A Stability Equation for Truncated Moment Problems

F.-H. Vasilescu

Department of Mathematics
University of Lille 1, France

June 29, 2010 / OT 23

Outline

(9) Introduction

- Truncated Moment Problems
- Function Spaces
- Square Positive Functionals
- Associated Hilbert Spaces
(2) Extensions of Square Positive Functionals
- Consequences for Truncated Moment Problems
- An Associated C^{*}-Algebra
(3) The Stability Equation
- The Abstract Stability Equation
- Stability Equation for Moments

4 Stability Equation in a Noncommutative Context

Truncated Moment Problems

To solve a truncated moment problem means to characterize those finite multi-sequences of real numbers $\gamma=\left(\gamma_{\alpha}\right)_{|\alpha| \leq 2 m}$ with $\gamma_{0}>0$ (where α 's are multi-indices of a given length $n \geq 1$ and $m \geq 0$ is an integer) for which there exists a positive measure μ on \mathbb{R}^{n} (called a representing measure for γ) such that $\gamma_{\alpha}=\int t^{\alpha} d \mu$ for all monomials t^{α} with $|\alpha| \leq 2 m$.

Truncated moment problems have been intensively studied for many years by R. E. Curto and L. A. Fialkow.

Truncated Moment Problems

To solve a truncated moment problem means to characterize those finite multi-sequences of real numbers $\gamma=\left(\gamma_{\alpha}\right)_{|\alpha| \leq 2 m}$ with $\gamma_{0}>0$ (where α 's are multi-indices of a given length $n \geq 1$ and $m \geq 0$ is an integer) for which there exists a positive measure μ on \mathbb{R}^{n} (called a representing measure for γ) such that $\gamma_{\alpha}=\int t^{\alpha} d \mu$ for all monomials t^{α} with $|\alpha| \leq 2 m$.

Truncated moment problems have been intensively studied for many years by R. E. Curto and L. A. Fialkow.

Approaches to These Problems

- A first approach is to associate the sequence γ with the Hankel matrix $M_{\gamma}=\left(\gamma_{\alpha+\beta}\right)_{|\alpha|,|\beta| \leq m}$, which is supposed to be nonnegative when acting on a corresponding Euclidean space, and using flat extensions (Curto and Fialkow).

> A second approach is to use the Riesz functional, induced by the assignment $t^{\alpha} \mapsto \gamma_{\alpha}$ on the space of polynomials of total degree less or equal to $2 m$, supposed to be nonnegative on the cone of sums of squares of real-valued polynomials. Riesz functionals have been used to study truncated moment problems, as well as for other purposes by Fialkow and Nie, Laurent and Mourrain, Möller, Putinar etc.

Approaches to These Problems

- A first approach is to associate the sequence γ with the Hankel matrix $M_{\gamma}=\left(\gamma_{\alpha+\beta}\right)_{|\alpha|,|\beta| \leq m}$, which is supposed to be nonnegative when acting on a corresponding Euclidean space, and using flat extensions (Curto and Fialkow).
- A second approach is to use the Riesz functional, induced by the assignment $t^{\alpha} \mapsto \gamma_{\alpha}$ on the space of polynomials of total degree less or equal to $2 m$, supposed to be nonnegative on the cone of sums of squares of real-valued polynomials. Riesz functionals have been used to study truncated moment problems, as well as for other purposes, by Fialkow and Nie, Laurent and Mourrain, Möller, Putinar etc.

Function Spaces

Let $n \geq 1$ be a fixed integer. Let \mathcal{S} be a vector space consisting of complex-valued Borel functions, defined on \mathbb{R}^{n} (other joint domains of definition may be considered). We assume that $1 \in \mathcal{S}$ and if $f \in \mathcal{S}$, then $\bar{f} \in \mathcal{S}$. For convenience, let us say that \mathcal{S}, having these properties, is a function space.
Let also $\mathcal{S}^{(1)}$ be the vector space spanned by all products of the form $f g$ with $f, g \in \mathcal{S}$, which is itself a function space. We have $\mathcal{S} \subset \mathcal{S}^{(1)}$, and $\mathcal{S}=\mathcal{S}^{(1)}$ when \mathcal{S} is an algebra.

Square Positive Functionals

Let \mathcal{S} be a function space and let $\Lambda: \mathcal{S}^{(1)} \mapsto \mathbb{C}$ be a linear map with the following properties:
(1) $\Lambda(\bar{f})=\overline{\Lambda(f)}$ for all $f \in \mathcal{S}^{(1)}$;
(2) $\Lambda\left(|f|^{2}\right) \geq 0$ for all $f \in \mathcal{S}$.
(3) $\Lambda(1)=1$.

Adapting some existing terminology to our context, a linear map Λ with the properties (1)-(3) is said to be a unital square positive functional, briefly a uspf. When \mathcal{S} is an algebra, conditions (2) and (3) imply condition (1). In this case, a map \wedge with the property (2) is usually said to be positive (semi)definite.
Looking for probability measures representing such a functional, we always assume (3) in the stated form, without loss of aenerality.

Associated Hilbert Spaces

If $\Lambda: \mathcal{S}^{(1)} \mapsto \mathbb{C}$ is a uspf, we have the Cauchy-Schwarz inequality

$$
|\Lambda(f g)|^{2} \leq \Lambda\left(|f|^{2}\right) \Lambda\left(|g|^{2}\right), p, q \in \mathcal{S}
$$

Putting $\mathcal{I}_{\Lambda}=\left\{f \in \mathcal{S} ; \Lambda\left(|f|^{2}\right)=0\right\}$, the Cauchy-Schwarz inequality shows that \mathcal{I}_{Λ} is a vector subspace of \mathcal{S} and that $\mathcal{S} \ni f \mapsto \Lambda\left(|f|^{2}\right)^{1 / 2} \in \mathbb{R}_{+}$is a seminorm. Moreover, the quotient $\mathcal{S} / \mathcal{I}_{\Lambda}$ is an inner product space, with the inner product given by

$$
\left\langle f+\mathcal{I}_{\Lambda}, g+\mathcal{I}_{\Lambda}\right\rangle=\Lambda(f \bar{g})
$$

If \mathcal{S} is finite dimensional, then $\mathcal{S} / \mathcal{I}_{\Lambda}$ is actually a Hilbert space.

Associated Hilbert Spaces (cont.)

Now, let $\mathcal{T} \subset \mathcal{S}$ be a function subspace. If $\Lambda: \mathcal{S}^{(1)} \mapsto \mathbb{C}$ is a uspf, then $\Lambda \mid \mathcal{T}^{(1)}$ is also a uspf, and setting
$\mathcal{I}_{\Lambda, \mathcal{T}}=\left\{f \in \mathcal{T} ; \Lambda\left(|f|^{2}\right)=0\right\}=\mathcal{I}_{\Lambda} \cap \mathcal{T}$, there is a natural map

$$
\begin{gathered}
\mathcal{J}_{\mathcal{T}, \mathcal{S}}: \mathcal{T} / \mathcal{I}_{\Lambda, \mathcal{T}} \mapsto \mathcal{S} / \mathcal{I}_{\Lambda}, \\
\mathcal{J}_{\mathcal{T}, \mathcal{S}}\left(f+\mathcal{I}_{\Lambda, \mathcal{T}}\right)=f+\mathcal{I}_{\Lambda}, f \in \mathcal{T} .
\end{gathered}
$$

The equality

$$
\begin{gathered}
\left\langle f+\mathcal{I}_{\Lambda, \mathcal{T}}, f+\mathcal{I}_{\Lambda, \mathcal{T}}\right\rangle= \\
\Lambda\left(|f|^{2}\right)=\left\langle f+\mathcal{I}_{\Lambda}, f+\mathcal{I}_{\Lambda}\right\rangle
\end{gathered}
$$

shows that the $\operatorname{map} J_{\mathcal{T}, \mathcal{S}}$ is an isometry.

