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1. Introduction
Let Zn+ be the set of all multi-

indices α = (α1, ..., αn), let Pn be
the algebra of all polynomial func-
tions in t = (t1, . . . , tn) ∈ Rn with
complex coefficients and let Pn,α
be the vector space generated by
the monomials tβ = t

β1
1 · · · tβnn , with

βj ≤ 2αj,∀j, α ∈ Zn+.
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Set (R∞)n = (R∪{∞})n. Con-
sider the familyQn consisting of all
rational functions of the form
qα(t) = (1+t21)−α1 · · · , (1+t2n)−αn,
t ∈ Rn, where α = (α1, ..., αn) ∈
Zn+ is arbitrary. Set also pα(t) =
qα(t)−1, t ∈ Rn, α ∈ Zn+. The
function qα can be continuously ex-
tended to (R∞)n \Rn for all α ∈
Zn+. The function p/pα can be con-
tinuously extended to (R∞)n\Rn

for every p ∈ Pn,α, and so it can be
regarded as an element ofCR((R∞)n).
Therefore, Pn,α is a subspace of
CR((R∞)n)/qα = pαCR((R∞)n)
for all α ∈ Zn+, and so
Pn ⊂ CR((R∞)n)/Qn,

which is an algebra of fractions.
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Let γ = (γα)α∈Zn+ be an n-sequence
of real numbers and let
Lγ : Pn→ C

be the associated linear functional
given by Lγ(tα) = γα, α ∈ Zn+, ex-
tended by linearity. Recall that the
n-sequence γ = (γα)α∈Zn+ of real
numbers is said to be a moment
sequence if there exists a positive
measure µ on Rn such that tα ∈
L1(µ) and γα = ∫ tα dµ(t), α ∈
Zn+. The measure µ is said to be
a representing measure for γ. Let
us state a characterization of the
moment sequences.
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Theorem 1.1. An n-sequence
γ = (γα)α∈Zn+ (γ0 > 0) of real
numbers is a moment sequence
on Rn if and only if the associ-
ated linear functional Lγ has the
properties Lγ(pα) > 0 and
|Lγ(p)| ≤ Lγ(pα) supt∈Rn |qα(t)p(t)|,
p∈ Pn,α, α ∈ Zn+.
As we havePn ⊂ CR((R∞)n)/Qn,

the linear map Lγ : Pn 7→ C as-
sociated to an n-sequence γ can be
viewed as a linear map on a sub-
space of an algebra of fractions. In
particular, the proof of Theorem
1.1 can be derived from general re-
sults in the framework of algebras
of functions.
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2. Spaces of fractions
of continuous functions
Let Ω be a compact space and let
C(Ω) be the algebra of all complex-
valued continuous functions on Ω,
endowed with the sup norm ‖∗‖∞.
We denote byM(Ω) the space of all
complex-valued Borel measures on
Ω. For every function h ∈ C(Ω),
we set Z(h) = {ω ∈ Ω;h(ω) = 0}.
If µ ∈ M(Ω), we denote by |µ| ∈
M(Ω) the variation of µ.
Let Q be a family of nonnegative

elements of C(Ω). The set Q is
said to be a set of denominators
if (i) 1 ∈ Q, (ii) q′, q′′ ∈ Q im-
plies q′q′′ ∈ Q, and (iii) if qh = 0
for some q ∈ Q and h ∈ C(Ω),
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then h = 0. Using a set of denomi-
nators Q, we can form the algebra
of fractions C(Ω)/Q. If C(Ω)/q =
{f ∈ C(Ω)/Q; qf ∈ C(Ω)}, we
have C(Ω)/Q = ∪q∈QC(Ω)/q.
Setting ‖f‖∞,q = ‖qf‖∞ for each
f ∈ C(Ω)/q, the pair (C(Ω)/q,
‖∗‖∞,q) becomes a Banach space.
Hence, C(Ω)/Q is an inductive limit
of Banach spaces
Set (C(Ω)/q)+ = {f ∈ C(Ω)/q;
qf ≥ 0}, which is a positive cone
for each q.
LetQ0 ⊂ Q, letF = ∑

