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1 Introduction

The importance of the quotient vector
spaces and associated morphisms has been
emphasized in a long series of papers by
L. Waelbroeck.
The Fredholm and spectral theory, de-

veloped in the framework of quotient
Banach spaces also has some interest-
ing aspects (E. Albrecht and F.-H. V.).
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Giving two (real or complex) vector
spacesX and Y , following Arens (1961),
a linear relation (or simply relation) is
any subspace Z ∈ Lat(X × Y). For
such a relation Z, we use the following
notation. Set D(Z) = {x ∈ X ; ∃y ∈
Y : (x, y) ∈ Z}, R(Z) = {y ∈ Y ; ∃x ∈
X : (x, y) ∈ Z}, which are the domain,
respectively the range of Z. We also use
the spacesN(Z) = {x ∈ D(Z); (x, 0) ∈
Z},
M(Z) = {y ∈ R(Z); (0, y) ∈ Z}, which
are the kernel, respectively the multi-
valued part of Z. The inverse Z−1 ∈
Lat(Y ,X ) of the relation Z ∈ Lat(X ,Y)
is given by {(y, x); (x, y) ∈ Z}.
The concept of relation is equivalent

to that of multivalued linear operator.

2



Given two relations Z ′′ ∈ Lat(X ×Y)
and Z ′ ∈ Lat(Y×Z), their product (or
composition) is the relation Z ′ ◦ Z ′′ ∈
Lat(X × Z) defined by

Z ′ ◦ Z ′′ = {(x, z) ∈ X × Z ; ∃y ∈ Y :

(x, y) ∈ Z ′′, (y, z) ∈ Z ′}.

2 Fredholm applications

Having in mind the case of unbounded
linear operators in normed spaces, we
first discuss linear transformations which
are not, in general, everywhere defined.
Specifically, we consider linear maps

between two vector spaces X and Y
having the form

T : D(T ) ⊂ X 7→ Y,
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whereD(T ), which is itself a vector space,
is the domain of definition of T . The
range of T , the kernel (or the null space)
of T and the graph of T will be denoted
by R(T ), N(T ) and G(T ), respectively.
Given T : D(T ) ⊂ X 7→ Y and

S : D(S) ⊂ Y 7→ Z, we define their
composition S ◦ T in the following way.
The domain D(S ◦T ) ⊂ D(T ) is given
by T−1(D(S)) and (S◦T )(x) = S(T (x))
for all x ∈ D(S ◦ T ).
When T : X 7→ Y and S : Y 7→ Z,

the composition S ◦ T will be simply
denoted by ST .
As usually, we say that a linear map

T : D(T ) ⊂ X 7→ Y is Fredholm if
both dimN(T ) and dimY/R(T ) are fi-
nite.
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In that case, the (algebraic) index of
T , denoted by ind(T ), is given by

ind(T ) = dimN(T )− dimY/R(T ).

The next assertion extends the stan-
dard multiplication result for the Fred-
holm index.
Theorem 2.1 Let T : D(T ) ⊂ X 7→
Y, S : D(S) ⊂ Y 7→ Z be Fredholm
maps. Then S ◦ T is Fredholm and

ind(S ◦ T ) = ind(S) + ind(T )+

dimY/(R(T ) + D(S)).

Remark 2.2 If T : X 7→ Y and
S : Y 7→ Z are Fredholm maps, the
previous theorem gives the well known
classical formula ind(ST ) = ind(S) +
ind(T ), which is the multiplication of
the Fredholm index.
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3 Quotient morphisms

Let X be a (real or complex) vector
space and let Lat(X ) denote the lattice
of all vector subspaces of X . Let also
Q(X ) be the family of all (quotient)
vector spaces of the form X/X0, with
X0, X ∈ Lat(X ), X0 ⊂ X .

Remark 3.1 (1) There is a natural par-
tial order in Q(X ), defined in the fol-
lowing way. We write X/X0 ≺ Y/Y0
if X ⊂ Y and X0 ⊂ Y0. In thie case,
there exists a natural map X/X0 3
x + X0 7→ x + Y0 ∈ Y/Y0 called the
q-inclusion of X/X0 into Y/Y0. This
map is injective iff X ∩ Y0 = X0, sur-
jective iffX+Y0 = Y , and therefore bi-
jective iffX∩Y0 = X0 and Y = X+Y0.
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Note that we have X/(X ∩ Y ) ≺
(X + Y )/Y but the q-inclusion is, in
this case, a classical isomorphism. Nev-
ertheless, ifX/X0 ≺ Y/Y0 and Y/Y0 ≺
X/X0, then X/X0 = Y/Y0.
(2) In the set Q(X) we may define

