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0. Why algebras of frac-
tions?
Algebras of fractions occur natu-

rally in problems of extensions of
unbounded subnormal families of
operators, in particular in moment
problems on unbounded sets.
Some simple examples of algebras

of fractions:

1



1) Let P1 be the algebra of poly-
nomials in one variable t ∈ R, with
complex coefficients.
When dealing with finite measures,

an appropriate framework is the space
of all continuous functions on a com-
pact topological space. But nei-
ther the space R is compact nor the
functions from P1 are bounded. To
ameliorate this situation, we con-
sider the one-point compactification
R∞ of R. So we may view the
space P1 as a subspace of an alge-
bra of fractions derived from the al-
gebraC(R∞). For, we consider the
family Q1 of all rational functions
of the form qk(t) = (1 + t2)−k, t ∈
R, k ≥ 0 an integer.
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The function qk can be continu-
ously extended toR∞ for all k ≥ 0.
Let P1,m be the vector space gen-

erated by the monomials tk, with
k ≤ 2m, m ≥ 0 a fixed integer. It
is clear that pqm can be regarded
as an element of C(R∞). Writ-
ing p = (pqm)/qm if p ∈ P1,m,
we infer that P1 is a subspace of
C(R∞)/Q1.
2) The Cayley transform κ(t) =

(t− i)(t+ i)−1 is bijective between
the real line R and T \ {1}, where
T is the unit circle.
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If p(t) = ∑n
k=0 akt

k is a polyno-
mial in P1, the function
p◦κ−1(z) = n∑

k=0
(−1)kak(=z)k(1−<z)−k,

defined on T \ {1}, is a sum of
fractions with denominators in the
family S1 = {(1 − <z)k; k ≥ 0},
consisting of positive functions on
T.
The map
P1 3 p 7→ p ◦ τ ∈ C(T)/S1,

where τ : T \ {1} 7→ R is given by
τ (z) = −=z/(1−<z), is an injec-
tive algebra homomorphism, allow-
ing the identification of P1 with a
subalgebra of C(T)/S1.
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In fact, similar identifications can
be easily obtained, in both cases,
for polynomials in n real variables,
whose algebra will be denoted by
Pn.
A linear map L : Pn 7→ C can be

viewed as a linear map on a sub-
space of an algebra of fractions, and
possible extensions and integral rep-
resentations ofL can be approached
via specific methods of such alge-
bras.

1. Spaces of fractions
of continuous functions
Let Ω be a compact space and let
C(Ω) be the algebra of all complex-
valued continuous functions on Ω,
endowed with the sup norm ‖∗‖∞.
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We denote byM(Ω) the space of all
complex-valued Borel measures on
Ω. For every function h ∈ C(Ω),
we set Z(h) = {ω ∈ Ω;h(ω) = 0}.
If µ ∈ M(Ω), we denote by |µ| ∈
M(Ω) the variation of µ.
Let Q be a family of nonnegative

elements of C(Ω). The set Q is
said to be a set of denominators
if (i) 1 ∈ Q, (ii) q′, q′′ ∈ Q im-
plies q′q′′ ∈ Q, and (iii) if qh = 0
for some q ∈ Q and h ∈ C(Ω),
then h = 0. Using a set of denomi-
nators Q, we can form the algebra
of fractions C(Ω)/Q. If C(Ω)/q =
{f ∈ C(Ω)/Q; qf ∈ C(Ω)}, we
have C(Ω)/Q = ∪q∈QC(Ω)/q.
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Setting ‖f‖∞,q = ‖qf‖∞ for each
f ∈ C(Ω)/q, the pair (C(Ω)/q,
‖∗‖∞,q) becomes a Banach space.
Hence, C(Ω)/Q is an inductive limit
of Banach spaces
Set (C(Ω)/q)+ = {f ∈ C(Ω)/q;
qf ≥ 0}, which is a positive cone
for each q.
LetQ0 ⊂ Q, letF = ∑

q∈Q0 C(Ω)/q,
and let ψ : F → C be linear. The
map ψ is continuous if the restric-
tion ψ|C(Ω)/q is continuous for all
q ∈ Q0.
Let us also remark that the linear

functional ψ : F → C is said to be
positive if ψ|(C(Ω)/q)+ ≥ 0 for all
q ∈ Q0.
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The next result, which is an ex-
tension of the Riesz representation
theorem, describes the dual of a space
of fractions, defined as above.

