functionals on finite dimensional vector spaces.

ヘロト 人間 ト ヘヨト ヘヨト

An Integral Representation Theorem

Theorem 1 If \mathcal{V} is a finite dimensional complex vector space, then every nonnull functional from \mathcal{V}^* has a *d*-atomic integral representation, where *d* is the dimension of \mathcal{V} .

Sketch of proof Let $\phi \in \mathcal{V}^*$, and let $\iota \in \mathcal{V}$ be such that $\phi(\iota) = 1$. There exists a basis $\{b_1, \ldots, b_d\}$ of \mathcal{V} such that $\phi(b_j) > 0$ for all $j = 1, \ldots, d$, and $\iota = b_1 + \cdots + b_d$. Let also $\Delta = \{\delta_1, \ldots, \delta_d\} \subset \mathcal{V}^*$ be the dual basis. We may carry the C^* -algebra structure of $\ell^{\infty}(\Delta)$ onto \mathcal{V} and get the formula

$$\phi(x) = \sum_{j=1}^d \lambda_j \delta_j(x) = \int_{\Delta} \delta(x) d\mu(\delta)), \ x \in \mathcal{V},$$

where $\lambda_j = \phi(b_j) > 0$ for all j = 1, ..., d and $\phi(\iota) = 1 = \lambda_1 + \cdots + \lambda_d$. Therefore, μ is a *d*-atomic probability measure on Δ , with weights λ_j at δ_j , j = 1, ..., d.

ヘロア 人間 アメヨア 人口 ア

An Integral Representation Theorem

Theorem 1 If \mathcal{V} is a finite dimensional complex vector space, then every nonnull functional from \mathcal{V}^* has a *d*-atomic integral representation, where *d* is the dimension of \mathcal{V} .

Sketch of proof Let $\phi \in \mathcal{V}^*$, and let $\iota \in \mathcal{V}$ be such that $\phi(\iota) = 1$. There exists a basis $\{b_1, \ldots, b_d\}$ of \mathcal{V} such that $\phi(b_j) > 0$ for all $j = 1, \ldots, d$, and $\iota = b_1 + \cdots + b_d$. Let also $\Delta = \{\delta_1, \ldots, \delta_d\} \subset \mathcal{V}^*$ be the dual basis. We may carry the C^* -algebra structure of $\ell^{\infty}(\Delta)$ onto \mathcal{V} and get the formula

$$\phi(\mathbf{x}) = \sum_{j=1}^{d} \lambda_j \delta_j(\mathbf{x}) = \int_{\Delta} \delta(\mathbf{x}) d\mu(\delta), \ \mathbf{x} \in \mathcal{V},$$

where $\lambda_j = \phi(b_j) > 0$ for all j = 1, ..., d and $\phi(\iota) = 1 = \lambda_1 + \cdots + \lambda_d$. Therefore, μ is a *d*-atomic probability measure on Δ , with weights λ_j at δ_j , j = 1, ..., d.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem 1 shows that every linear functional on a finite dimensional space has an integral representation via a probability measure, for some C^* -algebra structure of the ambient space, depending upon the given functional. We can refine the previous construction, relating it to a preexistent multiplicative structure.

Let $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ be a uspf, let $\mathcal{I}_{\Lambda} = \{p \in \mathcal{P}_m; \Lambda(|p|^2) = 0\}$, and let $\mathcal{H}_{\Lambda} = \mathcal{P}_m/\mathcal{I}_{\Lambda}$, which has a Hilbert space structure induced by Λ . We denote $\langle *, * \rangle$, || * ||, the inner product and the norm induced on \mathcal{H}_{Λ} by Λ , respectively. For every $p \in \mathcal{P}_m$, we put $\hat{p} = p + \mathcal{I}_{\Lambda} \in \mathcal{H}_{\Lambda}$. When $\hat{p} \in \mathcal{H}_{\Lambda}$, we freely choose a fixed representative p.