Dimensional Stability

Definition We say that the uspf $\Lambda: \mathcal{S}^{(1)} \mapsto \mathbb{C}$ it stable at \mathcal{T}, where $\mathcal{T} \subset \mathcal{S}$ is a function subspace, if we have the equality $\mathcal{J}_{\mathcal{T}, \mathcal{S}}\left(\mathcal{T} / \mathcal{I}_{\Lambda, \mathcal{T}}\right)=\mathcal{S} / \mathcal{I}_{\Lambda}$.
The equality $J_{\mathcal{T}, \mathcal{S}}\left(\mathcal{T} / \mathcal{I}_{\Lambda, \mathcal{S}}\right)=\mathcal{S} / \mathcal{I}_{\Lambda}$ is equivalent to the property $\mathcal{T}+\mathcal{I}_{\Lambda}=\mathcal{S}$; in other words, for every $f \in \mathcal{S}$ we can find a $g \in \mathcal{T}$ such that $f-g \in \mathcal{I}_{\Lambda}$. In particular, the spaces $\mathcal{T} / \mathcal{I}_{\Lambda, \mathcal{T}}$ and $\mathcal{S} / \mathcal{I}_{\Lambda}$ have the same dimension.
This concept is an version of that of flatness, defined by Curto and Fialkow.

Notation and Comments

Let $n \geq 1$ be a fixed integer. We freely use multi-indices from \mathbb{Z}_{+}^{n}, and the standard notation related to them.
The symbol \mathcal{P} designate the algebra of all polynomials in $t=$ $\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$, with complex coefficients (because of the systematic use of some associated complex Hilbert spaces). For every integer $m \geq 1$, let \mathcal{P}_{m} be the subspace of \mathcal{P} consisting of all polynomials p with $\operatorname{deg}(p) \leq m$, where $\operatorname{deg}(p)$ is the total degree of p. Note that $\mathcal{P}_{m}^{(1)}=\mathcal{P}_{2 m}$ and $\mathcal{P}^{(1)}=\mathcal{P}$, the latter being an algebra.
We present in the following an extension theorem within the class of unital square positive functionals on finite dimensional function subspaces $\mathcal{P}_{2 m}$ of the space \mathcal{P}, and exhibit some of its consequences.

Let $\Lambda: \mathcal{P}_{2 m} \mapsto \mathbb{C}$ be a uspf, and let $0 \leq k \leq m$. As in the abstract case, we put $\mathcal{I}_{k}=\mathcal{I}_{\Lambda, \mathcal{P}_{k}}=\left\{p \in \mathcal{P}_{k} ; \Lambda\left(|p|^{2}\right)=0\right\}$, and

$$
\mathcal{H}_{k}=\mathcal{P}_{k} / \mathcal{I}_{k},
$$

which is a finite dimensional Hilbert space, with the scalar product given by

$$
\left\langle p+\mathcal{I}_{k}, q+\mathcal{I}_{k}\right\rangle=\Lambda(p \bar{q}), p, q \in \mathcal{P}_{k} .
$$

Recall also that the map $\mathcal{P}_{k} \ni p \mapsto \Lambda\left(|p|^{2}\right)^{1 / 2}$ is a semi-norm.

Now, if $I \leq m$ is another integer with $k \leq I$, since $\mathcal{I}_{k} \subset \mathcal{I}_{l}$, we have a natural map $J_{k, l}: \mathcal{H}_{k} \mapsto \mathcal{H}_{\text {, }}$ given by $J_{k, I}\left(p+\mathcal{I}_{k}\right)=p+\mathcal{I}_{l}, p \in \mathcal{P}_{n, k}$, which is an isometry because $\left\|p+\mathcal{I}_{k}\right\|^{2}=\Lambda\left(|p|^{2}\right)=\left\|p+\mathcal{I}_{l}\right\|^{2}$, whenever $p \in \mathcal{P}_{k}$. In particular, $J_{k, k}$ is the identity on \mathcal{H}_{k}. Similar constructions can be performed for a uspf $\Lambda_{\infty}: \mathcal{P} \mapsto \mathbb{C}$

Equalities of the form $J_{k, l}\left(\mathcal{H}_{k}\right)=\mathcal{H}_{l}(k<I)$ play an important role in this work. We note that $J_{k, /}\left(\mathcal{H}_{k}\right)=\mathcal{H}_{l}$ if and only if $\mathcal{P}_{l}=\mathcal{P}_{k}+\mathcal{I}_{l}$. In this case, $J_{k, l}$ is a unitary transformation. When $I=k+1$, we usually write J_{k} instead of $J_{k, k+1}$

Now, if $I \leq m$ is another integer with $k \leq I$, since $\mathcal{I}_{k} \subset \mathcal{I}_{l}$, we have a natural map $J_{k, l}: \mathcal{H}_{k} \mapsto \mathcal{H}_{l}$ given by $J_{k, l}\left(p+\mathcal{I}_{k}\right)=p+\mathcal{I}_{l}, p \in \mathcal{P}_{n, k}$, which is an isometry because $\left\|p+\mathcal{I}_{k}\right\|^{2}=\Lambda\left(|p|^{2}\right)=\left\|p+\mathcal{I}_{l}\right\|^{2}$, whenever $p \in \mathcal{P}_{k}$. In particular, $J_{k, k}$ is the identity on \mathcal{H}_{k}.
Similar constructions can be performed for a uspf $\Lambda_{\infty}: \mathcal{P} \mapsto \mathbb{C}$
Equalities of the form $J_{k, l}\left(\mathcal{H}_{k}\right)=\mathcal{H}_{l}(k<l)$ play an important role in this work. We note that $J_{k, l}\left(\mathcal{H}_{k}\right)=\mathcal{H}_{l}$ if and only if $\mathcal{P}_{I}=\mathcal{P}_{k}+\mathcal{I}_{l}$. In this case, $J_{k, l}$ is a unitary transformation. When $I=k+1$, we usually write J_{k} instead of $J_{k, k+1}$.

Some Extension Results

The next result has been proved by H. M. Möller.
THEOREM Let $\Lambda_{m}: \mathcal{P}_{2 m} \mapsto \mathbb{C}$ be a uspf. Let also $\Lambda_{m+1}: \mathcal{P}_{2 m+2} \mapsto \mathbb{C}$ extending Λ_{m}. Set

$$
\mathcal{O}_{k+1}=\left\{p \in \mathcal{P}_{m+1} ; \Lambda_{m+1}(p q)=0 \quad \forall q \in \mathcal{P}_{m}\right\}
$$

The map Λ_{m+1} is a uspf if and only if

$$
\operatorname{dim} \mathcal{O}_{k+1}=\operatorname{dim} \mathcal{I}_{m}+\binom{m+n}{n-1}
$$

and $\Lambda_{m+1}\left(|p|^{2}\right) \geq 0$ for all $p \in \mathcal{O}_{k+1}$.

The next result is essentially due to Curto and Fialkow.
THEOREM Let $\Lambda_{m}: \mathcal{P}_{2 m} \mapsto \mathbb{C}(m \geq 1)$ be a uspf. Assume that the isomatry $J_{m}: \mathcal{H}_{m-1} \mapsto \mathcal{H}_{m}$ is surjective. Then there exists a uniquely determined uspf $\Lambda_{m+1}: \mathcal{P}_{2 m+2} \mapsto \mathbb{C}(m \geq 1)$ extending Λ_{m}. Moreover, the isometry $J_{m+1}: \mathcal{H}_{m} \mapsto \mathcal{H}_{m+1}$ is also surjective.