q∈Q0 C(Ω)/q,
and let ψ : F → C be linear. The
map ψ is continuous if the restric-
tion ψ|C(Ω)/q is continuous for all
q ∈ Q0.
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Let us also remark that the linear
functional ψ : F → C is said to be
positive if ψ|(C(Ω)/q)+ ≥ 0 for all
q ∈ Q0.
The next result, which is an ex-

tension of the Riesz representation
theorem, describes the dual of a space
of fractions, defined as above.

Theorem 2.1. Let Q0 ⊂ Q,
let F = ∑

q∈Q0 C(Ω)/q, and let
ψ : F → C be linear. The func-
tional ψ is continuous if and only
if there exists a uniquely deter-
mined measure µψ ∈ M(Ω) such
that |µψ|(Zq) = 0, 1/q is |µψ|-
integrable for all q ∈ Q0 and ψ(f ) =∫
Ω fdµψ for all f ∈ F .
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The functional ψ : F → C is
positive, if and only if it is con-
tinuous and the measure µψ is
positive.

Corollary 2.2. Let Q0 ⊂ Q be
nonempty, let F = ∑

q∈Q0 C(Ω)/q,
and let ψ : F → C be linear.
The functional φ is positive if

and only if ‖ψq‖ = ψ(1/q), q ∈
Q0, where ψq = ψ|C(Ω)/q.
In the family Q we write q′|q′′ for
q′, q′′ ∈ Q, meaning q′ divides q′′
if there exists a q ∈ Q such that
q′′ = q′q. A subset Q0 ⊂ Q is
cofinal in Q if for every q ∈ Q we
can find a q0 ∈ Q0 such that q|q0.
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The next assertion is an extension
result of linear functionals to posi-
tive ones.

Theorem 2.3. Let Q0 3 1 be
a cofinal subset of Q. Let F =
∑
q∈Q0Fq, where Fq is a vector
subspace of C(Ω)/q such that 1/q ∈
Fq and Fq ⊂ Fr for all q, r ∈
Q0, with q|r. Let also φ : F → C
be linear with φ(1) > 0, and set
φq = φ|Fq, q ∈ Q0.
The linear functional φ extends

to a positive linear functional ψ
on C(Ω)/Q such that ‖ψq‖ = ‖φq‖,
where ψq = ψ|C(Ω)/q, if and only
if ‖φq‖ = φ(1/q) > 0, q ∈ Q0.
We put Z(Q0) = ∪q∈Q0Z(q) for

each subset Q0 ⊂ Q.
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Corollary 2.4. With the con-
ditions of the previous Theorem,
there exists a positive measure µ
on Ω such that

φ(f ) =
∫
Ω f dµ, f ∈ F .

For every such measure µ and ev-
ery q ∈ Q, we have µ(Z(q)) = 0.
Hence, if Q contains a countable
subset Q1 with Z(Q1) = Z(Q),
then µ(Z(Q)) = 0.
Exemple 2.5. Let S1 be the alge-

bra of polynomials in z, z̄, z ∈ C.
This algebra, used to characterize
the moment sequences in the com-
plex plane, can be identified with
a subalgebra of an algebra of frac-
tions of continuous functions.
Let R1 be the set of functions
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{(1 + |z|2)−k; z ∈ C, k ∈ Z+},
which can be continously extended
to C∞ = C ∪ {∞}. Identifying
R1 with the set of their extensions
in C(C∞), the family R1 becomes
a set of denominators in C(C∞).
This will allows us to identify the
algebra S1 with a subalgebra of the
algebra of fractions C(C∞)/R1.
Let S1,k, k ≥ 1 a fixed integer, be