The symbol \mathcal{RH}_{Λ} will designate the set $\{\hat{p} \in \mathcal{RH}_{\Lambda}; p - \bar{p} \in \mathcal{I}_{\Lambda}\}$, that is, the set of "real" elements from \mathcal{RH}_{Λ} . If $\hat{p} \in \mathcal{RH}_{\Lambda}$, we always choose $p \in \mathcal{RP}_m$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Definition 2 An element $\hat{p} \in \mathcal{RH}_{\Lambda}$ is said to be *idempotent* if it is a solution of the equation $\|\hat{p}\|^2 = \langle \hat{p}, \hat{1} \rangle$. **Remark** (i) Note that $\hat{p} \in \mathcal{RH}_{\Lambda}$ is idempotent if and only if $\Lambda(p^2) = \Lambda(p)$, via relation (2). Set

$$\mathcal{ID}(\Lambda) = \{ \hat{\boldsymbol{\rho}} \in \mathcal{RH}_{\Lambda}; \| \hat{\boldsymbol{\rho}} \|^2 = \langle \hat{\boldsymbol{\rho}}, \hat{\boldsymbol{1}} \rangle \neq \boldsymbol{0} \},$$
(3)

・ロト ・ 理 ト ・ ヨ ト ・

which the family of nonnull idempotent elements from \mathcal{RH}_{Λ} . This family is nonempty because $\hat{1} \in \mathcal{ID}(\Lambda)$.

Note that two elements $\hat{p}, \hat{q} \in \mathcal{H}_{\Lambda}$ are orthogonal if and only if $\Lambda(p\bar{q}) = 0$.

(ii) If $m_1 \leq m_2$ and $\Lambda_2 : \mathcal{P}_{2m_2} \mapsto \mathbb{C}$ is a uspf, then $\Lambda_1 = \Lambda_2 | \mathcal{P}_{2m_2}$, which is obviously a uspf, has the property $\mathcal{ID}(\Lambda_1) \subset \mathcal{ID}(\Lambda_2)$. Indeed, since $\mathcal{I}_{\Lambda_1} \subset \mathcal{I}_{\Lambda_2}$ and $\mathcal{P}_{m_1} \cap \mathcal{I}_{\Lambda_2} = \mathcal{I}_{\Lambda_1}$, \mathcal{H}_{Λ_1} can be isometrically embedded into \mathcal{H}_{Λ_2} . Thus \mathcal{H}_{Λ_1} may be regarded as a subspace of \mathcal{H}_{Λ_2} . **Lemma 2** (1) If $\hat{p}, \hat{q}, \hat{p} - \hat{q} \in \mathcal{ID}(\Lambda)$, then \hat{q} and $\hat{p} - \hat{q}$ are orthogonal. (2) If $\hat{q} \in \mathcal{ID}(\Lambda), \ \hat{q} \neq \hat{1}$, then $\hat{1} - \hat{q} \in \mathcal{ID}(\Lambda)$, and $\hat{q}, \ \hat{1} - \hat{q}$ are orthogonal. (3) If $\hat{p}, \hat{q} \in \mathcal{ID}(\Lambda)$ are orthogonal, then $\hat{p} + \hat{q} \in \mathcal{ID}(\Lambda)$.

Lemma 3 Let $\{\hat{b}_1, \ldots, \hat{b}_d\} \subset \mathcal{ID}(\Lambda)$, consisting of mutually orthogonal elements. If the family $\{\hat{b}_1, \ldots, \hat{b}_d\}$ is maximal with respect to the inclusion, then $\hat{b}_1 + \cdots + \hat{b}_d = \hat{1}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Lemma 2 (1) If $\hat{p}, \hat{q}, \hat{p} - \hat{q} \in \mathcal{ID}(\Lambda)$, then \hat{q} and $\hat{p} - \hat{q}$ are orthogonal.

(2) If $\hat{q} \in \mathcal{ID}(\Lambda)$, $\hat{q} \neq \hat{1}$, then $\hat{1} - \hat{q} \in \mathcal{ID}(\Lambda)$, and \hat{q} , $\hat{1} - \hat{q}$ are orthogonal.

(3) If $\hat{p}, \hat{q} \in \mathcal{ID}(\Lambda)$ are orthogonal, then $\hat{p} + \hat{q} \in \mathcal{ID}(\Lambda)$.

Lemma 3 Let $\{\hat{b}_1, \ldots, \hat{b}_d\} \subset \mathcal{ID}(\Lambda)$, consisting of mutually orthogonal elements. If the family $\{\hat{b}_1, \ldots, \hat{b}_d\}$ is maximal with respect to the inclusion, then $\hat{b}_1 + \cdots + \hat{b}_d = \hat{1}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

We are interested in the existence of the orthogonal families of idempotents with respect to a given uspf $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$. It is easily checked that $p \in \mathcal{RP}_m$, $p = \sum_{|\xi| \le m} c_{\xi} t^{\xi}$, is a solution of the equation $\Lambda(p^2) = \Lambda(p)$ if and only if

$$\sum_{|\xi|,|\eta|\leq m} \gamma_{\xi+\eta} c_{\xi} c_{\eta} - \sum_{|\xi|\leq m} \gamma_{\xi} c_{\xi} = 0,$$

where $\gamma = (\gamma_{\xi})_{|\xi| \leq 2m}$ is the finite multi- sequence associated to Λ .