In the proof of the theorem from above, the condition " $J_{m}: \mathcal{H}_{m-1} \mapsto \mathcal{H}_{m-1}$ is a unitary operator" (equivalent to the flatness of Curto and Fialkow) is essential.

The next result is essentially due to Curto and Fialkow.
THEOREM Let $\Lambda_{m}: \mathcal{P}_{2 m} \mapsto \mathbb{C}(m \geq 1)$ be a uspf. Assume that the isomatry $J_{m}: \mathcal{H}_{m-1} \mapsto \mathcal{H}_{m}$ is surjective. Then there exists a uniquely determined uspf $\Lambda_{m+1}: \mathcal{P}_{2 m+2} \mapsto \mathbb{C}(m \geq 1)$ extending Λ_{m}. Moreover, the isometry $J_{m+1}: \mathcal{H}_{m} \mapsto \mathcal{H}_{m+1}$ is also surjective.

In the proof of the theorem from above, the condition " $J_{m}: \mathcal{H}_{m-1} \mapsto \mathcal{H}_{m-1}$ is a unitary operator" (equivalent to the flatness of Curto and Fialkow) is essential.

Dimensional Stability

DEFINITION

Let $\Lambda: \mathcal{P}_{2 m} \mapsto \mathbb{C}(m \geq 1)$ be a uspf, let $\left(\mathcal{H}_{l}\right)_{0 \leq 1 \leq m}$ be the Hilbert spaces bilt via Λ, and let $J_{l}: \mathcal{H}_{l} \mapsto \mathcal{H}_{l+1}(0 \leq I \leq m-1)$ be the associated isometries. If for some $k \in\{0, \ldots, m-1\}$ one has $J_{k}\left(\mathcal{H}_{k}\right)=\mathcal{H}_{k+1}$, we say that Λ is dimensionally stable (or simply stable) at k.
The uspf $\Lambda_{\infty}: \mathcal{P} \mapsto \mathbb{C}$ is said to be dimensionally stable if there exist integers m, k, with $m>k \geq 0$, such that $\Lambda_{\infty} \mid \mathcal{P}_{2 m}$ is stable at k.
The number $\operatorname{sd}\left(\Lambda_{\infty}\right)=\operatorname{dim} \mathcal{H}_{k}$ will be called the stable dimension of Λ_{∞}.

Flatness and Dimensional Stability

REMARK Let $m \geq 1$ be an integer, let $\Lambda: \mathcal{P}_{2 m} \mapsto \mathbb{C}$ be a uspf, and let $\left\{\mathcal{H}_{k}=\mathcal{P}_{k} / \mathcal{I}_{k}, 0 \leq k \leq m\right\}$ be the Hilbert spaces built via Λ. The sesquilinear form $(p, q) \mapsto \Lambda(p \bar{q})$ implies the existence of a positive operator A_{k} on \mathcal{P}_{k} such that $\left(A_{k} p \mid q\right)=\Lambda(p \bar{q})$ for all $p, q \in \mathcal{P}_{k}$, where $0 \leq k \leq m$. Note that $p \in \mathcal{I}_{k}$ if and only if $A_{k} p=0$. This implies that $\operatorname{dim} \mathcal{H}_{k}$ equals the rank of A_{k}. The concept of flatness for the finite multi-sequence associated to Λ, introduced by Curto and Fialkow, means precisely that the rank of A_{m-1} is equal to the rank of A_{m}, and it is equivalent to the fact that Λ is stable at $m-1$.

Using the previous results, as well as the Cauchy-Schwarz inequality, several results by Curto and Fialkow can be recaptured.

THEOREM
Let $\Lambda_{\infty}: \mathcal{P} \mapsto \mathbb{C}$ be a uspf.
If Λ_{∞} is dimensionally stable, then Λ_{∞} has a unique representing measure, which is d-atomic, where $d=\operatorname{sd}\left(\Lambda_{\infty}\right)$. Conversely, if Λ_{∞} has a d-atomic representing measure, then Λ_{∞} is dimensionally stable and $d=\operatorname{sd}\left(\Lambda_{\infty}\right)$.

COROLLARY
The uspf $\Lambda: \mathcal{P}_{2 m} \mapsto \mathbb{C}(m \geq 1)$ has a uniquely determined
d-atomic representing measure, where $d=\operatorname{dim} \mathcal{H}_{m}$, if and only if \wedge is stable at $m-1$.

Using the previous results, as well as the Cauchy-Schwarz inequality, several results by Curto and Fialkow can be recaptured.

THEOREM

Let $\Lambda_{\infty}: \mathcal{P} \mapsto \mathbb{C}$ be a uspf.
If Λ_{∞} is dimensionally stable, then Λ_{∞} has a unique representing measure, which is d-atomic, where $d=\operatorname{sd}\left(\Lambda_{\infty}\right)$. Conversely, if Λ_{∞} has a d-atomic representing measure, then Λ_{∞} is dimensionally stable and $d=\operatorname{sd}\left(\Lambda_{\infty}\right)$.

COROLLARY
The uspf $\Lambda: \mathcal{P}_{2 m} \mapsto \mathbb{C}(m \geq 1)$ has a uniquely determined
d-atomic representing measure, where $d=\operatorname{dim} \mathcal{H}_{m}$, if and only if \wedge is stable at $m-1$.

Using the previous results, as well as the Cauchy-Schwarz inequality, several results by Curto and Fialkow can be recaptured.

THEOREM

Let $\Lambda_{\infty}: \mathcal{P} \mapsto \mathbb{C}$ be a uspf.
If Λ_{∞} is dimensionally stable, then Λ_{∞} has a unique representing measure, which is d-atomic, where $d=\operatorname{sd}\left(\Lambda_{\infty}\right)$.
Conversely, if Λ_{∞} has a d-atomic representing measure, then Λ_{∞} is dimensionally stable and $d=\operatorname{sd}\left(\Lambda_{\infty}\right)$.

COROLLARY

The uspf $\Lambda: \mathcal{P}_{2 m} \mapsto \mathbb{C}(m \geq 1)$ has a uniquely determined d-atomic representing measure, where $d=\operatorname{dim} \mathcal{H}_{m}$, if and only if Λ is stable at $m-1$.

EXAMPLE Assume that $\Lambda_{\infty}: \mathcal{P} \mapsto \mathbb{C}$ has a d-atomic representing measure. If $d=1$, then there exists a point $\xi \in \mathbb{R}^{n}$ such that $\Lambda_{\infty}(p)=p(\xi)$ for all $p \in \mathcal{P}$. Then, for all $k \geq 1$, $\mathcal{I}_{k}=\left\{p \in \mathcal{P}_{k} ; p(\xi)=0\right\}$, the space \mathcal{H}_{k} is isomorphic to \mathbb{C}, and so Λ_{∞} is dimensionally stable with $\operatorname{sd}\left(\Lambda_{\infty}\right)=1$.