the space generated by the mono-
mials zjz̄l, 0 ≤ j + l < 2k, and
the monomial |z|2k, which may be
viewed as a subspace ofC(C∞)/rk,
where rk(z) = (1 + |z|2)−k for all
k ≥ 0.
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We clearly have S1 = ∑
k≥0 S1,k,

and so the space S1 can be viewed
as a subalgebra of the algebra
C(C∞)/R1. Note also that r−1

k ∈
S1,k for all k ≥ 1 and S1,k ⊂ S1,l
whenever k ≤ l.
According to Theorem 1.4, a lin-

ear map φ : S1 7→ C has a posi-
tive extension ψ : C(C∞)/R1 7→
C with ‖φk‖ = ‖ψk‖ if and only
if ‖φk‖ = φ(r−1

k ), where φk =
φ|S1,k and ψk = ψ|C(C∞)/rk, for
all k ≥ 0. This result can be used
to characterize the Hamburger mo-
ment problem in the complex plane.
Specifically, given a sequence of com-
plex numbers γ = (γj,l)j≥0,l≥0 with
γ0,0 = 1, γk,k ≥ 0 if k ≥ 1 and

12



γj,l = γ̄l,j for all j ≥ 0, l ≥ 0, the
Hamburger moment problemmeans
to find a probability measure on C
such that γj,l = ∫ zjz̄ldµ(z), j ≥
0, l ≥ 0.
Defining Lγ : S1 7→ C by setting
Lγ(zjz̄l) = γj,l for all j ≥ 0, l ≥ 0
(extended by linearity), if Lγ has
the properties of the functional φ
above insuring the existence of a
positive extension to C(C∞)/R1,
then the measure µ is provided by
Corollary 1.5.
For a fixed integer m ≥ 1, we

can state and characterize the ex-
istence of solutions for a truncated
moment problem (for an extensive
study of such problems we refer to
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the works by Curto and Fialkow).
Specifically, given a finite sequence
of complex numbers γ = (γj,l)j,l
with γ0,0 = 1, γj,j ≥ 0 if 1 ≤
j ≤ m and γj,l = γ̄l,j for all j ≥
0, l ≥ 0, j 6= l, j + l < 2m, find
a probability measure on C such
that γj,l = ∫ zjz̄ldµ(z) for all in-
dices j, l. As in the previous case,
a necessary and sufficient condition
is that the corresponding map Lγ :
S1,m 7→ C have the property ‖Lγ‖ =
Lγ(1/rm). Note also that the ac-
tual truncated moment problem is
slightly different from the usual one.
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3. Operator-valued moment
problems
LetD be a complex inner product

space whose completion is denoted
byH, let SF (D) be the space of oll
sesquilinear forms on D, and let φ :
Pn → SF (D) be a linear map.We
look for a positive measure F on
the Borel subsets of Rn, with val-
ues inB(H), such that φ(p)(x, y) =∫ p dFx,y for all p ∈ Pn and x, y ∈
D, which is an operator moment
problem. When such a positive mea-
sure F exists, we say that φ : Pn→
SF (D) is a moment form and the
measure F is said to be a repre-
senting measure for φ. The next
result is due to Albrecht and V.
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Theorem 3.1. Let D be a com-
plex inner product space and let
φ : Pn→ SF (D) be a unital, lin-
ear map. The map φ is a mo-
ment form if and only if

(i) φ(pα)(x, x) > 0 for all x ∈
D \ {0} and α ∈ Zn+.

(ii) For all α ∈ Zn+, m ∈ N and
x1, . . . , xm, y1, . . . , ym ∈ D with

m∑
j=1

φ(pα)(xj, xj) ≤ 1, m∑
j=1

φ(pα)(yj, yj) ≤ 1,

and for all f = (fj,k) ∈Mm(Pn,α)
with supt ‖qα(t)f (t)‖m ≤ 1, we
have∣∣∣∣∣∣∣∣∣

m∑
j,k=1

φ(fj,k)(xk, yj)
∣∣∣∣∣∣∣∣∣ ≤ 1.