To study the existence of solutions for such an equation, it is convenient to use at the beginning an abstract framework. Let $N \ge 1$ be an arbitrary integer, let $A = (a_{jk})_{j,k=1}^N$ be a matrix with real entries, that is positive on \mathbb{C}^N (endowed with the standard scalar product denoted by (*|*), and associated norm ||*||), and let $b = (b_1, \ldots, b_N) \in \mathbb{R}^N$. We look for necessary and sufficient conditions insuring the existence of a solution $x = (x_1, \ldots, x_N) \in \mathbb{R}^N$ of the equation

$$(Ax|x) - 2(b|x) = 0.$$
 (4)

The particular case which interests us will be dealt with in the following.

The range and the kernel of *A*, regarded as an operator on \mathbb{C}^N , will be denoted by R(A), N(A), respectively. Note also that R(A) = R(B), and N(A) = N(B), where $B = A^{1/2}$

We are interested by the following particular case. Let $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ be a uspf and let $\gamma = (\gamma_{\alpha})_{|\alpha| \leq 2m}$ the multi-sequence associated to Λ . Then $A_{\Lambda} = (\gamma_{\xi+\eta})_{|\xi|,|\eta| \leq m}$ is a positive matrix with real entries, acting as an operator on \mathbb{C}^N , where N is the cardinal of the set $\{\xi \in \mathbb{Z}_+^n; |\xi| \leq m\}$. In fact, by identifying the space \mathcal{P}_m with \mathbb{C}^N via the isomorphism

$$\mathcal{P}_m \ni p_x = \sum_{|\alpha| \le m} x_\alpha t^\alpha \mapsto x = (x_\alpha)_{|\alpha| \le m} \in \mathbb{C}^N,$$
 (5)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

then $A = A_{\Lambda}$ is the operator with the property $(Ax|y) = \Lambda(p_x \bar{p}_y)$ for all $x, y \in \mathbb{C}^N$. The operator A will be occasionally called the *Hankel operator* of the uspf Λ . Note that \mathcal{I}_{Λ} is isomorphic to N(A), and \mathcal{H}_{Λ} is isomorphic to R(A), via the isomorphism (5). Note also that the elements \hat{p}_x, \hat{p}_y are orthogonal in \mathcal{H}_{Λ} if and only if (Ax|y) = (Bx|By) = 0. Let us deal with equation (4) in this particular context. Set $2b = (\gamma_{\xi})_{|\xi| \le m} \in \mathbb{R}^N$. With this notation, equation (4) will be called the *idempotent equation* of the uspf Λ . Because $\Lambda(p_x^2) = (Ax|x) = 0$ implies $\Lambda(p_x) = 2(b|x) = 0$, we are intrested only in solutions $x = x^{(1)} \in R(A) = R(A_1)$, where $A_1 = A|R(A)$. Note also that $b = b^{(1)} \in R(A)$, because $2b = A\iota$, where $\iota = (1, 0, ..., 0) \in \mathbb{R}^N$ and $p_\iota = 1$. Therefore, $(A\iota|\iota) - 2(b|\iota) = 0$, and so the vector ι is always a nonnull solution of the idempotent equation.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ - □ - つへの

Proposition Let $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ be a uspf and let $A : \mathbb{C}^N \mapsto \mathbb{C}^N$ be the associated Hankel operator.

The nonnull solutions of the idempotent equation of Λ in $R(A) \cap \mathbb{R}^n$ are given by

$$x^{(1)} = B_1^{-1}(y^{(1)} + B_1^{-1}b), \ y^{(1)} \in R(A) \cap \mathbb{R}^N, \ \|y^{(1)}\| = \|B_1^{-1}b\|,$$
(6)

except for $y^{(1)} = -B_1^{-1}b$. In addition, the assignment $y^{(1)} \mapsto x^{(1)}$ is one-to one.