Theorem 1.1. Let Q0 ⊂ Q,
let F = ∑

q∈Q0 C(Ω)/q, and let
ψ : F → C be linear. The func-
tional ψ is continuous if and only
if there exists a uniquely deter-
mined measure µψ ∈ M(Ω) such
that |µψ|(Zq) = 0, 1/q is |µψ|-
integrable for all q ∈ Q0 and ψ(f ) =∫
Ω fdµψ for all f ∈ F .
The functional ψ : F → C is

positive, if and only if it is con-
tinuous and the measure µψ is
positive.
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Corollary 1.2. Let Q0 ⊂ Q be
nonempty, let F = ∑

q∈Q0 C(Ω)/q,
and let ψ : F → C be linear.
The functional φ is positive if

and only if ‖ψq‖ = ψ(1/q), q ∈
Q0, where ψq = ψ|C(Ω)/q.
In the family Q we write q′|q′′ for
q′, q′′ ∈ Q, meaning q′ divides q′′
if there exists a q ∈ Q such that
q′′ = q′q. A subset Q0 ⊂ Q is
cofinal in Q if for every q ∈ Q we
can find a q0 ∈ Q0 such that q|q0.
If q′, q′′ ∈ Q and q′|q′′, then
C(Ω)/q′ ⊂ C(Ω)/q′′.
Definition 1.3. Let Q ⊂ C(Ω)

be a set of denominators. A mea-
sure µ ∈ M(Ω) is said to be Q-
divisible if for every q ∈ Q there
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is a measure νq ∈ M(Ω) such that
µ = qνq.
Theorem 1.1 shows that a func-

tional on C(Ω)/Q is continuous if
and only if it has an integral rep-
resentation via a Q-divisible mea-
sure. In addition, the Corollary as-
serts that a functional is positive
on C(Ω)/Q if and only if it is rep-
resented by a Q-divisible positive
measure µ such that µ = qνq with
νq ∈M(Ω) positive for all q ∈ Q.
The concept givn by the Defini-

tion 1.3 can be considerably extended.
The next assertion is an extension

result of linear functionals to posi-
tive ones.
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Theorem 1.4. Let Q0 3 1 be
a cofinal subset of Q. Let F =
∑
q∈Q0Fq, where Fq is a vector
subspace of C(Ω)/q such that 1/q ∈
Fq and Fq ⊂ Fr for all q, r ∈
Q0, with q|r. Let also φ : F → C
be linear with φ(1) > 0, and set
φq = φ|Fq, q ∈ Q0.
The linear functional φ extends

to a positive linear functional ψ
on C(Ω)/Q such that ‖ψq‖ = ‖φq‖,
where ψq = ψ|C(Ω)/q, if and only
if ‖φq‖ = φ(1/q) > 0, q ∈ Q0.
We put Z(Q0) = ∪q∈Q0Z(q) for

each subset Q0 ⊂ Q.
Corollary 1.5. With the con-

ditions of the previous Theorem,
there exists a positive measure µ
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on Ω such that
φ(f ) =

∫
Ω f dµ, f ∈ F .

For every such measure µ and ev-
ery q ∈ Q, we have µ(Z(q)) = 0.
Hence, if Q contains a countable
subset Q1 with Z(Q1) = Z(Q),
then µ(Z(Q)) = 0.
Example 1.6. Let Ω be a com-

pact space. We consider a collec-
tion P of complex-valued functions
p, each defined and continuous on
an open set ∆p ⊂ Ω. Let µ be
a positive measure on Ω such that
µ(Ω \ ∆p) = 0, and p (arbitrarily
extended on Ω\∆p) is µ-integrable
for all p ∈ P . We may define the
numbers γp = ∫