Assume now that $d \geq 2$. Let $\bar{E}=\left\{\xi^{(1)}, \ldots, \xi^{(d)}\right\} \subset \mathbb{R}^{n}$ be
distinct points and let μ be an atomic measure concentrated on
三, such that $\Lambda_{\infty}(p)=\int p d \mu$ for all $p \in \mathcal{P}$.
Consider the polynomials

Clearly, $\chi_{k} \in \mathcal{P}_{2 d-2}, k=1, \ldots, d$, and $\chi_{k}\left(\xi^{(I)}\right)=\delta_{k l}$ (the Kronecker symbol) for all $k, I=1, \ldots, d$. In fact, the set

EXAMPLE Assume that $\Lambda_{\infty}: \mathcal{P} \mapsto \mathbb{C}$ has a d-atomic representing measure. If $d=1$, then there exists a point $\xi \in \mathbb{R}^{n}$ such that $\Lambda_{\infty}(p)=p(\xi)$ for all $p \in \mathcal{P}$. Then, for all $k \geq 1$, $\mathcal{I}_{k}=\left\{p \in \mathcal{P}_{k} ; p(\xi)=0\right\}$, the space \mathcal{H}_{k} is isomorphic to \mathbb{C}, and so Λ_{∞} is dimensionally stable with $\operatorname{sd}\left(\Lambda_{\infty}\right)=1$.
Assume now that $d \geq 2$. Let $\equiv=\left\{\xi^{(1)}, \ldots, \xi^{(d)}\right\} \subset \mathbb{R}^{n}$ be distinct points and let μ be an atomic measure concentrated on三, such that $\Lambda_{\infty}(p)=\int p d \mu$ for all $p \in \mathcal{P}$.
Consider the polynomials

$$
\chi_{k}(t)=\frac{\prod_{j \neq k}\left\|t-\xi^{(j)}\right\|^{2}}{\prod_{j \neq k}\left\|\xi^{(k)}-\xi^{(j)}\right\|^{2}}, t \in \mathbb{R}^{n}, k=1, \ldots
$$

Clearly, $\chi_{k} \in \mathcal{P}_{2 d-2}, k=1, \ldots, d$, and $\chi_{k}\left(\xi^{(I)}\right)=\delta_{k l}$ (the Kronecker symbol) for all $k, I=1, \ldots, d$. In fact, the set $\left(\chi_{k}\right)_{1 \leq k \leq d}$ is an orthonormal basis of $L^{2}(\mu)$.

Since each polynomial $p \in \mathcal{P}$, can be written on the set \equiv as $p(t)=\sum_{j=1}^{d} p\left(\xi^{(j)}\right) \chi_{j}(t)$, and so

$$
\int\left|p(t)-\sum_{j=1}^{d} p\left(\xi^{(j)}\right) \chi_{j}(t)\right|^{2} d \mu(t)=0
$$

it follows that, for every $I \geq 2 d-2$, we have
$\mathcal{I}_{l}=\left\{p \in \mathcal{P}_{l} ; p \mid \equiv=0\right\}$, and so $\left(\chi_{k}+\mathcal{I}_{l}\right)_{1 \leq k \leq d}$ is an orthonormal basis of \mathcal{H}_{l}. Therefore, all spaces $\mathcal{H}_{l}, I \geq 2 d-2$, have the same dimension equal to $\operatorname{dim} L^{2}(\mu)=d$. In particular, Λ_{∞} is dimensionally stable and $\operatorname{sd}\left(\Lambda_{\infty}\right)=d$.

An Associated C*-Algebra

THEOREM

Let $m \geq 1$ be an integer, and let $\Lambda: \mathcal{P}_{2 m} \mapsto \mathbb{C}$ be a uspf. If Λ is stable at $m-1$, then, endowed with an equivalent norm, the space \mathcal{H}_{m} has the structure of a unital commutative C^{*}-algebra.

We define a product on \mathcal{H}_{m} in the following way. For each pair $p, q \in \mathcal{P}_{m}$, we set

because, in this case, $J_{m, 2 m}: \mathcal{P}_{m} \mapsto \mathcal{P}_{2 m}$ is a unitary operator.

An Associated C*-Algebra

THEOREM

Let $m \geq 1$ be an integer, and let $\Lambda: \mathcal{P}_{2 m} \mapsto \mathbb{C}$ be a uspf.
If Λ is stable at $m-1$, then, endowed with an equivalent norm, the space \mathcal{H}_{m} has the structure of a unital commutative
C^{*}-algebra.
We define a product on \mathcal{H}_{m} in the following way. For each pair $p, q \in \mathcal{P}_{m}$, we set

$$
\left(p+\mathcal{I}_{m}\right) \cdot\left(q+\mathcal{I}_{m}\right)=J_{m, 2 m}^{-1}\left(p q+\mathcal{I}_{2 m}\right)=\left(q+\mathcal{I}_{m}\right) \cdot\left(p+\mathcal{I}_{m}\right)
$$

because, in this case, $J_{m, 2 m}: \mathcal{P}_{m} \mapsto \mathcal{P}_{2 m}$ is a unitary operator.

The Stability Equation

Let $\Lambda: \mathcal{P}_{2 m} \mapsto \mathbb{C}$ be a uspf with $m \geq 1$ and let k be an integer such that $0 \leq k<m$. It is easily checked that the uspf Λ is stable at k if and only if for each multi-index δ with $|\delta|=k+1$ the equation

$$
\begin{gathered}
\sum_{|\xi|,|\eta| \leq k} \gamma_{\xi+\eta} c_{\xi} c_{\eta} \\
-2 \sum_{|\xi| \leq k} \gamma_{\xi+\delta} c_{\xi}+\gamma_{2 \delta}=0
\end{gathered}
$$

has a solution $\left(c_{\xi}\right)_{|\xi| \leq k}$ consisting of real numbers, where $\gamma=\left(\gamma_{\xi}\right)_{|\xi| \leq 2 m}$ is the finite multi-sequence associated to Λ. To study the existence of solutions for such an equation, it is convenient to use an abstract framework.

The Abstract Stability Equation

Let $N \geq 1$ be an arbitrary integer, let $A=\left(a_{j k}\right)_{j, k=1}^{N}$ be a matrix with real entries, that is positive on \mathbb{C}^{N} (endowed with the standard scalar product denoted by $(* \mid *)$, and associated norm $\|*\|)$, let $b=\left(b_{1}, \ldots, b_{N}\right) \in \mathbb{R}^{N}$, and let $c \in \mathbb{R}$. We look for necessary and sufficient conditions insuring the existence of a solution $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$ of the equation

$$
(A S E) \quad(A x \mid x)-2(b \mid x)+c=0
$$

This is a quadric equation whose solution is given in the following. The range and the kernel of A, regarded as an operator on \mathbb{C}^{N}, will be denoted by $R(A), N(A)$, respectively.

Solution to ASE

PROPOSITION

We have the following alternative:

1) If $b \notin R(A)$, equation (ASE) always has solutions.
2) If $b \in R(A)$, equation ($A S E$) has solutions if and only if for some (and therefore for all) $d \in A^{-1}(\{b\})$ we have $c \leq(d \mid b)$. In particular, if $N(A)=\{0\}$, then A is invertible and equation
(ASE) has solutions if and only if $c \leq\left(A^{-1} b \mid b\right)$.

Stability Equation for Moments

Let $\Lambda: \mathcal{P}_{2 m} \mapsto \mathbb{C}(m \geq 1)$ be a uspf and let $\gamma=\left(\gamma_{\alpha}\right)_{|\alpha| \leq 2 m}$ the multi-sequence associated to Λ. Then $A_{m-1}=\left(\gamma_{\xi+\eta}\right)_{|\xi|,|\eta| \leq m-1}$ is a positive matrix with real entries, acting as an operator on \mathbb{C}^{N}, where N is the cardinal of the set $\left\{\xi \in \mathbb{Z}_{+}^{n} ;|\xi| \leq m-1\right\}$. In fact, by identifying the space \mathcal{P}_{m-1} with \mathbb{C}^{N}, A_{m-1} is the operator with the property $\left(A_{m-1} p \mid q\right)=\Lambda(p \bar{q})$ for all
$p, q \in \mathcal{P}_{m-1}$.
For each multi-index δ with $|\delta|=m$, we put $b_{\delta}=\left(\gamma_{\xi+\delta}\right)_{|\xi| \leq m-1} \in \mathbb{R}^{N}$ and $c_{\delta}=\gamma_{2 \delta}$. With this notation, equation (ASE) becomes
(SE)

$$
\left(A_{m-1} x \mid x\right)-2\left(b_{\delta} \mid x\right)+c_{\delta}=0,
$$

which may be called the stability equation of the uspf Λ.