The idempotent equation of Λ has only one nonnull solution in $R(A) \cap \mathbb{R}^n$ if and only if dim $R(A) \cap \mathbb{R}^n = 1$.

If $d := \dim R(A) \cap \mathbb{R}^n > 1$, there exists a family $\{x_1^{(1)}, \ldots, x_d^{(1)}\}$ of solutions in $R(A) \cap \mathbb{R}^n$ of the idempotent equation of Λ such that the vectors $\{B_1 x_1^{(1)}, \ldots, B_1 x_d^{(1)}\}$ are mutually orthogonal in R(A).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Corollary Let $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ be a uspf such that the associated Hankel operator A is invertible. The nontrivial solutions of the idempotent equation of Λ are given by

$$x = B^{-1}y + \frac{1}{2}\iota, \ y \in \mathbb{R}^N, \ \|y\| = \frac{1}{2}\|B\iota\|,$$

except for $y = -\frac{1}{2}B\iota$.

The idempotent equation of Λ has only one nonnull solution if and only if m = 0.

If $d := \dim \mathcal{P}_m > 0$, there exists a family $\{x_1, \ldots, x_d\}$ of solutions of the idempotent equation of Λ such that the vectors $\{Bx_1, \ldots, Bx_d\}$ are mutually orthogonal.

イロト イポト イヨト イヨト 三日

Remark Using (5), we deduce the existence of an ortogonal basis $\{\hat{b}_1, \ldots, \hat{b}_d\}$ of \mathcal{H}_{Λ} , consisting of idempotent elements. Specifically, if $\{x_1^{(1)}, \ldots, x_d^{(1)}\}$ is a family of solutions in $R(A) \cap \mathbb{R}^n$ of the idempotent equation of Λ with $\{B_1 x_1^{(1)}, \dots, B_1 x_d^{(1)}\}$ mutually orthogonal, and if $\{\hat{b}_1, \dots, \hat{b}_d\}$ are the corresponding vectors from \mathcal{H}_{Λ} obtained via (5), then $\{\hat{b}_1,\ldots,\hat{b}_d\}$ is a basis of the space \mathcal{H}_{Λ} , which is isomprophic to R(A). In addition, as we have $(Ax_i^{(1)}|x_k^{(1)}) = 0$ for all $j \neq k, j, k = 1, \dots, d$, the elements $\{\hat{b}_1, \dots, \hat{b}_d\}$ are mutually orthogonal in \mathcal{H}_{Λ} .

<ロ> (四) (四) (三) (三) (三)

Theorem 2 For every $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ uspf there exist orthogonal bases of the Hilbert space \mathcal{H}_{Λ} consisting of idempotent elements.

Corollary Let $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}(m > 0)$ be a uspf such that the associated Hankel operator *A* is invertible. Then there exists a basis $\{b_1, \ldots, b_d\}$ of \mathcal{P}_m , consisting of polynomials with real coefficients, such that $\Lambda(b_j b_k) = 0$ for all $j \neq k, j, k = 1, \ldots, d$, where $d = \dim \mathcal{P}_m$.

ヘロン 人間 とくほ とくほ とう

Theorem 2 For every $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ uspf there exist orthogonal bases of the Hilbert space \mathcal{H}_{Λ} consisting of idempotent elements.

Corollary Let $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C} (m > 0)$ be a uspf such that the associated Hankel operator *A* is invertible. Then there exists a basis $\{b_1, \ldots, b_d\}$ of \mathcal{P}_m , consisting of polynomials with real coefficients, such that $\Lambda(b_j b_k) = 0$ for all $j \neq k, j, k = 1, \ldots, d$, where $d = \dim \mathcal{P}_m$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Consider the matrix

$$A = \left[\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{array} \right],$$

acting as an operator on \mathbb{C}^3 , which is positive.

We are interested in the solutions of the idempotent equation $(A\mathbf{x}|\mathbf{x}) = (\iota|\mathbf{x})$, where $\iota = (1,0,0)$. It is easily seen that $N(A) = \{(x, -x, 0); x \in \mathbb{C}\}, R(A) = \{(y, y, y + z); y, z \in \mathbb{C}\}.$ Looking only for solutions $(y, y, y + z) \in R(A)$, the idempotent equation is given by

$$10y^2 + 8yz + 2z^2 - 3y - z = 0,$$

<ロ> <問> <問> < 回> < 回> < □> < □> <

which represents an ellipse passing through the origin.

