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0. Why algebras of frac-
tions?

Algebras of fractions occur natu-
rally in problems of extensions of
unbounded subnormal families of
operators, in particular in moment
problems on unbounded sets.

Some simple examples of algebras
of fractions:



1) Let P be the algebra of poly-
nomials in one variable ¢ € R, with
complex coeflicients.

When dealing with finite measures,
an appropriate framework is the space
of all continuous functions on a com-
pact topological space. DBut nei-
ther the space R is compact nor the
functions from P; are bounded. To
ameliorate this situation, we con-
sider the one-point compactification
Rso of R. So we may view the
space Pp as a subspace of an alge-
bra of fractions derived from the al-
gebra C'(Ryg). For, we consider the
family Q7 of all rational functions
of the form qi.(t) = (14+t2)7" t €
R, £ > 0 an integer.
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The function ¢;. can be continu-
ously extended to Ry forall £ > 0.

Let Py, be the vector space gen-
erated by the monomials tk , with
k <2m, m > 0 a fixed integer. It
is clear that pg;, can be regarded
as an element of C'(Ryog). Writ-

ing p = (pgm)/am if p € Pim,
we infer that Pp is a subspace of
C(Rxo)/9g.

2) The Cayley transform k(t) =
(t —i)(t+1) ! is bijective between
the real line R and T \ {1}, where
T is the unit circle.



If p(t) = =}_ ait® is a polyno-
mial in Pp, the function
por”!(2) = ¥ (=1)*ay(32)"(1-R2) 7,
defined on T \ {1}, is a sum of
fractions with denominators in the
family S; = {(1 — R2)¥: k > 0},
consisting of positive functions on

T.
The map

Piap—poteC(T)/S,

where 7 : T\ {1} — R is given by
7(z) = —=32/(1 — Rz), is an injec-
tive algebra homomorphism, allow-
ing the identification of Py with a

subalgebra of C'(T)/S;.



In fact, similar identifications can
be easily obtained, in both cases,
for polynomials in n real variables,
whose algebra will be denoted by
Pn.

A linear map L : P, — C can be
viewed as a linear map on a sub-
space of an algebra of fractions, and
possible extensions and integral rep-
resentations of L can be approached
via specific methods of such alge-
bras.

1. Spaces of fractions

of continuous functions

Let €2 be a compact space and let
C'(€2) be the algebra of all complex-
valued continuous functions on (2,
endowed with the sup norm || * || 0c.
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We denote by M (€2) the space of all
complex-valued Borel measures on
(). For every function h € C(£2),
we set Z(h) = {w € Q; h(w) = 0}.
If w € M(S2), we denote by |u| €
M (£2) the variation of p.

Let ©Q be a family of nonnegative
elements of C'(€2). The set Q is
said to be a set of denominators
if 1)1 € Q, (i) ¢,¢" € Q im-
plies ¢'¢"” € Q, and (iii) if gh = 0
for some ¢ € Q and h € C(9Q),
then h = 0. Using a set of denomi-
nators Q, we can form the algebra

of fractions C(Q2)/Q. If C(Q)/q =
{f € C(/Lqf € C(Y}, we
have C'(£2)/Q = U,e0C(9?)/q.



Setting || f|loo.q = || f]|oco for each
f € C(Q)/q, the pair (C(Q)/q,
| * ||c0,q) becomes a Banach space.
Hence, C'(€2)/Q is an inductive limit
of Banach spaces

Set (C(Q)/q)+ =A{f € C(Q)/q;
qf > 0}, which is a positive cone
for each q.

Let Qg C 9O, let F = Sge 0 C(£2)/q,
and let ¢ : F — C be linear. The
map 1 is continuous if the restric-
tion 1| C(€2)/q is continuous for all

q € Q.
Let us also remark that the linear
functional ¢ : F — C is said to be

positive if Y|(C(Q2)/q)+ > 0 for all
q € Qo.



The next result, which is an ex-
tension of the Riesz representation
theorem, describes the dual of a space
of fractions, defined as above.