4. Completely contractive
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extensions
In this section we present a ver-

sion of result by Albrecht and V,
concerning the existence of normal
extensions. We discuss it here for
infinitely many operators.
Nevertheless, we first present the

case of a single operator.
Fix a Hilbert spaceH and a dense

subspace D of H, let, as before,
SF (D) be the space of all sesquilin-
ear forms on D.
We recall that S1, is the set of all

polynomials in z and z̄, z ∈ C.
Considering an operator S, we may

define a unital linear map
φS : S1→ SF (D) by
φS(zjz̄k)(x, y) = 〈Sjx, Sky〉,
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x, y ∈ D, j ∈ Z+,

extended by linearity to the sub-
space S1.

Theorem 4.1. Let S : D(S) ⊂
H 7→ H be a densely defined lin-
ear operator such that SD(S) ⊂
D(S). The operator S admits a
normal extension if and only if
for allm ∈ Z+, n ∈ N and x1, . . . , xn,
y1, . . . , yn ∈ D(S) with

n∑
j=1

m∑
k=0


m

k

〈Skxj, Skxj〉 ≤ 1,

n∑
j=1

m∑
k=0


m

k

〈Skyj, Skyj〉 ≤ 1,

and for all p = (pj,k) ∈ Mn(S1),
with supz∈C ‖(1+|z|2)−mp(z)‖n ≤
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1, we have∣∣∣∣∣∣∣∣∣
n∑

j,k=1
〈φS(pj,k)xk, yj〉

∣∣∣∣∣∣∣∣∣ ≤ 1.

Theorem 4.1 is a direct consequence
of a more general assertion, to be
stated in the sequel. A version of
the theorem above has been obtained
by Stochel and Szafraniec, via a com-
pletely different approach.
LetQ ⊂ C(Ω) be a set of positive

denominators. Fix a q ∈ Q. A lin-
ear map ψ : C(Ω)/q → SF (D) is
called unital if ψ(1)(x, y) = 〈x, y〉,
x, y ∈ D.
We say that ψ is positive if ψ(f )

is positive semidefinite for all f ∈
(C(Ω)/q)+.
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More generally, let Q0 ⊂ Q be
nonempty. Let C = ∑

q∈Q0 C(Ω)/q,
and let ψ : C → SF (D) be lin-
ear. The map ψ is said to be unital
(resp. positive) if ψ|C(Ω)/q is uni-
tal (resp. positive) for all q ∈ Q0.

We start with a part of a theorem
by Albrecht and V.

Theorem A. Let Q0 ⊂ Q be
nonempty, let C = ∑

q∈Q0 C(Ω)/q,
and let ψ : C → SF (D) be linear
and unital. The map ψ is posi-
tive if and only if
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sup{|ψ(hq−1)(x, x)|; h ∈ C(Ω), ‖h‖∞ ≤ 1}
= ψ(q−1)(x, x), q ∈ Q0, x ∈ D.

Let again Q0 ⊂ Q be nonempty
and letF = ∑

q∈Q0Fq, where 1/q ∈
Fq and Fq is a vector subspace of
C(Ω)/q for all q ∈ Q0. Let φ :
F 7→ SF (D) be linear. Suppose
that φ(q−1)(x, x) > 0 for all x ∈
D \ {0} and q ∈ Q0. Then φ(1/q)
induces an inner product onD, and
let Dq be the space D, endowed
with the norm given by ‖ ∗ ‖2q =
φ(1/q)(∗, ∗).
Let Mn(Fq) (resp. Mn(F)) de-

note the space of n × n-matrices
with entries in Fq (resp. in F) .
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Note thatMn(F) = ∑
q∈Q0 Mn(Fq)