Remark According to Theorem 2, the space \mathcal{H}_{Λ} has orthogonal bases consisting of idempotent elements. If \mathcal{B} is such a basis, we may speak about the C^* -algebra structure of \mathcal{H}_{Λ} induced by \mathcal{B} , in the spirit of Theorem 1. More generally, if $\mathcal{B} \subset \mathcal{ID}(\Lambda)$ is a collection of mutually orthogonal elements whose sum is $\hat{1}$, and if $\mathcal{H}_{\mathcal{B}}$ is the complex vector space generated by \mathcal{B} in \mathcal{H}_{Λ} , we may speak about the C^* -algebra structure of $\mathcal{H}_{\mathcal{B}}$ induced by \mathcal{B} . Using the basis \mathcal{B} of the space $\mathcal{H}_{\mathcal{B}}$, we may construct a multiplication, an involution, and a norm on $\mathcal{H}_{\mathcal{B}}$, making it a unital, commutative, finite dimensional C^* -algebra. For instance, if $\mathcal{B} = \{\hat{b}_1, \dots, \hat{b}_d\}$ with $\hat{1} = \sum_{i=1}^d \hat{b}_i$, and if $\hat{p} = \sum_{i=1}^{d} \alpha_i \hat{b}_i, \ \hat{q} = \sum_{i=1}^{d} \beta_i \hat{b}_i$, are elements from $\mathcal{H}_{\mathcal{B}}$, their product is given by $\hat{p} \cdot \hat{q} = \sum_{i=1}^{d} \alpha_i \beta_i \hat{b}_i$,

Proposition 2 Let $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ be a uspf, let $\mathcal{B} = \{\hat{b}_1, \dots, \hat{b}_d\} \subset \mathcal{ID}(\Lambda)$ be a collection of mutually orthogonal elements with $\hat{1} = \sum_{j=1}^d \hat{b}_j$, and let $\mathcal{H}_{\mathcal{B}}$ be the complex vector space generated by \mathcal{B} in \mathcal{H}_{Λ} . Let Δ be the space of characters of the C^* -algebra $\mathcal{H}_{\mathcal{B}}$, induced by \mathcal{B} . If $\mathcal{S}_{\mathcal{B}} = \{p \in \mathcal{P}_m; \hat{p} \in \mathcal{H}_{\mathcal{B}}\}$, there exists a linear map $\mathcal{S}_{\mathcal{B}} \ni p \mapsto p^{\#} \in \ell^{\infty}(\Delta)$ such that

$$\Lambda(u)=\int_{\Delta} {oldsymbol p}^{\#}(\delta) {oldsymbol d} \mu(\delta), \,\, {oldsymbol p}\in \mathcal{S}_{\mathcal{B}},$$

where μ is a *d*-atomic probability measure on Δ .

《曰》《圖》《臣》《臣》 三臣

Proposition 3 Let $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ be a uspf, and assume that the space \mathcal{H}_{Λ} is endowed with the *C**-algebra structure induced by an orthogonal basis consisting of idempotent elements. Let also $\mathcal{H}_{\mathcal{C}}$ be the sub-*C**-algebra generated by the set $\mathcal{C} = \{\hat{1}, \hat{t}_1, \dots, \hat{t}_n\}$ in \mathcal{H}_{Λ} . Then there exist a finite subset Ξ of \mathbb{R}^n , whose cardinal is $\leq \dim \mathcal{H}_{\Lambda}$, and a linear map $\mathcal{S}_{\mathcal{C}} \ni u \mapsto u^{\#} \in \ell^{\infty}(\Xi)$, such that

$$\Lambda(u) = \int_{\Xi} u^{\#}(\xi) d\mu(\xi), \, u \in \mathcal{S}_{\mathcal{C}},$$

where $S_{\mathcal{C}} = \{ p \in \mathcal{P}_m; \hat{p} \in \mathcal{H}_{\mathcal{C}} \}$ and μ is a probability measure on Ξ .

<ロ> (四) (四) (三) (三) (三) (三)

Remark Assume that the uspf $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ has a representing measure in \mathbb{R}^n given by

$$\Lambda(\boldsymbol{p}) = \sum_{j=1}^{d} \lambda_j \boldsymbol{p}(\xi^{(j)}), \ \boldsymbol{p} \in \mathcal{P}_{2m},$$

with $\lambda_j > 0$ for all j = 1, ..., d, and $\sum_{j=1}^d \lambda_j = 1$, where $d = \dim \mathcal{H}_{\Lambda}$.