Theorem 1.1. Let Qp C Q,
let F = r,c0,C(Q)/q, and let
v o F — C be linear. The func-
tional v 1s continuous if and only
if there exists a uniquely deter-
mined measure i, € M(§2) such
that py|(Zg) = 0, 1/q s |pyl-
integrable for all g € Qp and Y(f) =
i fdpy forall f € F.

The functional v : F — C 1s
positive, if and only if it is con-
tinuous and the measure fi, s
positive.



Corollary 1.2. Let Qp C Q be
nonempty, let F =<, 0, C(§2)/q,
and let v : F — C be linear.

The functional ¢ is positive if
and only if [l = ¥(1/q), q €
Qu, where 1, = ¥|C(Q)/g.

In the family Q we write ¢'|q¢” for
q.q" € Q, meaning ¢ divides q"
if there exists a ¢ € Q such that
¢ = q¢'q. A subset Qp C Q is
cofinal in Q if for every q € Q we
can find a gy € Qg such that g|qp.

If ¢,¢" € Q and ¢'|¢”, then
C(Q)/qd CC()/q".

Definition 1.3. Let @ C C(Q)
be a set of denominators. A mea-
sure p € M(S2) is said to be Q-
divisible if for every ¢ € Q there

9



is a measure v; € M(S2) such that
K = qlyq.

Theorem 1.1 shows that a func-
tional on C'(€2)/Q is continuous if
and only if it has an integral rep-
resentation via a O-divisible mea-
sure. In addition, the Corollary as-
serts that a functional is positive
on C'(Q)/Q if and only if it is rep-
resented by a Q-divisible positive
measure (4 such that p = quvg with
vy € M(S2) positive for all ¢ € Q.

The concept givn by the Defini-
tion 1.3 can be considerably extended.

The next assertion is an extension
result of linear functionals to posi-
tive ones.
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Theorem 1.4. Let Qg > 1 be
a cofinal subset of Q. Let F =
YqeQy Fq, Where Fq is a wvector
subspace of C(S))/q such that 1/q €
Fq and Fg C Fp jor all q,r €
Qq, with q|r. Let also ¢ : F — C
be linear with ¢(1) > 0, and set
g = ¢’Fq7 q € Q.

The linear functional ¢ extends
to a positive linear functional 1
on C(§2)/Q such that ||1hg|| = [|¢g]l,
where g = P|C(82)/q, if and only
if |¢gll = &(1/q) >0, g € Q.

We put Z(Qy) = UqEQOZ(q) for
each subset Qy C Q.

Corollary 1.5. With the con-
ditions of the previous Theorem,
there exists a positive measure |
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on §) such that
o(f) =l fdu, feF.

For every such measure p and ev-
ery q € Q, we have u(Z(q)) = 0.
Hence, if Q contains a countable
subset Q1 with Z(Q1) = Z(Q),
then u(Z(Q)) = 0.

Example 1.6. Let () be a com-
pact space. We consider a collec-
tion P of complex-valued functions
p, each defined and continuous on
an open set A, C ). Let u be
a positive measure on {2 such that
pn(2\ Ay) = 0, and p (arbitrarily
extended on 2\ A;) is p-integrable
for all p € P. We may define the
numbers v, = I pdu, p € P, which
can be called the P-moments of .
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A very general (possibly hopeless)
moment problem might be to char-
acterize those families of numbers
(Yp)pep Which are the P-moments
of a certain positive measure.

Let us add some supplementary
conditions. First of all, assume that
Qp = Npeplyp is a dense subset
of €2. Also assume that there ex-
ists R C P a family containing
the constant function 1, closed un-
der multiplication in the sense that
if v’ r" € R then r'r" defined on
A NAnisin R, and each r € R
is nonnull on its domain of defini-
tion. Finally, we assume that for
every function p € P there exists a
function » € R such that the func-
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tion p/r, defined on Ay, N Ay, has
a (unique) continuous extension to
(). In particular, all functions from
the family @ = {1/r;r € R} have
a continuous extension to 2. More-
over, the set Q. identified with a
family in C(€2), is a set of denom-
inators. This allows us to identify
each function p € P with a fraction
from C'(€2)/Q, namely with h/q,
where h is the continuous extension
of p/r and ¢ = 1/r for a convenient
r € R. With these conditions, the
above P-moment problem can be
approached with our methods.