the q-intersection and the q-sum of two
(or several) spaces, denoted by e and ]
respectively, via the formulas
X/X0 eY/Y0 = (X ∩Y )/(X0∩Y0),
X/X0]Y/Y0 = (X +Y )/(X0 +Y0),

for any pair of spaces X/X0, Y/Y0 ∈
Q(X). WhenX0 = Y0, the q-intersection
is actually intersection and the q-sum is
actually the sum of the corresponding
vector spaces.
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Definition 3.2 A quotient morphism (or,
simply, a q-morphism) from X into Y
is any linear map T : X/X0 7→ Y/Y0,
whereX/X0 ∈ Q(X ) and Y/Y0 ∈ Q(Y).
When there exists a linear map T0 :

X 7→ Y with T0(X0) ⊂ Y0 such that
T (x + X0) = T0x + Y0, x ∈ X , the
q-morphism T : X/X0 7→ Y/Y0 is said
to be induced (by T0).

This concept is similar to that of mor-
phism defined by Waelbroeck (who also
noticed that there exist q-morphisms which
are not induced by any linear map).
The family of all quotient morphisms

fromX into Y will be denoted byQM(X ,Y).
When X = Y , the family QM(X ,Y)
will be denoted by QM(X ).
Let T : D(T ) 7→ Y/Y0 be a given
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q-morphism in QM(X ,Y). The space
D(T ), which is the domain of T , can be
written as D0(T )/X0, where D0(T ) is
called the lifted domain of T .
The range R(T ) = T (D(T )) of T

can be represented as R0(T )/Y0, where
R0(T ) ∈Lat(Y) is said to the lifted range
of T .
The graphG(T ) of T inX/X0×Y/Y0

is isomorphic toG0(T )/(X0×Y0), where

G0(T ) = {(x, y) ∈ X × Y ;

T (x + X0) = y + Y0} ∈ Lat(X × Y)

is called the lifted graph of T .
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Definition 3.3 Let Tj : Xj/X0j 7→
Yj/Y0j, j = 1, 2, . . . , n, be quotient mor-
phisms from QM(X ,Y). We define
the q-sum of these morphisms, and de-
note it by T1 ] T2 ] · · · ] Tn or by
]nj=1Tj, the q-morphism

]nj=1Tj : enj=1Xj/X0j 7→ ]nj=1Yj/Y0j

given by the formula

]nj=1Tj =

n∑
j=1

BjTjAj,

where

Aj : enk=1Xk/X0k 7→ Xj/X0j

and

Bj : Yj/Y0j 7→ ]nk=1Yk/Y0k

are the q-inclusions (j = 1, 2, . . . , n).
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Remark 3.4 Let X/X0 ∈ Q(X ),
Y/Y0, Z/Z0 ∈ Q(Y) andW/W0 ∈ Q(W).
Let also T : X/X0 7→ Y/Y0 and S :
Z/Z0 7→ W/W0 be q-morphisms. We
define a “ composition” of the maps S
and T in the following way.
We first consider the subspace

(Y ∩Z+Y0)/Y0 = (Y/Y0)∩((Z+Y0)/Y0),

and the map

T0 : D(T0) 7→ (Y ∩ Z + Y0)/Y0,

where D(T0) = T−1((Y ∩Z+Y0)/Y0).
Clearly, N(T0) = N(T ), R(T0) =
(R0(T )∩Z +Y0)/Y0, and so R0(T0) =
R0(T ) ∩ Z + Y0.
Secondly, we note that there exists a

natural map

U : (Y ∩Z+Y0)/Y0 7→ Z/(Y0∩Z+Z0).
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The map U is the composition of the
isomorphism of (Y ∩ Z + Y0)/Y0 onto
the space (Y ∩ Z)/(Y0 ∩ Z) and the
q-inclusion of (Y ∩ Z)/(Y0 ∩ Z) into
Z/(Y0 ∩ Z + Z0).
Thirdly, let S◦ be the restriction

S|(Y0 ∩ Z + Z0)/Z0. The map S in-
duces a map

S0 : Z/(Y0 ∩ Z + Z0) 7→ W/R0(S◦),

via the natural isomorphism between
(Z/Z0)/((Y0 ∩ Z + Z0)/Z0) and
Z/(Y0 ∩ Z + Z0). Moreover, the space
(W/R0(S◦))/R(S0) is isomorphic to
W/R0(S).
Clearly, the composition S0UT0 is well

defined. The map S0UT0 will be desig-
nated by S ◦q T .
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We therefore have

S ◦q T : D(T0) ⊂ X/X0 7→
R0(S0)/R0(S◦) ⊂ W/R0(S◦).