Let $r \ge m$ be an integer such that \mathcal{P}_r contains interpolating polynomials for the family of points $\Xi = \{\xi^{(1)}, \ldots, \xi^{(d)}\}$. Setting $\Lambda_{\mu}(p) = \int_{\Xi} p d\mu, \ p \in \mathcal{P}_{2r}$, we have $\Lambda_{\mu} | \mathcal{P}_{2m} = \Lambda$, and $\mathcal{I}_{\Lambda_{\mu}} = \{p \in \mathcal{P}_r; p | \Xi = 0\}$, as one can easily see. Moreover, the space $\mathcal{H}_r := \mathcal{P}_r / \mathcal{I}_{\Lambda_{\mu}}$ is at least linearly isomorphic to $\ell^{\infty}(\Xi)$, where $\Xi = \{\xi^{(1)}, \ldots, \xi^{(d)}\}$, via the map $\mathcal{H}_r \ni p + \mathcal{I}_{\Lambda_{\mu}} \mapsto p | \Xi \in \ell^{\infty}(\Xi)$.

イロト イポト イヨト イヨト 三日

As \mathcal{H}_{Λ} may be regarded as a subspace of \mathcal{H}_r , and $\dim \mathcal{H}_{\Lambda} = \dim \ell^{\infty}(\Xi)$, the map $\mathcal{H}_{\Lambda} \ni \hat{p} \mapsto p | \Xi \in \ell^{\infty}(\Xi)$ is a linear isomorphism. Let $\chi_k \in \ell^{\infty}(\Xi)$ be the characteristic function of the set $\{\xi^{(k)}\}$ and let $\hat{b}_k \in \mathcal{H}_{\Lambda}$ be the element with $b_k | \Xi = \chi_k, \ k = 1, \dots, d$. Note that

$$\Lambda(b_{k}^{2}) = \lambda_{k}(b_{k}^{2})(\xi^{(k)}) = \lambda_{k}(b_{k})(\xi^{(k)}) = \Lambda(b_{k}), \ , \ k = 1, \dots, d$$

Similarly, $\Lambda(b_k b_l) = 0$ for all $k, l = 1, ..., d, k \neq l$. This shows that $\{\hat{b}_1, ..., \hat{b}_d\}$ is a basis of \mathcal{H}_{Λ} consisting of orthogonal idempotents. Consequently, if \mathcal{H}_{Λ} is given the C^* -albebra structure induced by $\{\hat{b}_1, ..., \hat{b}_d\}$, then \mathcal{H}_{Λ} and $\ell^{\infty}(\Xi)$ are isomorphic as C^* -algebras. Note also that $\Lambda(b_j) = \lambda_j$ for all j = 1, ..., d, and that if $\hat{p} = \alpha_1 \hat{b}_1 + \cdots + \alpha_d \hat{b}_d \in \mathcal{H}_{\Lambda}$ is arbitrary, then $\alpha_j = \Lambda(pb_j) = \lambda_j p(\xi^{(j)})$ for all j = 1, ..., d.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ - □ - つへの

Theorem 3 The uspf $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ has a representing measure in \mathbb{R}^n having $d = \dim \mathcal{H}_{\Lambda}$ atoms if and only if there exists orthogonal basis \mathcal{B} of the Hilbert space \mathcal{H}_{Λ} consisting of idempotent elements such that $\delta(\hat{t}^{\alpha}) = \delta(\hat{t}^{\alpha})$ whenever $|\alpha| \leq m$ and δ is a character of the C^* -algebra \mathcal{H}_{Λ} associated to \mathcal{B} , where $\hat{t} = (\hat{t}_1, \dots, \hat{t}_n)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Corollary The uspf $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ has a representing measure in \mathbb{R}^n having $d = \dim \mathcal{H}_{\Lambda}$ atoms if and only if there exists orthogonal basis $\mathcal{B} = \{\hat{b}_1, \dots, \hat{b}_d\}$ of the Hilbert space \mathcal{H}_{Λ} consisting of idempotent elements such that

$$\Lambda(t^{lpha}b_j)\Lambda(t^{eta}b_j)=\Lambda(b_j)\Lambda(t^{lpha+eta}b_j)$$

whenever $|\alpha| + |\beta| \leq m, j = 1, \ldots, d$.