may be identified with a subspace
of the algebra of fractionsC(Ω,Mn)/Q,
whereMn is the C∗-algebra of n×
n-matrices with entries inC. More-
over, the map φ has a natural ex-
tension φn : Mn(F) 7→ SF (Dn),
given by
φn(f)(x,y) = n∑

j,k=1
φ(fj,k)(xk, yj),

for all f = (fj,k) ∈ Mn(F) and
x = (x1, . . . , xn),y = (y1, . . . , yn) ∈
Dn.
Let φnq = φn | Mn(Fq). Endow-

ing the Cartesian product Dn with
the norm ‖x‖2q = ∑n

j=1 φ(1/q)(xj, xj)
if x = (x1, . . . , xn) ∈ Dn,
and denoting it by Dnq , we say that
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the map φn is contractive if ‖φnq‖ ≤
1 for all q ∈ Q0. Using the stan-
dard norm ‖ ∗ ‖n in the space of
Mn, the space Mn(Fq) is endoved
with the norm

‖(qfj,k)‖n,∞ = sup
ω∈Ω
‖(q(ω)fj,k(ω))‖n,

for all (fj,k) ∈Mn(Fq).
Following Arveson and Powers, we

shall say that the map φ : F 7→
SF (D) is completely contractive
if the map φn : Mn(F) 7→ SF (Dn)
is contractive for all integers n ≥ 1.
Note that a linear map φ : F 7→
SF (D) with the property φ(1/q)(x, x) >
0 for all x ∈ D \ {0} and q ∈
Q0 is completely contractive if and
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only if for all q ∈ Q0, n ∈ N,
x1, . . . , xn, y1, . . . , yn ∈ D with

n∑
j=1

φ(q−1)(xj, xj) ≤ 1,
n∑
j=1

φ(q−1)(yj, yj) ≤ 1,

and for all (fj,k) ∈ Mn(Fq) with
‖(qfj,k)‖n,∞ ≤ 1, we have∣∣∣∣∣∣∣∣∣

n∑
j,k=1

φ(fj,k)(xk, yj)
∣∣∣∣∣∣∣∣∣ ≤ 1.

Let us recall another result by Al-
brecht and V., given here in a shorter
form.

Theorem B. Let Ω be a com-
pact space and let Q ⊂ C(Ω) be a
set of positive denominators. Let
also Q0 be a cofinal subset of Q,
with 1 ∈ Q0.
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Let F = ∑
q∈Q0Fq, where Fq

is a vector subspace of C(Ω)/q
such that 1/r ∈ Fr ⊂ Fq for
all r ∈ Q0 and q ∈ Q0, with
r|q. Let also φ : F → SF (D)
be linear and unital, and set φq =
φ|Fq, φq,x(∗) = φq(∗)(x, x) for all
q ∈ Q0 and x ∈ D.
The following conditions are equiv-

alent:
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(a) The map φ extends to a uni-
tal, positive, linear map ψ on C(Ω)/Q
such that, for all x ∈ D and q ∈
Q0, we have: ‖ψq,x‖ = ‖φq,x‖,
where ψq = ψ|C(Ω)/q, ψq,x(∗) =
ψq(∗)(x, x).

(b) (i) φ(q−1)(x, x) > 0 for all
x ∈ D \ {0} and q ∈ Q0.

(ii) The map φ is completely con-
tractive.
Remark. A ”minimal” subspace

of C(Ω)/Q to apply Theorem C
is obtained as follows. If Q0 is a
cofinal subset of Q with 1 ∈ Q0,
we define Fq for some q ∈ Q0 to
be the vector space generated by
all fractions of the form r/q, where
r ∈ Q0 and r|q.
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It is clear that the subspace F =
∑
q∈Q0Fq has the properties required
to apply Theorem B.