THEOREM

Let $\gamma=\left(\gamma_{\alpha}\right)_{|\alpha| \leq 2 m}\left(\gamma_{0}=1, m \geq 1\right)$ be a square positive finite multi-sequence of real numbers and let
$A_{m-1}=\left(\gamma_{\xi+\eta}\right)_{|\xi|,|\eta| \leq m-1}$, acting on \mathbb{C}^{N}, where N is the cardinal of the set $\left\{\xi \in \mathbb{Z}_{+}^{n} ;|\xi| \leq m-1\right\}$. For each multi-index δ with $|\delta|=m$, set $b_{\delta}=\left(\gamma_{\xi+\delta}\right)_{|\xi| \leq m-1} \in \mathbb{R}^{N}$ and $c_{\delta}=\gamma_{2 \delta}$. The multi-sequence γ has a unique r-atomic representing measure if and anly if, whenever $b_{\delta} \in R\left(A_{m-1}\right)$, we have $c_{\delta} \leq\left(d_{\delta} \mid b_{\delta}\right)$ for some (and therefore for all) $d_{\delta} \in A_{m-1}^{-1}\left(\left\{b_{\delta}\right\}\right)$, where r is the rank of the matrix A_{m-1}.

COROLLARY Assume the matrix A_{m-1} invertible. There exists a d-atomic representing measure μ on \mathbb{R}^{n} for the uspf

THEOREM

Let $\gamma=\left(\gamma_{\alpha}\right)_{|\alpha| \leq 2 m}\left(\gamma_{0}=1, m \geq 1\right)$ be a square positive finite multi-sequence of real numbers and let
$A_{m-1}=\left(\gamma_{\xi+\eta}\right)_{|\xi|,|\eta| \leq m-1}$, acting on \mathbb{C}^{N}, where N is the cardinal of the set $\left\{\xi \in \mathbb{Z}_{+}^{n} ;|\xi| \leq m-1\right\}$. For each multi-index δ with $|\delta|=m$, set $b_{\delta}=\left(\gamma_{\xi+\delta}\right)_{|\xi| \leq m-1} \in \mathbb{R}^{N}$ and $c_{\delta}=\gamma_{2 \delta}$. The multi-sequence γ has a unique r-atomic representing measure if and anly if, whenever $b_{\delta} \in R\left(A_{m-1}\right)$, we have $c_{\delta} \leq\left(d_{\delta} \mid b_{\delta}\right)$ for some (and therefore for all) $d_{\delta} \in A_{m-1}^{-1}\left(\left\{b_{\delta}\right\}\right)$, where r is the rank of the matrix A_{m-1}.

COROLLARY Assume the matrix A_{m-1} invertible. There exists a d-atomic representing measure μ on \mathbb{R}^{n} for the uspf $\Lambda: \mathcal{P}_{2 m} \mapsto \mathbb{C}$ if and only if for each δ with $|\delta|=m$ we have $c_{\delta} \leq\left(A_{m-1}^{-1} b_{\delta} \mid b_{\delta}\right)$, where $d=\operatorname{dim} \mathcal{P}_{m-1}$.

Stability Equation in a Noncommutative Context

We want to show that the stability equation can be also applied in a noncommutative context. In the following, we adapt parts of the previous discussion to such a context.

> Let \mathcal{A} be a complex algebra with unit 1 and involution $a \mapsto a$ and let $\mathcal{S} \subset \mathcal{A}$ be a vector subspace containing the unit and invariant under involution. For convenience, let us say that \mathcal{S} having these properties, is a *-subspace of \mathcal{A}. Let also $\mathcal{S}^{(1)}$ be the vector subspace spanned by all products of the form $a b$ with $a, b \in \mathcal{S}$, which is itself $a *$-subspace. We have $\mathcal{S} \subset \mathcal{S}^{(1)}$ and $\mathcal{S}=\mathcal{S}^{(1)}$ when \mathcal{S} is a subalgebra

Stability Equation in a Noncommutative Context

We want to show that the stability equation can be also applied in a noncommutative context. In the following, we adapt parts of the previous discussion to such a context.

Let \mathcal{A} be a complex algebra with unit 1 and involution $a \mapsto a^{*}$, and let $\mathcal{S} \subset \mathcal{A}$ be a vector subspace containing the unit and invariant under involution. For convenience, let us say that \mathcal{S}, having these properties, is a $*$-subspace of \mathcal{A}. Let also $\mathcal{S}^{(1)}$ be the vector subspace spanned by all products of the form $a b$ with $a, b \in \mathcal{S}$, which is itself a $*$-subspace. We have $\mathcal{S} \subset \mathcal{S}^{(1)}$, and $\mathcal{S}=\mathcal{S}^{(1)}$ when \mathcal{S} is a subalgebra.

Generalized USPF

Let \mathcal{S} be a $*$-subspace of \mathcal{A}, and let $\Lambda: \mathcal{S}^{(1)} \mapsto \mathbb{C}$ be a linear map with the following properties:
(1) $\Lambda\left(a^{*}\right)=\overline{\Lambda(a)}$ for all $a \in \mathcal{S}^{(1)}$;
(2) $\wedge\left(a^{*} a\right) \geq 0$ for all $f \in \mathcal{S}$.
(3) $\wedge(1)=1$.

As in the case of ordinary polynomials, a linear map \wedge with the properties (1)-(3) is said to be a unital square positive functional (briefly a uspf).

If $\Lambda: \mathcal{S}^{(1)} \mapsto \mathbb{C}$ is a uspf, we have the Cauchy-Schwarz inequality

$$
\left|\Lambda\left(a^{*} b\right)\right|^{2} \leq \Lambda\left(a^{*} a\right) \wedge\left(b^{*} b\right), a, b \in \mathcal{S}
$$

Putting $\mathcal{I}_{\Lambda}=\left\{a \in \mathcal{S} ; \Lambda\left(a^{*} a\right)=0\right\}$, the Cauchy-Schwarz inequality shows that \mathcal{I}_{Λ} is a vector subspace of \mathcal{S} and that $\mathcal{S} \ni f \mapsto \Lambda\left(a^{*} a\right)^{1 / 2} \in \mathbb{R}_{+}$is a seminorm.

In fact, $I_{\Lambda}=\{a \in \mathcal{S} ; \wedge(b a)=0 \forall b \in \mathcal{S}\}$. Moreover, the quotient
$\mathcal{S} / \mathcal{I}_{\Lambda}$ is an inner product space, with the inner product given by
$\left\langle a+\mathcal{I}_{\Lambda}, b+\mathcal{I}_{\Lambda}\right\rangle=\Lambda^{\left(b^{*} a\right)}$.
If \mathcal{S} is finite dimensional, then $\mathcal{S} / \mathcal{I}_{\Lambda}$ is actually a Hilbert space.