★@>★注>★注> 注

Example The matrix A from the previous Example is the Hankel matrix associated to the uspf $\Lambda : \mathcal{P}^1_{\mathcal{A}}$, where $\mathcal{P}^1_{\mathcal{A}}$ is the space of of polynomials in one real variable *t*, with complex coefficients, of degre < 4, and Λ is the Riesz functional associated to the sequence $\gamma = (\gamma_k)_{0 \le k \le 4}, \ \gamma_0 = \cdots =$ $\gamma_3 = 1, \gamma_4 = 2$. Note that $\mathcal{I}_{\Lambda} = \{p(t) = a - at; a \in \mathbb{C}\}$, and $\mathcal{H}_{\Lambda} = \{\hat{p}; p(t) = a + at + (a + b)t^2, a, b \in \mathbb{C}\}.$ Setting $p_0(t) = 0.5 - 0.5t$, $p_1(t) = 0.5 + 0.5t$, we have $1 = p_0 + p_1$ and $t = p_1 - p_0$. But $p_0 \in \mathcal{I}_{\Lambda}$, and so $\hat{t} = \hat{1}$. Consequently, for any choice of an othogonal basis \mathcal{H}_{Λ} consisting of idempotents, we cannot have $\hat{t}^2 = \hat{t}^2$ because $\hat{t}^2 = \hat{t} = \hat{1}$, while $\hat{t}^2 = t^2 + \mathcal{I}_{\Lambda} \neq \hat{1}$. This shows that Λ has no representing measure consisting of two atoms. As a matter of fact, the element \hat{t} does not separate the points of the space of characters of \mathcal{H}_{Λ} for any choice of an orthogonal basis $\{\hat{b}_1, \hat{b}_2\}$ consisiting of idempotent elements.

・ロト ・ 理 ト ・ ヨ ト ・

Example A previous Corollary implies that all uspf $\Lambda : \mathcal{P}_2 \mapsto \mathbb{C}$ have representing measures in \mathbb{R}^n having $d = \dim \mathcal{H}_{\Lambda}$ atoms. Indeed, if $\mathcal{B} = \{\hat{b}_1, \dots, \hat{b}_d\}$ is an arbitrary orthogonal basis of \mathcal{H}_{Λ} consisting of idempotent elements, then the condition

$$\Lambda(t^{\alpha}b_j)\Lambda(t^{\beta}b_j)=\Lambda(b_j)\Lambda(t^{\alpha+\beta}b_j)$$

is automatically fulfilled when $|\alpha| + |\beta| \le 1, j = 1, \dots, d$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ be a uspf. For every point $\xi \in \mathbb{R}^n$, we denote by δ_{ξ} the point evaluation at ξ , that is, $\delta_{\xi}(p) = p(\xi)$, for every polynomial $p \in \mathcal{P}$. As in the Introduction, we set $\mathcal{I}_{\Lambda} = \{f \in \mathcal{P}_m; \Lambda(|f|^2) = 0\}$, while \mathcal{H}_{Λ} is the finite dimensional Hilbert space $\mathcal{P}_m/\mathcal{I}_{\Lambda}$.

Definition The point evaluation δ_{ξ} is said to be Λ -*continuous* if there exists a constant $c_{\xi} > 0$ such that

$$|\delta_{\xi}(\boldsymbol{p})| \leq c_{\xi} \Lambda(|\boldsymbol{p}|^2)^{1/2}, \ \boldsymbol{p} \in \mathcal{P}_m.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Let \mathcal{Z}_{Λ} be the subset of those points $\xi \in \mathbb{R}^n$ such that δ_{ξ} is Λ -continuous. For every polynomial p let us denote by $\mathcal{Z}(p)$ the set of its zeros.

Lemma We have the equality $\mathcal{Z}_{\Lambda} = \cap_{\rho \in \mathcal{I}_{\Lambda}} \mathcal{Z}(\rho)$.

RemarkThe previous lemma shows that the set Z_{Λ} coincides with the algebraic variety of the moment sequence associated to Λ (introduced by Curto & Fialkow).

Lemma (Curto & Fialkow) Suppose that the uspf $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ has an atomic representing measure μ . Then $\operatorname{supp}(\mu) \subset \mathcal{Z}_{\Lambda}$. **Remark** It follows from previous Lemma that a necessary condition for the existence of a representing measure for Λ is $\mathcal{Z}_{\Lambda} \neq \emptyset$.