Ω pdµ, p ∈ P , which
can be called the P-moments of µ.
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A very general (possibly hopeless)
moment problem might be to char-
acterize those families of numbers
(γp)p∈P which are the P-moments
of a certain positive measure.
Let us add some supplementary

conditions. First of all, assume that
Ω0 = ∩p∈P∆p is a dense subset
of Ω. Also assume that there ex-
ists R ⊂ P a family containing
the constant function 1, closed un-
der multiplication in the sense that
if r′, r′′ ∈ R then r′r′′ defined on
∆r′ ∩∆r′′ is in R, and each r ∈ R
is nonnull on its domain of defini-
tion. Finally, we assume that for
every function p ∈ P there exists a
function r ∈ R such that the func-
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tion p/r, defined on ∆p ∩ ∆r, has
a (unique) continuous extension to
Ω. In particular, all functions from
the family Q = {1/r; r ∈ R} have
a continuous extension to Ω. More-
over, the set Q, identified with a
family in C(Ω), is a set of denom-
inators. This allows us to identify
each function p ∈ P with a fraction
from C(Ω)/Q, namely with h/q,
where h is the continuous extension
of p/r and q = 1/r for a convenient
r ∈ R. With these conditions, the
above P-moment problem can be
approached with our methods.
In other words, for a given linear

functional φ on P , we look for nec-
essary and sufficient conditions on
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P and φ to insure the existence of
a solution, that is, a positive mea-
sure µ on Ω such that each p be µ-
almost everywhere defined and φ(p) =∫
Ω pdµ, p ∈ P . We may call such a
problem a singular moment prob-
lem. With this terminology, the
classical moment problems of Stielt-
jes and Hamburger, in one or sev-
eral (or even infinitely many) vari-
ables, are singular moment prob-
lems.
Exemple 1.7. Let S1 be the alge-

bra of polynomials in z, z̄, z ∈ C.
This algebra, which is used to char-
acterize the moment sequences in
the complex plane, can be identi-
fied with a subalgebra of an algebra
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of fractions of continuous functions.
This exemple can be extended even
to infinitely many variables. Let
R1 be the set of functions {(1 +
|z|2)−k; z ∈ C, k ∈ Z+}, which
can be continously extended toC∞ =
C∪ {∞}. Identifying R1 with the
set of their extensions in C(C∞),
the family R1 becomes a set of de-
nominators in C(C∞). This will
allows us to identify the algebra S1
with a subalgebra of the algebra of
fractions C(C∞)/R1.
Let S(1)

1,k, k ≥ 1, be the space gen-
erated by the monomials zjz̄l, 0 ≤
j + l < 2k. We put S(1)

1,0 = C. Let
also S(2)

1,k, k ≥ 1, be the space gen-
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erated by the monomials |z|2j, 0 <
j ≤ k. Put S(2)

1,0 = {0}.
Set S1,k = S(1)

1,k + S(2)
1,k, k ≥ 0.

We clearly have S1 = ∑
k≥0 S1,k.

Since S1,k may be identified with a
subspace ofC(C∞)/rk, where rk(z) =
(1+|z|2)−k for all k ≥ 0, the space
S1 can be viewed as a subalgebra of
the algebra C(C∞)/R1. Note also
that r−1

k ∈ S1,k for all k ≥ 1 and
S1,k ⊂ S1,l whenever k ≤ l.
According to Theorem 1.4, a lin-

ear map φ : S1 7→ C has a posi-
tive extension ψ : C(C∞)/R1 7→
C with ‖φk‖ = ‖ψk‖ if and only
if ‖φk‖ = φ(r−1