If $\Lambda: \mathcal{S}^{(1)} \mapsto \mathbb{C}$ is a uspf, we have the Cauchy-Schwarz inequality

$$
\left|\Lambda\left(a^{*} b\right)\right|^{2} \leq \Lambda\left(a^{*} a\right) \wedge\left(b^{*} b\right), a, b \in \mathcal{S}
$$

Putting $\mathcal{I}_{\Lambda}=\left\{a \in \mathcal{S} ; \Lambda\left(a^{*} a\right)=0\right\}$, the Cauchy-Schwarz inequality shows that \mathcal{I}_{Λ} is a vector subspace of \mathcal{S} and that $\mathcal{S} \ni f \mapsto \Lambda\left(a^{*} a\right)^{1 / 2} \in \mathbb{R}_{+}$is a seminorm.
In fact, $\mathcal{I}_{\Lambda}=\{a \in \mathcal{S} ; \wedge(b a)=0 \forall b \in \mathcal{S}\}$. Moreover, the quotient $\mathcal{S} / \mathcal{I}_{\Lambda}$ is an inner product space, with the inner product given by

$$
\left\langle a+\mathcal{I}_{\Lambda}, b+\mathcal{I}_{\Lambda}\right\rangle=\Lambda\left(b^{*} a\right)
$$

If \mathcal{S} is finite dimensional, then $\mathcal{S} / \mathcal{I}_{\Lambda}$ is actually a Hilbert space.

Let $\mathcal{T} \subset \mathcal{S}$ be a $*$-subspace. If $\Lambda: \mathcal{S}^{(1)} \mapsto \mathbb{C}$ is a uspf, then $\Lambda \mid \mathcal{T}^{(1)}$ is also a uspf, and setting
$\mathcal{I}_{\Lambda, \mathcal{T}}=\left\{a \in \mathcal{T} ; \Lambda\left(a^{*} a\right)=0\right\}=\mathcal{I}_{\Lambda} \cap \mathcal{T}$, there is a natural map

$$
J_{\mathcal{T}, \mathcal{S}}: \mathcal{T} / \mathcal{I}_{\Lambda, \mathcal{T}} \mapsto \mathcal{S} / \mathcal{I}_{\Lambda}, J_{\mathcal{T}, \mathcal{S}}\left(a+\mathcal{I}_{\Lambda, \mathcal{T}}\right)=a+\mathcal{I}_{\Lambda}, a \in \mathcal{T}
$$

The equality

$$
\left\langle a+\mathcal{I}_{\Lambda, \mathcal{T}}, a+\mathcal{I}_{\Lambda, \mathcal{T}}\right\rangle=\Lambda\left(a^{*} a\right)=\left\langle a+\mathcal{I}_{\Lambda}, a+\mathcal{I}_{\Lambda}\right\rangle
$$

shows that the $\operatorname{map} J_{\mathcal{T}, \mathcal{S}}$ is an isometry, in particular it is injective.

We say that the uspf $\Lambda: \mathcal{S}^{(1)} \mapsto \mathbb{C}$ it stable at \mathcal{T}, where $\mathcal{T} \subset \mathcal{S}$ is a function subspace, if we have the equality $\mathcal{J}_{\mathcal{T}, \mathcal{S}}\left(\mathcal{T} / \mathcal{I}_{\Lambda, \mathcal{T}}\right)=\mathcal{S} / \mathcal{I}_{\Lambda}$
The equality $J_{\mathcal{T}, \mathcal{S}}\left(\mathcal{T} / I_{\Lambda, S}\right)=S / I_{\Lambda}$ is equivalent to the property $\mathcal{T}+\mathcal{I}_{\Lambda}=\mathcal{S}$; in other words, for every $a \in \mathcal{S}$ we can find a $b \in \mathcal{T}$ such that $a-b \in \mathcal{I}_{\Lambda}$. In particular, the spaces $\mathcal{T} / \mathcal{I}_{\Lambda, \mathcal{T}}$ and $\mathcal{S} / \mathcal{I}_{\Lambda}$ have the same dimension.

Of course, this is again a version of that of flatness, introduced by Curto and Fialkow.

We say that the uspf $\wedge: \mathcal{S}^{(1)} \mapsto \mathbb{C}$ it stable at \mathcal{T}, where $\mathcal{T} \subset \mathcal{S}$ is a function subspace, if we have the equality
$\mathcal{J}_{\mathcal{T}, \mathcal{S}}\left(\mathcal{T} / \mathcal{I}_{\Lambda, \mathcal{T}}\right)=\mathcal{S} / \mathcal{I}_{\Lambda}$
The equality $\mathcal{J}_{\mathcal{T}, \mathcal{S}}\left(\mathcal{T} / \mathcal{I}_{\Lambda, \mathcal{S}}\right)=\mathcal{S} / \mathcal{I}_{\Lambda}$ is equivalent to the property $\mathcal{T}+\mathcal{I}_{\Lambda}=\mathcal{S}$; in other words, for every $a \in \mathcal{S}$ we can find a $b \in \mathcal{T}$ such that $a-b \in \mathcal{I}_{\Lambda}$. In particular, the spaces $\mathcal{T} / \mathcal{I}_{\Lambda, \mathcal{T}}$ and $\mathcal{S} / \mathcal{I}_{\Lambda}$ have the same dimension.

Of course, this is again a version of that of flatness, introduced by Curto and Fialkow.

We say that the uspf $\Lambda: \mathcal{S}^{(1)} \mapsto \mathbb{C}$ it stable at \mathcal{T}, where $\mathcal{T} \subset \mathcal{S}$ is a function subspace, if we have the equality
$\mathcal{J}_{\mathcal{T}, \mathcal{S}}\left(\mathcal{T} / \mathcal{I}_{\Lambda, \mathcal{T}}\right)=\mathcal{S} / \mathcal{I}_{\Lambda}$
The equality $\mathcal{J}_{\mathcal{T}, \mathcal{S}}\left(\mathcal{T} / \mathcal{I}_{\Lambda, \mathcal{S}}\right)=\mathcal{S} / \mathcal{I}_{\Lambda}$ is equivalent to the property $\mathcal{T}+\mathcal{I}_{\Lambda}=\mathcal{S}$; in other words, for every $a \in \mathcal{S}$ we can find a $b \in \mathcal{T}$ such that $a-b \in \mathcal{I}_{\Lambda}$. In particular, the spaces $\mathcal{T} / \mathcal{I}_{\Lambda, \mathcal{T}}$ and $\mathcal{S} / \mathcal{I}_{\Lambda}$ have the same dimension.

Of course, this is again a version of that of flatness, introduced by Curto and Fialkow.

Polynomial Type Algebras

Let \mathcal{A} be a complex involutive algebra, with unit. The algebra \mathcal{A} is said to be a polynomial type algebra if there exists an algebraic basis $\mathcal{B}=\cup_{m=0}^{\infty} \mathcal{B}_{m}$ of \mathcal{A} such that $\mathcal{B}_{0}=\{1\}, 1 \in \mathcal{B}_{m}$, \mathcal{B}_{m} is finite and invariant under involution, and
$\mathcal{B}_{m_{1}} \cdot \mathcal{B}_{m_{2}}=\mathcal{B}_{m_{1}+m_{2}}$ for all integers $m, m_{1}, m_{2} \geq 0$.
Note that $\mathcal{B}_{m_{1}} \subset \mathcal{B}_{m_{2}}$ whenever $m_{1} \leq m_{2}$, and that the basis \mathcal{B} is
closed under multiplication.

Polynomial Type Algebras

Let \mathcal{A} be a complex involutive algebra, with unit. The algebra \mathcal{A} is said to be a polynomial type algebra if there exists an algebraic basis $\mathcal{B}=\cup_{m=0}^{\infty} \mathcal{B}_{m}$ of \mathcal{A} such that $\mathcal{B}_{0}=\{1\}, 1 \in \mathcal{B}_{m}$, \mathcal{B}_{m} is finite and invariant under involution, and
$\mathcal{B}_{m_{1}} \cdot \mathcal{B}_{m_{2}}=\mathcal{B}_{m_{1}+m_{2}}$ for all integers $m, m_{1}, m_{2} \geq 0$.
Note that $\mathcal{B}_{m_{1}} \subset \mathcal{B}_{m_{2}}$ whenever $m_{1} \leq m_{2}$, and that the basis \mathcal{B} is closed under multiplication.