The map S ◦q T will be called the
q-composition of the maps S and T .
An important particular case of the

construction from above is obtained when
Z/Z0 ≺ Y/Y0. In this case, T0 : D(T0) 7→
(Y0 + Z)/Y0, the map U is the natu-
ral isomorphism U : (Y0 + Z)/Y0 7→
Z/(Y0 ∩ Z) and S0 : Z/(Y0 ∩ Z) 7→
W/R0(S◦).
Note that for two linear maps T :

D(T ) ⊂ X 7→ Y and S : D(S) ⊂
Y 7→ Z, we have the equality S ◦q T =
S ◦ T .
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Remark 3.5 The q-composition defined
in Remark 3.4 occurs in various situa-
tions. Here is an example.
Let T : X/X0 7→ Y/Y0 be a q-morphism

with R(T ) = Y/Y0. We have a natu-
ral map fromR(T ) into (X/X0)/N(T ),
identified with X/N0(T ), given by the
assignement y+Y0 7→ x+N0(T ), when-
ever (x, y) ∈ G0(T ). This q-morphism
will be denoted by T−1 and called the
q-inverse of T . It coincides with the
usual inverse when T is bijective. More-
over,

T−1 ◦ T = J
X/N0(T )
X/X0

,

T ◦q T−1 = IR(T ),

where JX/N0(T )
X/X0

is the q-inclusionX/X0 ≺
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X/N0(T ) and IR(T ) is the identity on
R(T ).

The q-compositons of quotient mor-
phisms is an associative operation:

Proposition 3.6 Let X/X0 ∈ Q(X ),
Y/Y0, Z/Z0 ∈ Q(Y), W/W0, U/U0 ∈
Q(W) and V/V0 ∈ Q(V). Let also
T : X/X0 7→ Y/Y0, S : Z/Z0 7→
W/W0 and P : U/U0 7→ V/V0 be q-
morphisms. Then

P ◦q (S ◦q T ) = (P ◦q S) ◦q T.
Remark 3.7 (1) From now on we write
the q-composition S ◦q T simply S ◦T .
(2) Let T : X/X0 7→ Y/Y0 be a q-

morphism with R(T ) = Y/Y0 and let
T−1 : R0(T )/Y0 → X/N0(T ) (as in
Remark 3.5). We can show that T−1 is
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the only surjective q-morphism
S : R0(T )/Y0 → X/N0(T ) satisfying
T ◦ S = IR(T ).
(3) As in the previous section, we say

that a q-morphism T : X/X0 7→ Y/Y0
is Fredholm if both dimN(T ) and
dim(Y/Y0)/R(T ) = dimY/R0(T ) are
finite. In that case, the index of T , de-
noted by ind(T ), is given by

ind(T ) = dimN(T )− dimY/R0(T ).

In particular, the q-inclusion of X/X0
into Y/Y0, say Q, is Fredholm if and
only if dimN(Q) = dim(X ∩ Y0)/X0
and codimR(Q) = dimY/(X + Y0) are
both finite.

16



Theorem 2.1 applies to the case when
T : X/X0 7→ Y/Y0 and S : D(S) ⊂
Y/Y0 7→ Z/Z0 are Fredholm q-morphisms.
More generally, we have:

Theorem 3.8 Let X/X0 ∈ Q(X ),
Y/Y0, Z/Z0 ∈ Q(Y) andW/W0 ∈ Q(W).
Let also T : X/X0 7→ Y/Y0 and S :
Z/Z0 7→ W/W0 be q-morphisms. As-
sume that the maps S, T are Fredholm
and that dim(Y ∩ Z0)/(Y0 ∩ Z0) < ∞
and dimZ/(Y ∩Z+Z0) <∞ are finite.
Then dimY/(R0(T ) + Y ∩ Z)) < ∞,
dim(Y0 ∩ N0(S) + Z0)/Z0) < ∞ the
map S ◦ T is Fredholm and we have

ind(S ◦ T ) = ind(T ) + ind(S)+

dim(Y ∩Z0)/(Y0∩Z0)+dimY/(R0(T )+Y ∩Z)

−dim(N0(S)∩Y0+Z0)/Z0−dimZ/(Y ∩Z+Z0).
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Theorem 3.8 has the following impor-
tant consequence