k ), where φk =
φ|S1,k and ψk = ψ|C(C∞)/rk, for
all k ≥ 0. This result can be used
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to characterize the Hamburger mo-
ment problem in the complex plane.
Specifically, given a sequence of com-
plex numbers γ = (γj,l)j≥0,l≥0 with
γ0,0 = 1, γk,k ≥ 0 if k ≥ 1 and
γj,l = γ̄l,j for all j ≥ 0, l ≥ 0, the
Hamburger moment problemmeans
to find a probability measure on C
such that γj,l = ∫ zjz̄ldµ(z), j ≥
0, l ≥ 0.
Defining Lγ : S1 7→ C by setting
Lγ(zjz̄l) = γj,l for all j ≥ 0, l ≥ 0
(extended by linearity), if Lγ has
the properties of the functional φ
above insuring the existence of a
positive extension to C(C∞)/R1,
then the measure µ is provided by
Corollary 1.5.
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For a fixed integer m ≥ 1, we
can state and characterize the ex-
istence of solutions for a truncated
moment problem (for an extensive
study of such problems we refer to
the works by Curto and Fialkow).
Specifically, given a finite sequence
of complex numbers γ = (γj,l)j,l
with γ0,0 = 1, γj,j ≥ 0 if 1 ≤
j ≤ m and γj,l = γ̄l,j for all j ≥
0, l ≥ 0, j 6= l, j + l < 2m, find
a probability measure on C such
that γj,l = ∫ zjz̄ldµ(z) for all in-
dices j, l. As in the previous case,
a necessary and sufficient condition
is that the corresponding map Lγ :
S1,m 7→ C have the property ‖Lγ‖ =
Lγ(1/rm). Note also that the ac-
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tual truncated moment problem is
slightly different from the usual one.

2. Normal extensions
In this section we present a ver-

sion of result by Albrecht and V,
concerning the existence of normal
extensions. We discuss it here for
infinitely many operators.
Nevertheless, we first present the

case of a single operator.
Fix a Hilbert spaceH and a dense

subspace D of H, Let SF (D) the
space of all sesquilinear forms on
D.
We recall that S1, which is the

set of all polynomials in z and z̄,
z ∈ C.
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Considering an operator S, we may
define a unital linear map φS : S1→
SF (D) by
φS(zjz̄k)(x, y) = 〈Sjx, Sky〉,

x, y ∈ D, j ∈ Z+,

extended by linearity to the sub-
space S1.

Theorem 2.1. Let S : D(S) ⊂
H 7→ H be a densely defined lin-
ear operator such that SD(S) ⊂
D(S). The operator S admits a
normal extension if and only if
for allm ∈ Z+, n ∈ N and x1, . . . , xn,
y1, . . . , yn ∈ D(S) with

n∑
j=1

m∑
k=0


m

k

〈Skxj, Skxj〉 ≤ 1,
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n∑
j=1

m∑
k=0


m

k

〈Skyj, Skyj〉 ≤ 1,

and for all p = (pj,k) ∈ Mn(S1),
with supz∈C ‖(1+|z|2)−mp(z)‖n ≤
1, we have∣∣∣∣∣∣∣∣∣

n∑
j,k=1

〈φS(pj,k)xk, yj〉
∣∣∣∣∣∣∣∣∣ ≤ 1.

Theorem 2.1 is a direct consequence
of a more general assertion, to be
stated in the sequel. A version of
this theorem has been obtained by
Stochel and Szafraniec, via a com-
pletely different approach.
LetQ ⊂ C(Ω) be a set of positive

denominators. Fix a q ∈ Q. A lin-
ear map ψ : C(Ω)/q → SF (D) is
called unital if ψ(1)(x, y) = 〈x, y〉,
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x, y ∈ D. We say that ψ is posi-
tive if ψ(f ) is positive semidefinite
for all f ∈ (C(Ω)/q)+.
More generally, let Q0 ⊂ Q be

nonempty. Let C = ∑
q∈Q0 C(Ω)/q,

and let ψ : C → SF (D) be lin-
ear. The map ψ is said to be unital
(resp. positive) if ψ|C(Ω)/q is uni-
tal (resp. positive) for all q ∈ Q0.

We start with a part of a theorem
by Albrecht and V.

Theorem A. Let Q0 ⊂ Q be
nonempty, let C = ∑

q∈Q0 C(Ω)/q,
and let ψ : C → SF (D) be linear
and unital. The map ψ is posi-
tive if and only if
sup{|ψ(hq−1)(x, x)|; h ∈ C(Ω), ‖h‖∞ ≤ 1}
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= ψ(q−1)(x, x), q ∈ Q0, x ∈ D.