Corollary C. Suppose that con-
dition (b) in Theorem B is satis-
fied. Then there exists a positive
B(H)–valued measure F on the
Borel subsets of Ω such that

φ(f )(x, y) =
∫
Ω f dFx,y,

for all f ∈ F , x, y ∈ D. For ev-
ery such measure F and every
q ∈ Q0, we have F (Z(q)) = 0.

Example 4.2. We extend to in-
finitely many variables the Exam-
ple 2.5. Let I be a (nonempty)
family of indices.
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Denote by z = (zι)ι∈I the inde-
pendent variable in CI . Let also
z̄ = (z̄ι)ι∈I . Let Z

(I)
+ be the set of

all collections α = (αι)ι∈I of non-
negative integers, with finite sup-
port. Setting z0 = 1 for 0 = (0)ι∈I
and zα = ∏

αι 6=0 z
αι
ι for z = (zι)ι∈I ∈

CI , α = (αι)ι∈I ∈ Z(I)
+ , α 6=

0, we may consider the algebra of
those complex-valued functions SI
on CI consisting of expressions of
the form ∑

α,β∈J cα,βz
αz̄β, with cα,β

complex numbers for all α, β ∈ J ,
where J ⊂ Z(I)

+ is finite.
We can embed the space SI into

the algebra of fractions derived from
the basic algebra C((C∞)I),
using a suitable set of denomina-
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tors. Specifically, we consider the
family RI consisting of all ratio-
nal functions of the form rα(t) =
∏
αι 6=0(1 + |zι|2)−αι, z = (zι)ι∈I ∈
CI , where α = (αι) ∈ Z(I)

+ , α 6=
0, is arbitrary. Of course, we set
r0 = 1. The function rα can be
continuously extended to

(C∞)I \ CI for all α ∈ Z(I)
+ . In

fact, actually the function fβ,γ(z) =
zβz̄γrα(z) can be continuously ex-
tended to (C∞)I \ CI whenever
βι + γι < 2αι, and βι = γι =
0 if αι = 0, for all ι ∈ I and
α, β, γ ∈ Z(I)

+ . Moreover, the fam-
ily RI becomes a set of denomina-
tors in C((C∞)I). This shows that
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the space SI can be embedded into
the algebra of fractionsC((C∞)I)/RI .
To be more specific, for all α ∈

Z(I)
+ , α 6= 0, we denote by S(1)

I,α
the linear spaces generated by the
monomials zβz̄γ, with βι + γι <
2αι whenever αι > 0, and βι =
γι = 0 if αι = 0. Put S(1)

I,0 = C.
We also define S(2)

I,α, for α ∈ Z(I)
+ , α 6=

0, to be the linear space generated
by the monomials |z|2β = ∏

βι 6=0(zιz̄ι)βι,
0 6= β, βι ≤ αι for all ι ∈ I and
|z| = (|zι|)ι∈I . We define S(2)

I,0 =
{0}.
Set SI,α = S(1)

I,α + S(2)
I,α for all

α ∈ Z(I)
+ . Note that, if f ∈ SI,α,

the function rαf extends continu-
30



ously to (C∞)I and that SI,α ⊂
SI,β if αι ≤ βι for all ι ∈ I.
It is now clear that the algebra
SI = ∑

α∈Z(I)
+
SI,α can be identi-

fied with a subalgebra ofC((C∞)I)/RI .
This algebra has the properties of
the space F appearing in the state-
ment of Theorem B.
Let now T = (Tι)ι∈I be a fam-

ily of linear operators defined on
a dense subspace D of a Hilbert
space H such that Tι(D) ⊂D and
TιTκx = TκTιx for all ι, κ ∈ I,
x ∈ D.
Setting Tα as in the case of com-

plex monomials, which is possible
because of the commutativity of the
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family T on D, we may define a
unital linear map φT : SI → SF (D)
by
φT (zαz̄β)(x, y) = 〈Tαx, Tβy〉,

for all x, y ∈ D, α, β ∈ Z(I)
+ , which

extends by linearity to the subspace
SI generated by these monomials.
For all α, β in Z(I)

+ with β − α ∈
Z(I)

+ , and x ∈ D \ {0}, we have
0 < 〈x, x〉 ≤ φT (r−1

α )(x, x) ≤ φT (r−1
β )(x, x) .