In other words, for a given linear
functional ¢ on P, we look for nec-
essary and sufficient conditions on
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P and ¢ to insure the existence of
a solution, that is, a positive mea-
sure 4 on {2 such that each p be u-
almost everywhere defined and ¢(p)
o pdp, p € P. We may call such a
problem a singular moment prob-
lem. With this terminology, the
classical moment problems of Stielt-
jes and Hamburger, in one or sev-
eral (or even infinitely many) vari-
ables, are singular moment prob-
lems.

Eremple 1.7. Let 81 be the alge-
bra of polynomials in 2, z, z € C.
This algebra, which is used to char-
acterize the moment sequences in
the complex plane, can be identi-
fied with a subalgebra of an algebra
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of fractions of continuous functions.
This exemple can be extended even
to infinitely many variables. Let
R1 be the set of functions {(1 +
2|2)7%. 2z € C,k € Z,}, which
can be continously extended to Cog =
CU{oc}. Identifying R with the
set of their extensions in C'(Cqo),
the family R becomes a set of de-
nominators in C'(Cy). This will
allows us to identify the algebra S
with a subalgebra of the algebra of

fractions C(Cxo)/R1.
Let Sp/z, k > 1, be the space gen-
erated by the monomials 27 Zl, 0 <

7+ 1 < 2k. We put 888 = C. Let

also Sﬁz, k > 1, be the space gen-
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erated by the monomials [2|%, 0 <
j < k. Put 8% = {0}

Set Sy = SI) + 87k >0
We clearly have 8] = ’Zk>0 S1 k-
Since &1 j may be identified with a
subspace of C(Cyso) /71, where r.(2) =
(1+]2|?) 7 for all k > 0, the space
81 can be viewed as a subalgebra of
the algebra C(Cy)/R1. Note also
that 7,1 € Sy for all & > 1 and
S1 ) C &1, whenever £ <.

According to Theorem 1.4, a lin-
ear map ¢ : &1 — C has a posi-
tive extension 1 : C'(Cyxo)/R1 +>
C with [|¢g]l = [|¢k]l if and only
if |opll = @(ry'), where ¢p =
0|51,k and ¥ = Y|C(Coo) /1y, for
all & > 0. This result can be used
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to characterize the Hamburger mo-
ment problem in the complex plane.
Specifically, given a sequence of com-
plex numbers v = (75 1) i>0,1>0 with
70,0 = 1, /Yk,k > 0 if k > 1 and
Y1 =71, forall g > 0,0 >0, the
Hamburger moment problem means
to find a probability measure on C
such that ;; = rA 2 du(z), § >
0,0 > 0.

Defining L~ : &1 — C by setting
Lv(zjil) =, forall 7 > 0,0 >0
(extended by linearity), if L~ has
the properties of the functional ¢
above insuring the existence of a
positive extension to C(Cyo)/R1,
then the measure p is provided by
Corollary 1.5.
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For a fixed integer m > 1, we
can state and characterize the ex-
istence of solutions for a truncated
moment problem (for an extensive
study of such problems we refer to
the works by Curto and Fialkow).
Specifically, given a finite sequence
of complex numbers v = (7v;);;
with 70 = 1, vii = 0 if 1 <
J < mandy;; =7, forall j >
0,0 >0,7 #I,7+1 < 2m, find
a probability measure on C such
that v;; = 1202 dp(z) for all in-
dices 7,[. As in the previous case,
a necessary and sufficient condition
is that the corresponding map L~ :
81 m +— Chave the property || L || =
L~(1/ry). Note also that the ac-
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tual truncated moment problem is
slightly different from the usual one.

2. Normal extensions

In this section we present a ver-
sion of result by Albrecht and V,
concerning the existence of normal
extensions. We discuss it here for
infinitely many operators.

Nevertheless, we first present the
case of a single operator.

Fix a Hilbert space ‘H and a dense
subspace D of ‘H, Let SF(D) the
space of all sesquilinear forms on
D.