ヘロト 人間 ト ヘヨト ヘヨト

Let \mathcal{Z}_{Λ} be the subset of those points $\xi \in \mathbb{R}^n$ such that δ_{ξ} is Λ -continuous. For every polynomial p let us denote by $\mathcal{Z}(p)$ the set of its zeros.

Lemma We have the equality $\mathcal{Z}_{\Lambda} = \bigcap_{\rho \in \mathcal{I}_{\Lambda}} \mathcal{Z}(\rho)$.

RemarkThe previous lemma shows that the set \mathcal{Z}_{Λ} coincides with the algebraic variety of the moment sequence associated to Λ (introduced by Curto & Fialkow).

Lemma (Curto & Fialkow) Suppose that the uspf $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ has an atomic representing measure μ . Then $\operatorname{supp}(\mu) \subset \mathcal{Z}_{\Lambda}$. **Remark** It follows from previous Lemma that a necessary condition for the existence of a representing measure for Λ is $\mathcal{Z}_{\Lambda} \neq \emptyset$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ be a uspf with the property $\mathcal{Z}_{\Lambda} \neq \emptyset$. As previously noted, the set $\{\delta_{\xi}^{\Lambda}; \xi \in \mathcal{Z}_{\Lambda}\}$ is a subset in the dual of the Hilbert space \mathcal{H}_{Λ} . Therefore, for every $\xi \in \mathcal{Z}_{\Lambda}$ there exists a unique vector $\hat{v}_{\xi} \in \mathcal{H}_{\Lambda}$ such that $\delta_{\xi}^{\Lambda}(\hat{p}) = \langle \hat{p}, \hat{v}_{\xi} \rangle = \Lambda(pv_{\xi}) = p(\xi)$ for all $p \in \mathcal{P}_m$. Let $\mathcal{V}_{\Lambda} = \{\hat{v}_{\xi}; \xi \in \mathcal{Z}_{\Lambda}\}$. We may and shall always assume that a chosen representative v_{ξ} from the equivalence class \hat{v}_{ξ} is a polynomial with real coefficients.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Theorem 4 Let $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ with \mathcal{Z}_{Λ} nonempty. The uspf Λ has a representing measure having *d*-atoms, where $d \ge \dim \mathcal{H}_{\Lambda}$, if and only if there exist a family $\{\hat{v}_1, \ldots, \hat{v}_d\} \subset \mathcal{H}_{\Lambda}$ such that

$$\Lambda(\mathbf{v}_j) > \mathbf{0}, \quad \hat{\mathbf{v}}_j / \Lambda(\mathbf{v}_j) \in \mathcal{V}_{\Lambda}, \quad j = 1, \dots, d, \tag{7}$$

$$\hat{p} = \Lambda(pv_1)\hat{v}_1 + \dots + \Lambda(pv_d)\hat{v}_d, \ p \in \mathcal{P}_m,$$
(8)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

and

$$\Lambda(\mathbf{v}_k \mathbf{v}_l) = \sum_{j=1}^d \Lambda(\mathbf{v}_j)^{-1} \Lambda(\mathbf{v}_j \mathbf{v}_k) \Lambda(\mathbf{v}_j \mathbf{v}_l), \ k, l = 1, \dots, d.$$
(9)

Corollary Let $\Lambda : \mathcal{P}_{2m} \mapsto \mathbb{C}$ with \mathcal{Z}_{Λ} nonempty. The functional $\Lambda | \mathcal{P}_m$ has a representing measure having *d*-atoms, where $d \ge \dim \mathcal{H}_{\Lambda}$, if and only if there exist a family $\{\hat{v}_1, \ldots, \hat{v}_d\} \subset \mathcal{H}_m$ such that

$$\Lambda(\mathbf{v}_j) > \mathbf{0}, \quad \hat{\mathbf{v}}_j / \Lambda(\mathbf{v}_j) \in \mathcal{V}_{\Lambda}, \quad j = 1, \dots, d,$$

and

$$\hat{\rho} = \Lambda(\rho v_1)\hat{v}_1 + \cdots + \Lambda(\rho v_d)\hat{v}_d, \ \rho \in \mathcal{P}_m.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Summary

Author: Vasilescu Short Title:

₹ 990

◆□ > ◆□ > ◆豆 > ◆豆 >

Thank you !

◆□ > ◆□ > ◆豆 > ◆豆 >