The polynomial 1/rα will be de-
noted by sα for all α ∈ Z(I)

+ .
The family T = (Tι)ι∈I is said to

have a normal extension if there
exist a Hilbert space K ⊃ H and a
family N = (Nι)ι∈I consisting of
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commuting normal operators in K
such that D ⊂ D(Nι) and Nιx =
Tιx for all x ∈ D and ι ∈ I.
A family T = (Tι)ι∈I having a

normal extension is also called a
subnormal family.
The following result is a version of

theorem by Albrecht and V, valid
for an arbitrary family of operators
We mention that, the basic space
has been modified.

Theorem 4.3. Let T = (Tι)ι∈I
be a family of linear operators de-
fined on a dense subspace D of a
Hilbert space H.
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Assume that D is invariant un-
der Tι for all ι ∈ I and that T is
a commuting family on D.
The family T admits a normal

extension if and only if the map
φT : SI 7→ SF (D) has the prop-
erty that for all α ∈ Z(I)

+ , m ∈ N
and x1, . . . , xm, y1, . . . , ym ∈ D
with ∑m

j=1 φT (sα)(xj, xj) ≤ 1,
∑m
j=1 φT (sα)(yj, yj) ≤ 1, and for
all p = (pj,k) ∈ Mm(SI,α) with
supz ‖rα(z)p(z)‖m ≤ 1, we have∣∣∣∣∣∣∣∣∣

m∑
j,k=1

φT (pj,k)(xk, yj)
∣∣∣∣∣∣∣∣∣ ≤ 1.

Remark. Let S : D(S) ⊂ H 7→
H be an arbitrary linear operator.
If B : D(B) ⊂ K 7→ K is a nor-
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mal operator such that H ⊂ K,
D(S) ⊂ D(B), Sx = PBx and
‖Sx‖ = ‖Bx‖ for all x ∈ D(S),
where P is the projection ofK onto
H, then we have Sx = Bx for all
x ∈ D(S). Indeed, 〈Sx, Sx〉 =
〈Sx,Bx〉 and 〈Bx, Sx〉 = 〈PBx, Sx〉 =
〈Sx, Sx〉 = 〈Bx,Bx〉. Hence, we
have ‖Sx − Bx‖ = 0 for all x ∈
D(S).
Remark 4.4. Let T = (Tι)ι∈I be

a family of linear operators defined
on a dense subspace D of a Hilbert
space H. Assume that D is invari-
ant under Tι and that T is a com-
muting family on D. If the map
φT : SI 7→ SF (D)) is as in The-
orem 2.3, the family has a proper
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quasi-invariant subspace. In other
words, there exists a proper Hilbert
subspace L of the Hilbert space H
such that the subspace {x ∈ D(Tι)∩
L;Tx ∈ L} is dense in in L for
each ι ∈ I.
For the proof of Theorem 4.3, we

need the following version of the
spectral theorem.

Theorem 4.5. Let (Nι)ι∈I be
a commuting family of normal op-
erators in H. Then there exists
a unique spectral measure G on
the Borel subsets of (C∞)I such
that each coordinate function

(C∞)I 3 z → zι ∈ C∞ is G-
almost everywhere finite. In ad-

36



dition,
〈Nιx, y〉 =

∫
(C∞)I zιdEx,y(z),

for all x ∈ D(Nι), y ∈ H, where
D(Nι) = {x ∈ H;

∫
(C∞)I |zι|

2dEx,x(z) <∞},

for all ι ∈ I.
If the set I is at most count-

able, then the measure G has sup-
port in CI.
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