Using the previous notation, let \mathcal{S}_{m} be the vector space spanned by \mathcal{B}_{m}. Then the collection $\left(\mathcal{S}_{m}\right)_{m \geq 0}$ is an increasing family of finite dimensional $*$-subspaces of \mathcal{A} such that $\mathcal{S}_{0}=\mathbb{C} \cdot 1, \mathcal{S}_{m_{1}} \cdot \mathcal{S}_{m_{2}} \subset \mathcal{S}_{m_{1}+m_{2}}$ for all integers $m_{1}, m_{2} \geq 0$, and $\cup_{m=0}^{\infty} \mathcal{S}_{m}=\mathcal{A}$. Moreover, we have the equality $\mathcal{S}_{m}^{(1)}=\mathcal{S}_{2 m}$ for all integers $m \geq 1$.

The degree of an arbitrary element $a \in \mathcal{A}$, which is not a multiple of 1 , is the least integer $m \geq 1$ such that $a \in \mathcal{S}_{m} \backslash \mathcal{S}_{m-1}$ The degree of a multiple of 1 is equal to 0 . The degree of $a \in \mathcal{A}$ is denoted by deg(a). With this notation, we have $\mathcal{S}_{m}=\{a \in \mathcal{A} ; \operatorname{deg}(a) \leq m\}$. Note also that $\operatorname{deg}(a)=\operatorname{deg}\left(a^{*}\right)$ for

Using the previous notation, let \mathcal{S}_{m} be the vector space spanned by \mathcal{B}_{m}. Then the collection $\left(\mathcal{S}_{m}\right)_{m \geq 0}$ is an increasing family of finite dimensional $*$-subspaces of \mathcal{A} such that $\mathcal{S}_{0}=\mathbb{C} \cdot 1, \mathcal{S}_{m_{1}} \cdot \mathcal{S}_{m_{2}} \subset \mathcal{S}_{m_{1}+m_{2}}$ for all integers $m_{1}, m_{2} \geq 0$, and $\cup_{m=0}^{\infty} \mathcal{S}_{m}=\mathcal{A}$. Moreover, we have the equality $\mathcal{S}_{m}^{(1)}=\mathcal{S}_{2 m}$ for all integers $m \geq 1$.
The degree of an arbitrary element $a \in \mathcal{A}$, which is not a multiple of 1 , is the least integer $m \geq 1$ such that $a \in \mathcal{S}_{m} \backslash \mathcal{S}_{m-1}$. The degree of a multiple of 1 is equal to 0 . The degree of $a \in \mathcal{A}$ is denoted by $\operatorname{deg}(a)$. With this notation, we have $\mathcal{S}_{m}=\{a \in \mathcal{A} ; \operatorname{deg}(a) \leq m\}$. Note also that $\operatorname{deg}(a)=\operatorname{deg}\left(a^{*}\right)$ for all $a \in \mathcal{A}$.

EXAMPLE The algebra \mathcal{P} of all polynomials in n real variables, with complex coefficients (endowed with the natural involution $p \mapsto \bar{p}$) is, of course, a polynomial algebra.
The subset $\mathcal{M}=\left\{t^{\alpha} ; \alpha \in \mathbb{Z}_{+}^{n}\right\}=\cup_{m \geq 0} \mathcal{M}_{m}$ is an algebraic basis for the algebera \mathcal{P}, where $\mathcal{M}_{m}=\left\{t^{\alpha} ;|\alpha| \leq m\right\}$, and $m \geq 0$ is an integer. Clearly, \mathcal{P}_{m} is spanned by \mathcal{M}_{m}.

EXAMPLE Let $\mathbf{X}=\left\{X_{1}, \ldots, X_{n}\right\}$ be a finite family of indeterminates, and let $\mathcal{F}[\mathbf{X}]$ be the complex unital algebra freely generated by \mathbf{X}, whose unit is designated by $\mathbf{1}$. Let \mathcal{W} be the monoid generated by $\mathbf{X} \cup\{\mathbf{1}\}$. The lenght of an element $W \in \mathcal{W} \backslash\{\mathbf{1}\}$ is equal to the number of elements of \mathbf{X} which occur in the representation of W. The length of 1 is equal to zero and the multiplication of every element $W \in \mathcal{W} \backslash\{\mathbf{1}\}$ by $\mathbf{1}$ does not change its length.
If \mathcal{W}_{m} is the subset of those elements from \mathcal{W} of lenght $\leq m$, with $m \geq 0$ an arbitrary integer, then $\mathcal{W}=\cup_{m \geq 0} \mathcal{W}_{m}$ is an algebraic basis of $\mathcal{F}[\mathbf{X}]$. Setting $W^{*}=X_{j_{m}} X_{j_{m-1}} \cdots X_{j_{1}}$ for every $W=X_{j_{1}} \cdots X_{j_{m-1}} X_{j_{m}} \in \mathcal{W} \backslash\{\mathbf{1}\}, \mathbf{1}^{*}=\mathbf{1}$, and $(c W)^{*}=\bar{c} W$ for all complex numbers c, we define an involution $P \mapsto P^{*}$ on $\mathcal{F}[\mathbf{X}]$, extending this assignment by additivity. In this way, the algebra $\mathcal{F}[\mathbf{X}]$ becomes a (noncommutative) polynomial type algebra.

Let \mathcal{F}_{m} be the subspace spanned in $\mathcal{F}[\mathbf{X}]$ by the set \mathcal{W}_{m}, for every integer $m \geq 0$. As in the case of ordinary polynomials, if $\gamma=\left(\gamma_{W}\right)_{W \in \mathcal{W}_{2 m}}$ is a family of complex numbers, we may define a linear map $\Lambda_{\gamma}: \mathcal{F}_{2 m} \mapsto \mathbb{C}$, extending the assignment $W \mapsto \gamma_{W}$ by linearity. Moreover, assuming that $\gamma_{0}=1, \gamma_{W^{*}}=\overline{\gamma_{W}}$ for all $W \in \mathcal{W}_{2 m}$, and

$$
\sum_{j, k=0}^{d_{m}} \bar{c}_{j} c_{k} \gamma w_{j}^{*} w_{k}
$$

for all complex numbers $\left\{c_{0}, \ldots, c_{d_{m}}\right\}$, where $d_{m}+1$ is the cardinal of $\mathcal{W}_{m}=\left\{W_{0}=\mathbf{1}, W_{1}, \ldots, W_{d_{m}}\right\}$, the map Λ_{γ} becomes a uspf.

Truncated moment problems related to a uspf $\Lambda: \mathcal{F}_{2 m} \mapsto \mathbb{C}$,
when Λ is a tracial map (i.e. Λ is null on commutators) have been recently studied by S. Burgdorf and

Let \mathcal{F}_{m} be the subspace spanned in $\mathcal{F}[\mathbf{X}]$ by the set \mathcal{W}_{m}, for every integer $m \geq 0$. As in the case of ordinary polynomials, if $\gamma=\left(\gamma_{W}\right)_{W \in \mathcal{W}_{2 m}}$ is a family of complex numbers, we may define a linear map $\Lambda_{\gamma}: \mathcal{F}_{2 m} \mapsto \mathbb{C}$, extending the assignment $W \mapsto \gamma_{W}$ by linearity. Moreover, assuming that $\gamma_{0}=1, \gamma_{W^{*}}=\overline{\gamma_{W}}$ for all $W \in \mathcal{W}_{2 m}$, and

$$
\sum_{j, k=0}^{d_{m}} \bar{c}_{j} c_{k} \gamma w_{j}^{*} w_{k}
$$

for all complex numbers $\left\{c_{0}, \ldots, c_{d_{m}}\right\}$, where $d_{m}+1$ is the cardinal of $\mathcal{W}_{m}=\left\{W_{0}=\mathbf{1}, W_{1}, \ldots, W_{d_{m}}\right\}$, the map Λ_{γ} becomes a uspf.