Corollary 3.9 LetX/X0 ∈ Q(X ), Y/Y0, Z/Z0 ∈
Q(Y) andW/W0 ∈ Q(W) be such that
Z/Z0 ≺ Y/Y0. Let also T : X/X0 7→
Y/Y0 and S : Z/Z0 7→ W/W0 be q-
morphisms.
If the maps S, T are Fredholm, then

the dimensions

dimY/(R0(T )+Z) and dim(Y0∩N0(S))/Z0

are finite, the map S ◦ T is Fredholm
and we have

ind(S ◦ T ) = ind(T ) + ind(S)+

dimY/(R0(T )+Z)−dim(N0(S)∩Y0)/Z0.
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Remark 3.10 (1) The map U :
(Y ∩ Z + Y0)/Y0 7→ Z/(Y0 ∩ Z + Z0)
from Remark 3.4 is an isomorphism if
and only if Y ∩ Z0 = Y0 ∩ Z0 and
Y ∩ Z + Z0 = Z. For this reason,
assuming T, S Fredholm and replacing
the condition Z/Z0 ≺ Y/Y0 by the more
general condition Y ∩Z0 = Y0∩Z0 and
Y ∩ Z + Z0 = Z in the statement of
Corollary 3.9, we get the formula

ind(S ◦ T ) = ind(T ) + ind(S)

+dimY/(R0(T ) + Y ∩ Z)

−dim(N0(S) ∩ Y0 + Z0)/Z0,

via a similar argumrnt.
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(2) Let T : X/X0 7→ Y/Y0 be a q-
morphism with X/X0 ≺ Y/Y0. We
may consider the iterates T ◦T , T ◦T ◦T
etc., which are unambiguously defined.
In fact, defining T 0 as the q-inclusion
X/X0 ≺ Y/Y0, for every integer n ≥ 1
we may define by induction Tn = T ◦
Tn−1. Note that we may actually con-
sider polynomials of T , as Arens did.

4 Linear relations as quotient morphisms

In this section we discuss linear rela-
tions as particular cases of quotient mor-
phisms. The linear relation Z can be
associated with the map QZ : D(Z) 7→
R(Z)/M(Z), whereQZ(x) = y+M(Z)
whenever (x, y) ∈ Z.
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Clearly, QZ is a quotient morphism of
a particular form.

Proposition 4.1 The map

Lat(X ×Y) 3 Z 7→ QZ ∈ QM(X ,Y)

is injective, and its range consists of all
quotient morphisms Q ∈ QM(X ,Y)
of the form Q : X 7→ Y/Y0, which are
surjective.

The previous proposition allows us to
designate the uniquely determined quo-
tient morphism QZ as the morphism of
Z, for any relation Z ∈ Lat(X × Y).
If Z ⊂ X ×Y for some X ∈ Lat(X ),

Y ∈ Lat(Y), the q-morphism fromD(Z)
into Y/M(Z) induced by QZ will be
designated by QYZ .
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Proposition 4.2 Given two relations
Z ′′ ∈ Lat(X × Y) and Z ′ ∈ Lat(Y ×
Z), we have the equality

QZ ′◦Z ′′ = QZ ′ ◦QZ ′′.
Remark 4.3 Let X ∈ Lat(X ), Y ∈
Lat(Y) and let Z ⊂ X × Y be a re-
lation. Recall that the relation Z is
said to be Fredholm if both dimN(Z)
and dimY/R(Z) are finite. One sets
ind(Z) = dimN(Z)−dimY/R(Z), which
is the index of Z. Clearly, the index of
Z depends strongly on the space Y .
Note that Z ⊂ X × Y is Fredholm

if and only if the map QYZ : D(Z) 7→
Y/M(Z) induced by the morphism QZ
of Z is Fredholm and ind(Z) = ind(QYZ ).
The next assertion is an extension of

a result by R. Cross.
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Theorem 4.4 LetX, Y,W be linear spaces
and let Z ′′ ⊂ X × Y , Z ′ ⊂ Y × W
be Fredholm relations. Then the dimen-
sions dim(Y/(D(Z ′) + R(Z ′′)) and
dimN(Z ′)∩M(Z ′′) are finite, Z ′ ◦Z ′′
is Fredholm and

ind(Z ′ ◦ Z ′′) = ind(Z ′) + ind(Z ′′)+

dim(Y/(D(Z ′)+R(Z ′′))−dimN(Z ′)∩M(Z ′′).