We recall that &7, which is the
set. of all polynomials in z and z,
z € C.
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Considering an operator S, we may
define a unital linear map ¢g : S1 —

SF(D) by

bs(2)2") (@, y) = (87, 5™),
x,ye D, je Ly,
extended by linearity to the sub-
space S7.

Theorem 2.1. Let S : D(S) C
H — H be a densely defined lin-
ear operator such that SD(S) C
D(S). The operator S admits a
normal extension if and only if

forallm € Z+, n € Nand xq,..., Ty,
Y1, - .-, Yn € D(S) with

m

. (SFx;, M) <1,

n o m
PIIEDY
J=1 k=0
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n m (M k k

>y SMys, STy <1

=1 k=0 k)< v STy < 1
and for all p = (pj ) € Mn(S1),
with SUp.cc H(1+\Z|2)_mp(2)Hn <
1, we have

n
> Vi) < 1.
B @stpinn) <

Theorem 2.1 is a direct consequence
of a more general assertion, to be
stated in the sequel. A version of
this theorem has been obtained by
Stochel and Szafraniec, via a com-
pletely different approach.

Let @ C C(Q) be a set of positive
denominators. Fixa g € Q. A lin-
ear map ¢ : C(Q)/q — SF(D) is
called unitalif y(1)(x,y) = (x,y),

22



x,y € D. We say that ¢ is posi-
tive if ¢( f) is positive semidefinite
for all f € (C(2)/q)+.

More generally, let Qp C O be
nonempty. Let C = £, 0, C()/q,
and let v : C — SF(D) be lin-
ear. The map 1 is said to be unital
(resp. positive) if ¥ |C(£2) /q is uni-
tal (resp. positive) for all ¢ € Qp.

We start with a part of a theorem

by Albrecht and V.

Theorem A. Let Qg C Q be
nonempty, let C =<, c o, C(§2)/q,
and let ¢ : C — SF(D) be linear
and unital. The map Y is posi-
tive if and only if

sup{[¢(hg~")(z,2)|; h € C(Q), [Pl < 1}
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= (g H(x,2), ¢ € Q, = € D.

Let again Qp C Q be nonempty
and let J' = x,c o, Fq, where 1/q €
Fq and Fy is a vector subspace of
C'(Q2)/q for all ¢ € Qp. Let ¢ :
F — SF(D) be linear. Suppose
that ¢(g~H)(z,z) > 0 for all = €
D\ {0} and ¢ € Qpy. Then ¢(1/q)
induces an inner product on D, and
let Dy be the space D, endowed
with the norm given by || * Hg =
6(1/g)(x, %)

Let My (Fq) (resp. Mp(F)) de-
note the space of n X n-matrices
with entries in F; (resp. in F) .
Note that Mp(F) = =40, Mn(Fq)
may be identified with a subspace
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of the algebra of fractions C(2, My,)/ Q,
where M, is the C*-algebra of n x
n-matrices with entries in C. More-
over, the map ¢ has a natural ex-
tension ¢" : My (F) — SF(D"),
given by

) xy) = > O(fin)@r vy,

J,k=1
for all £ = (f;r) € Mp(F) and
X = (x].?'"?xn)? <y17°"7yn) E

D"

Let ¢y = @™ | Mp(Fy). Endow-
ing the Cartesian product D" with
the norm [[x2 = <1_y 6(1/q)(z;, )
if x = (z1,...,2n) € D" and de-
noting it by Dy, we say that the
map ¢" is contractive if [[¢g| <1
for all ¢ € Qp. Using the standard
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norm || ||, in the space of My, the
space My (Fy) is endoved with the
norm

T sup [(q(w) f5 1 (@),

for all (f; 1) € Mn(Fyg)-

Following Arveson and Powers, we
shall say that the map ¢ : F —
SF (D) is completely contractive
if the map ¢" : My (F) — SF(D")
is contractive for all integers n > 1.

Note that a linear map ¢ : F
S F (D) with the property ¢(1/q)(x, x) >
0 for all x € D\ {0} and ¢ €
Qo is completely contractive if and
only if for all ¢ € Qp, n € N,
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xlw”agjnayl)'”ay’nGDWith

and for all (f; ) € Mp(Fq) with
1(af;.1)lInc0 < 1, we have

.k%: O(fp) (@, y5) < 1.