Truncated moment problems related to a uspf $\Lambda: \mathcal{F}_{2 m} \mapsto \mathbb{C}$, when Λ is a tracial map (i.e. Λ is null on commutators) have been recently studied by S. Burgdorf and I. Klep.

Let \mathcal{A} be a polynomial type algebra with the basis $\mathcal{B}=\cup_{m=0}^{\infty} \mathcal{B}_{m}$. For each $a \in \mathcal{A}$ there exists an integer $m \geq 0$ such that $a \in \mathcal{S}_{m}$. Since \mathcal{B}_{m} an algebraic basis of \mathcal{S}_{m}, we can write $a=\sum_{k=0}^{d_{m}} \alpha_{k} b_{k}$, where $d_{m}+1$ is the cardinal of $\mathcal{B}_{m}=\left\{b_{0}=\mathbf{1}, b_{1}, \ldots, b_{d_{m}}\right\}, \alpha_{k}$ are complex numbers and $b_{k} \in \mathcal{B}_{m}$, where $b_{0}=1$. Setting $\alpha_{k}=0$ if $k>d_{m}$, we can write $a=\sum_{k \geq 0} \alpha_{k} b_{k}$, and this representation is unique.
On the algebra \mathcal{A}, we may define a scalar product given by $\left(a_{1} \mid a_{2}\right)=\sum_{k>0} \alpha_{1 k} \overline{\alpha_{2 k}}$, where $a_{j}=\sum_{k>0} \alpha_{j k} b_{k}, j=1,2$. With respect to this scalar product, the algebraic basis \mathcal{B} is also an orthonormal family.
In particular, if $m \geq 0$ is any integer, the finite dimensional
space \mathcal{S}_{m} has a Hilbert space structure induced by the scala product from above, such that the family of elements from \mathcal{B}_{m} is an orthonormal basis of S_{m}.

Let \mathcal{A} be a polynomial type algebra with the basis $\mathcal{B}=\cup_{m=0}^{\infty} \mathcal{B}_{m}$. For each $a \in \mathcal{A}$ there exists an integer $m \geq 0$ such that $a \in \mathcal{S}_{m}$. Since \mathcal{B}_{m} an algebraic basis of \mathcal{S}_{m}, we can write $a=\sum_{k=0}^{d_{m}} \alpha_{k} b_{k}$, where $d_{m}+1$ is the cardinal of $\mathcal{B}_{m}=\left\{b_{0}=\mathbf{1}, b_{1}, \ldots, b_{d_{m}}\right\}, \alpha_{k}$ are complex numbers and $b_{k} \in \mathcal{B}_{m}$, where $b_{0}=1$. Setting $\alpha_{k}=0$ if $k>d_{m}$, we can write $a=\sum_{k \geq 0} \alpha_{k} b_{k}$, and this representation is unique.
On the algebra \mathcal{A}, we may define a scalar product given by $\left(a_{1} \mid a_{2}\right)=\sum_{k \geq 0} \alpha_{1 k} \overline{\alpha_{2 k}}$, where $a_{j}=\sum_{k \geq 0} \alpha_{j k} b_{k}, j=1,2$. With respect to this scalar product, the algebraic basis \mathcal{B} is also an orthonormal family.
In particular, if $m \geq 0$ is any integer, the finite dimensional space \mathcal{S}_{m} has a Hilbert space structure induced by the scalar product from above, such that the family of elements from \mathcal{B}_{m} is an orthonormal basis of \mathcal{S}_{m}.

L et $\Lambda: \mathcal{S}_{2 m} \mapsto \mathbb{C}(m \geq 1)$ be a uspf such that $\Lambda \mid \mathcal{B}_{2 m}$ has real values. Lat also $A_{m-1}=\left(\Lambda\left(b_{k}^{*} b_{j}\right)\right)_{0 \leq j, k \leq d_{m-1}}$ which is a positive matrix with real entries, acting as an operator on \mathbb{C}^{N}, where $N=1+d_{m-1}$. By identifying the space \mathcal{S}_{m-1} with \mathbb{C}^{N}, A_{m-1} is the operator with the property $\left(A_{m-1} f \mid g\right)=\Lambda\left(g^{*} f\right)$ for all $f, g \in \mathcal{S}_{m-1}$.
For each index ℓ with $d_{m-1}<\ell \leq d_{m}$, we put
$h_{\ell}=\left(\Lambda\left(b_{\ell}^{*} b_{k}\right)_{0 \leq k \leq d_{m-1}} \in \mathbb{R}^{N}\right.$ and $c_{\ell}=\Lambda\left(b_{\ell}^{*} b_{\ell}\right)$. With this notation, the equation (ASE) becomes

$$
\left(A_{m-1} x \mid x\right)-2\left(h_{\ell} \mid x\right)+c_{\ell}=0
$$

which is again called the stability equation of the uspf Λ.

For $\Lambda: \mathcal{S}_{2 m} \mapsto \mathbb{C}$ a uspf, if $0 \leq k \leq m$, as in the commutative case, we put $\mathcal{I}_{k}=\mathcal{I}_{\Lambda, \mathcal{S}_{k}}=\left\{p \in \mathcal{S}_{k} ; \Lambda\left(|p|^{2}\right)=0\right\}$, and $\mathcal{H}_{k}=\mathcal{S}_{k} / \mathcal{I}_{k}$, which are finite dimensional Hilbert spaces. The stability of Λ at $m-1$ (i.e. $\operatorname{dim} \mathcal{H}_{m-1}=\operatorname{dim} \mathcal{H}_{m}$) is given by the following (using the previous notation).

For $\Lambda: \mathcal{S}_{2 m} \mapsto \mathbb{C}$ a uspf, if $0 \leq k \leq m$, as in the commutative case, we put $\mathcal{I}_{k}=\mathcal{I}_{\Lambda, \mathcal{S}_{k}}=\left\{p \in \mathcal{S}_{k} ; \Lambda\left(|p|^{2}\right)=0\right\}$, and $\mathcal{H}_{k}=\mathcal{S}_{k} / \mathcal{I}_{k}$, which are finite dimensional Hilbert spaces. The stability of Λ at $m-1$ (i.e. $\operatorname{dim} \mathcal{H}_{m-1}=\operatorname{dim} \mathcal{H}_{m}$) is given by the following (using the previous notation).

THEOREM The uspf $\Lambda: \mathcal{S}_{2 m} \mapsto \mathbb{C}(m \geq 1)$ such that $\Lambda \mid \mathcal{B}_{2 m}$ has real values is stable at $m-1$ if and only if, whenever $h_{\ell} \in R\left(A_{m-1}\right)$, we have $c_{\ell} \leq\left(f_{\ell} \mid h_{\ell}\right)$ for some (and therefore for all) $f_{\ell} \in A_{m-1}^{-1}\left(\left\{h_{\ell}\right\}\right)$, where $d_{m-1}<\ell \leq d_{m}$.

Summary

- The stability equation leads to a local characterization to the "dimensional stability", whch is in turn equivalent to the "flatness" of Curto and Fialkow.
- In the noncommutative case, a "solution" to the (nonstated) moment problem for a uspf $\Lambda: \mathcal{S}_{2 m} \mapsto \mathbb{C}$ might follow from the identification of the final Hilbert space \mathcal{H}_{m} with a sub- C^{*}-algebra of the C^{*}-algebra of all linear operators on \mathcal{H}_{m}.