Corollary 4.5 LetX, Y,W be linear spaces
and let Z ′′ ⊂ X × Y , Z ′ ⊂ Y ×W be
Fredholm relations. Assume thatD(Z ′) =
Y . Then Z ′ ◦ Z ′′ is Fredholm and

ind(Z ′ ◦ Z ′′) = ind(Z ′) + ind(Z ′′)

−dimN(Z ′) ∩M(Z ′′).

The previous corollary is stated in the
monograph by Cross.
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5 The graph norm

Every q-morphism (in particular each
relation) in normed spaces has a graph
type norm on its lifted domain of defi-
nition.

Definition 5.1 LetX ,Y be normed spaces
and let T : X/X0 7→ Y/Y0 be a q-
morphism in QM(X ,Y). We set

‖x‖T = inf{(‖x‖2 + ‖y‖2)1/2;

(x, y) ∈ G0(T )}, x ∈ X.

Theorem 5.2 Let X ,Y be normed spaces
and let T : X/X0 7→ Y/Y0 be a q-
morphism in QM(X ,Y). The map
‖ ∗ ‖T is a norm on X, with the fol-
lowing properties:
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(1) If X ,Y are Banach spaces and G0(T )
is closed, then (X, ‖ ∗ ‖T ) is a Banach
space.

(2) If If X ,Y are Hilbert spaces and
G0(T ) is closed, then (X, ‖ ∗ ‖T ) is a
Hilbert space.
Corollary 5.3 Let X ,Y be normed spaces
and let Z ⊂ X × Y be a relation. The
map
‖x‖Z = inf{(‖x‖2+‖y‖2)1/2; (x, y) ∈ Z}
is a norm on D(Z), with the following
properties:

(1) If X ,Y are Banach spaces and Z
is closed, then (D(Z), ‖ ∗ ‖Z) is a Ba-
nach space.

(2) If If X ,Y are Hilbert spaces and
Z is closed, then (D(Z), ‖ ∗ ‖Z) is a
Hilbert space.
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Remark 5.4 IfX ,Y are normed spaces
and T : X/X0 7→ Y/Y0 is a q-morphism
in QM(X ,Y), we may set

‖x‖T = inf{‖x‖+‖y‖; (x, y) ∈ G0(T )},
for all x ∈ X , which is also a norm
on X , somewhat simpler than that in
the previous theorem. Similarly, if Z ⊂
X × Y is a relation, the quantity

inf{‖x‖ + ‖y‖; (x, y) ∈ Z}, x ∈ D(Z)

is also a norm on D(Z). Nevertheless,
these expressions are inappropriate in
the Hilbert space context.
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6 Analytic functional calculus for linear
relations

Let X denote a (nonnull) complex Ba-
nach space and let B(X) be the Banach
algebra of bounded linear operators de-
fined on X . The symbol C∞ will stand
for the one-point compactification of the
complex plane C. The spectrum and
the resolvent set associated to a relation
will be generally regarded as subsets of
C∞. As usually, we often identify a lin-
ear operator with the relation given by
its graph.
Let Z denote a fixed closed linear re-

lation in X × X . The relation λIX ,
where λ is a complex number and IX is
the “identical relation” {(x, x);x ∈ X},
will be simply denoted by λ.
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A point λ ∈ C is said to be regular for
Z if (λ− Z)−1 ∈ B(X). The point ∞
is regular for Z if there exists an r >
0 such that for every complex λ with
|λ| > r we have (λ − Z)−1 ∈ B(X)
and the set {(λ − Z)−1; |λ| > r} is
bounded in B(X).
The resolvent set of Z is the set of all

regular points λ ∈ C∞.
The spectrum of Z is the set σ(Z) =

C∞ \ ρ(Z) (possibly empty or C∞).

Remark 6.1 (1) If Z = G(A) withA ∈
B(X), then σ(Z) = σ(A), where σ(A)
is the usual spectrum of A.
(2) The point λ ∈ C is a regular point

for Z if and only ifN(λ−Z) = {0} and
R(λ − Z) = X , via the closed graph
theorem.
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(3) If λ ∈ C is a regular point for
Z, the operator (λ − Z)−1 ∈ B(X) is,
in general, neither injective nor surjec-
tive. For instance, if P ∈ B(X) is a
(proper) projection and Z = G(P )−1,
then Z−1 = P is neither injective nor
surjective.
(4) This spectrum is different from that

appearing in the monograph by Cross.

Theorem 6.2 If λ, µ ∈ ρ(Z)∩C, then

(µ− Z)−1 − (λ− Z)−1 =

(λ− µ)(µ− Z)−1(λ− Z)−1.