J,k=1

Let us recall another result by Al-
brecht and V., given here in a shorter
form.

Theorem B. Let () be a com-
pact space and let @ C C(S2) be a
set of positive denominators. Let
also Qy be a cofinal subset of Q,
with 1 € Q.
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Let F = z,e9,Fq, where Fy
is a wvector subspace of C(S1)/q
such that 1/r € Fr. C Fy for
all v € Qy and g € Qp, with
rlg. Let also ¢ : F — SF(D)
be linear and unital, and set g =
81 F g, bqur(%) = bql)(, z) for all
qg € Qyandx €7D.

Then (a) and (b) are equivalent:

(@) The map ¢ extends to a uni-
tal, positive, linear map v on C'(2)/Q
such that, for all x € D and q €
Qo, we have: quaﬂ — H¢Q;55|7
where g = YIC(Q)/g, tgn(%) =
() (@, ).

(b) (i) (g~ ")(w,x) > 0 for all
r € D\ {0} and g € Qy.

(22) The map ¢ is completely con-
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tractive.

Remark. A "minimal” subspace
of C'(€2)/Q to apply Theorem C
is obtained as follows. If Qp is a
cofinal subset of Q with 1 € Qj,
we define F for some ¢ € Q) to
be the vector space generated by
all fractions of the form r/q, where
r € Qqpand r|q. It is clear that the
subspace F = £, cg,Fq has the
properties required to apply The-
orem B.

Corollary C. Suppose that con-
dition (b) in Theorem B is satis-
fied. Then there exists a positive
B(H)-valued measure F' on the
Borel subsets of () such that
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forall f € F,x,y € D. For ev-
ery such measure F' and every

q € Qpy, we have F(Z(q)) = 0.

Example 2.2. We extend to in-
finitely many variables the Exam-
ple 1.7. Let Z be a (nonempty)
family of indices. Denote by z =

(2,),e7 the independent variable in

CL. Let also Z = (2,),c7. As be-

fore, let ZSFI ) be the set of all collec-

tions a = (o), of nonnegative
integers, with finite support. Set-
ting 2V = 1 for 0 = (0),c7 and
2% =1y, 42 for 2 = (2,),e7 €

i
L, o = (a)er € ZF, a #

0, we may consider the algebra of
those complex-valued functions &7
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on CL consisting of expressions of
the form =, gc 7 caﬁzo‘iﬁ, with ¢, g
complex numbers for all o, 5 € 7,
where J C ZSFI ) is finite.

We can embed the space S into
the algebra of fractions derived from
the basic algebra C'((Coo)t), us-
ing a suitable set of denominators.
Specifically, we consider the family
R consisting of all rational func-

tions of the form rq(t) = 15, £o(1+
2,]2)"%, 2 = (2,),e7 € CL, where
a = (q,) € Zg?, a #£ 0, is arbi-
trary. Of course, we set rg = 1.
The tunction r, can be continu-

ously extended to (Coo)? \ CZ for

all a € ZSFI ). In fact, actually the
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function fg ,(z) = PZ2ra(2) can

be continuously extended to (Cog )2\

CZ whenever B, + v < 2a, and
B,=v=0ita, =0,forallt el

and a, 3,7 € Zg). Moreover, the

family Rz becomes a set of denom-

inators in C'((Coo)?). This shows

that the space S7 can be embedded

into the algebra of fractions C((Coo)2)/R7.

To be more specific, for all o €
ng, a # 0, we denote by Sg)a
the linear spaces generated by the
monomials 2°z7. with 8, + v, <

2c, whenever «, > 0, and 8, =
v, = 0if o, = 0. Put S%% = C.

We also define Sg’z)&, for a € ZSFI ), o+
0, to be the linear space generated
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by the monomials \2]25 =113 20(2 (2.2, )5
0 # B, ﬁbéabforaHLEI?d
0

2] = (Jzu])ez. We define SY

10} :
Set St = 8%21 + 8%,2)4 for all

a € ng. Note that, if f € 574,
the tunction ro f extends continu-
ously to (Coo)? and that STa C
Stpita, < P torall €1

It is now clear that the algebra

St =¢% S can be identi-
I =% ,eg®Ta

fied with a subalgebra of C((Coo)t)/R7.
This algebra has the properties of

the space JF appearing in the state-
ment of Theorem B.

Let now T' = (T,),c7 be a fam-
ily of linear operators defined on
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a dense subspace D of a Hilbert
space H such that T,(D) CD and
T Twx = TT,x tor all v,k € T,
xeD.

Setting T% as in the case of com-
plex monomials, which is possible
because of the commutativity of the
family 1" on D, we may define a
unital linear map ¢ : St — SF(D)
by

or(292") (,y) = (T, TPy),

forallz,y € D, o, 8 € Z'E), which

extends by linearity to the subspace

S7 generated by these monomials.
For all o, B in ZSFI) with 8 — a €

Zg?, and x € D\ {0}, we have

0< (2,3) < 673 )(w,2) < Hr(5 )z, 2).
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The polynomial 1/r, will be de-

noted by sq for all o € ZZ).

The family T' = (T,),7 is said to
have a normal extension it there
exist a Hilbert space I D H and a
family N = (N,),e7 consisting of
commuting normal operators in /C
such that D C D(N,) and N,z =
T,x forallx € Dand i € 1.

A family T = (T,),e7 having a
normal extension is also called a
subnormal famaly.

The following result is a version of
theorem by Albrecht and V, valid
for an arbitrary family of operators
We mention that, where the basic
space is modified.

Theorem 2.3. LetT = (T),),c7
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be a family of linear operators de-
fined on a dense subspace D of
a Hilbert space H. Assume that
D 1s invariant under 1, for all
L € L and that T is a commut-
ing family on D. The family T
admits a normal extension if and
only if the map ¢ : ST +— SF (D)
has the property that for all o €
ng, m € N and x1,...,Tm,
Y1, ..., Ym € D with

m
p or(sa)(wj, z;) < 1,

ng or(8a) (Wi yj) <1,
and for allp = (p; 1) € Mm(Sz.0)
with sup, [[ra(2)p(2)[lm < 1, we
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have

o)) (Th, y5) < 1

.

Js

Remark. Let S : D(S) C H —
‘H be an arbitrary linear operator.
If B:DB)CK +— K isa nor-
mal operator such that H C IC,
D(S) € D(B), Sx = PBx and
|Sz|| = || Bzl for all x € D(S),
where P is the projection of C onto
H, then we have Sx = Bux for all
r € D(S). Indeed, (Sz,Sx) =
(Sx, Bxy and (Bx, Sx) = (PBx,Sx) =
(Sx,Sx) = (Bx, Bx). Hence, we
have ||Sz — Bxl|| = 0 for all x €
D(S).

Remark 2.4. Let T = (T,),c7 be
a family of linear operators defined

m
>
k=1
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on a dense subspace D of a Hilbert
space ‘H. Assume that D is invari-
ant under 7, and that 7' is a com-
muting family on D. If the map
¢ S — SF(D)) is as in The-
orem 2.3, the family has a proper
quasi-invariant subspace. In other
words, there exists a proper Hilbert
subspace L of the Hilbert space H
such that the subspace {x € D(T,)N
L;Tx € L} is dense in in L for
cach ¢ € 7.

For the proof of Theorem 2.3, we
need the following version of the
spectral theorem.

Theorem 2.5. Let (N,),c1 be
a commuting family of normal op-
erators in H. Then there exists a
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unique spectral measure G on the

Borel subsets of (Coo )t such that
each coordinate function ((COO)I >
2 — 2z, € Cxo 28 G-almost every-
where finite. In addition,

(Nx,y) = / IZLdE:B y(2),
for all x € D(NL), y € H, where
D(N,) ={z e H; /(@OO)I ‘Zb,ZdEJ?,.I(Z) < 00},

forall e 1.
If the set 1 is at most count-

able, then the measure G has sup-
port in ct.
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