The resolvent set ρ(Z) is an open sub-
set of C∞ and the resolvent function
ρ(Z)∩C 3 λ 7→ (λ−Z)−1 ∈ B(X) is
analytic and has an analytic extension
to ρ(Z).
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The next result characterizes the empti-
ness of the spectrum of a closed relation.

Corollary 6.3 The spectrum σ(Z) of the
relation Z is a compact subset of C∞.
We have σ(Z) = ∅ if and only if Z =
G(S)−1, where S ∈ B(X) satisfies
S2 = 0.
Furthermore, if S is densely defined,

then σ(Z) 6= ∅.
We denote byO(Z) the set of all func-

tions that are analytic in a neighbor-
hood of σ(Z). When σ(Z) 3 ∞, the
functions from O(Z) are supposed to
be analytic at infinity.
Let U ⊃ σ(Z) be open. We can find

an open set ∆ with σ(Z) ⊂ ∆ ⊂ ∆̄ ⊂
U , whose boundary, say Γ, is a finite
system of rectifiable Jordan curves.
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If f ∈ O(Z) and U is the domain of
definition of f , we set

f (Z) =
1

2πi

∫
Γ
f (λ)(λ− Z)−1dλ,

when ∞ /∈ σ(Z), and

f (Z) = f (∞)IX +
1

2πi

∫
Γ
f (λ)(λ− Z)−1dλ,

when ∞ ∈ σ(Z), where Γ is an admis-
sible contour surrounding σ(T ).
Note that, because of the analyticity

of the involved functions, the operator
f (T ) does not depend on the particular
choice of the contour Γ.

Theorem 6.4 The map f 7→ f (Z) of
O(Z) into B(X) is an algebra homo-
morphism.
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Remark 6.5 If X0, X1 are closed sub-
spaces of X with X0 ∩ X1 = {0} and
X0+X1 closed, we use the symbolX0+̇X1
to express that the sum of X0 and X1
is direct in X . If there exist closed re-
lations Zj ⊂ Xj × Xj, j = 0, 1, then
Z = Z0+̇Z1 is a closed relation with
the property σ(Z) = σ(Z0) ∪ σ(Z1).

In the case of unbounded operators,
the boundedness of the spectrum is equiv-
alent to the boundedness of the corre-
sponding operator. In the case of rela-
tions, we have the following:
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Theorem 6.6 Given a closed relation
Z ⊂ X×X, the boundedness of σ(Z) is
equivalent to the existence of closed sub-
spaces X0, X1 with X0+̇X1 = X, and
operators D0 ∈ B(X0) with D2

0 = 0,
and A1 ∈ B(X1), such that

Z = G(D0)−1+̇G(A1).

In this case, one has σ(Z) = σ(A1).

Corollary 6.7 Given a closed relation
Z ⊂ X ×X with a bounded spectrum,
there exist closed subspaces X0, X1 with
X0+̇X1 = X, and an operator A1 ∈
B(X1), such that f (Z) = 00+̇f (A1) for
every analytic function f in a neighbor-
hood of σ(T ), where 00 is the null oper-
ator on X0.
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Corollary 6.8 Let Z ⊂ X × X be a
densely defined closed relation. The spec-
trum of Z is a bounded subset of C if
and only if Z is the graph of a bounded
operator.
Remark 6.9 For a relation Z ⊂ X ×
X , one can consider its “norm” given by

‖Z‖ = sup
‖x|≤1

inf
(x,y)∈Z

‖y‖.

If ‖Z‖ < ∞, the relation Z is said to
be continuous. It is known (Cross) that
if Z is densely defined, continuous and
σ(Z) ∩ C is bounded, then
limλ→∞(λ − Z)−1 = 0. In this case,
∞ is a regular point for Z, and so Z
is the graph of a bounded operator, by
virtue of the preceding corollary.
Example 6.10 Let P ∈ B(X) be a pro-
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jection with R(P ) 6= X, and let Z =
G(P )−1. We have already noticed that
0 is a regular point of Z (see Remark
6.1(3)). In fact, we can now easily com-
pute the spectrum of Z.
Setting X0 = N(P ) and X1 = R(P ),

we have X = X0+̇X1. Therefore, Z =
G(00)−1+̇G(I1), where 00 is the null
operator on X0 and I1 is the identity
on X1. Using this decomposition, we
obtain σ(Z) = σ(I1) = {1}, via Theo-
rem 6.6.
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