Let again Q0 ⊂ Q be nonempty
and letF = ∑

q∈Q0Fq, where 1/q ∈
Fq and Fq is a vector subspace of
C(Ω)/q for all q ∈ Q0. Let φ :
F 7→ SF (D) be linear. Suppose
that φ(q−1)(x, x) > 0 for all x ∈
D \ {0} and q ∈ Q0. Then φ(1/q)
induces an inner product onD, and
let Dq be the space D, endowed
with the norm given by ‖ ∗ ‖2q =
φ(1/q)(∗, ∗).
Let Mn(Fq) (resp. Mn(F)) de-

note the space of n × n-matrices
with entries in Fq (resp. in F) .
Note thatMn(F) = ∑

q∈Q0 Mn(Fq)
may be identified with a subspace
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of the algebra of fractionsC(Ω,Mn)/Q,
whereMn is the C∗-algebra of n×
n-matrices with entries inC. More-
over, the map φ has a natural ex-
tension φn : Mn(F) 7→ SF (Dn),
given by
φn(f)(x,y) = n∑

j,k=1
φ(fj,k)(xk, yj),

for all f = (fj,k) ∈ Mn(F) and
x = (x1, . . . , xn),y = (y1, . . . , yn) ∈
Dn.
Let φnq = φn | Mn(Fq). Endow-

ing the Cartesian product Dn with
the norm ‖x‖2q = ∑n

j=1 φ(1/q)(xj, xj)
if x = (x1, . . . , xn) ∈ Dn, and de-
noting it by Dnq , we say that the
map φn is contractive if ‖φnq‖ ≤ 1
for all q ∈ Q0. Using the standard

25



norm ‖∗‖n in the space ofMn, the
space Mn(Fq) is endoved with the
norm

‖(qfj,k)‖n,∞ = sup
ω∈Ω
‖(q(ω)fj,k(ω))‖n,

for all (fj,k) ∈Mn(Fq).
Following Arveson and Powers, we

shall say that the map φ : F 7→
SF (D) is completely contractive
if the map φn : Mn(F) 7→ SF (Dn)
is contractive for all integers n ≥ 1.
Note that a linear map φ : F 7→
SF (D) with the property φ(1/q)(x, x) >
0 for all x ∈ D \ {0} and q ∈
Q0 is completely contractive if and
only if for all q ∈ Q0, n ∈ N,
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x1, . . . , xn, y1, . . . , yn ∈ D with
n∑
j=1

φ(q−1)(xj, xj) ≤ 1,

n∑
j=1

φ(q−1)(yj, yj) ≤ 1,

and for all (fj,k) ∈ Mn(Fq) with
‖(qfj,k)‖n,∞ ≤ 1, we have

∣∣∣∣∣∣∣∣∣
n∑

j,k=1
φ(fj,k)(xk, yj)

∣∣∣∣∣∣∣∣∣ ≤ 1.

Let us recall another result by Al-
brecht and V., given here in a shorter
form.

Theorem B. Let Ω be a com-
pact space and let Q ⊂ C(Ω) be a
set of positive denominators. Let
also Q0 be a cofinal subset of Q,
with 1 ∈ Q0.
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Let F = ∑
q∈Q0Fq, where Fq

is a vector subspace of C(Ω)/q
such that 1/r ∈ Fr ⊂ Fq for
all r ∈ Q0 and q ∈ Q0, with
r|q. Let also φ : F → SF (D)
be linear and unital, and set φq =
φ|Fq, φq,x(∗) = φq(∗)(x, x) for all
q ∈ Q0 and x ∈ D.
Then (a) and (b) are equivalent:
(a) The map φ extends to a uni-

tal, positive, linear map ψ on C(Ω)/Q
such that, for all x ∈ D and q ∈
Q0, we have: ‖ψq,x‖ = ‖φq,x‖,
where ψq = ψ|C(Ω)/q, ψq,x(∗) =
ψq(∗)(x, x).

(b) (i) φ(q−1)(x, x) > 0 for all
x ∈ D \ {0} and q ∈ Q0.

(ii) The map φ is completely con-
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tractive.
Remark. A ”minimal” subspace

of C(Ω)/Q to apply Theorem C
is obtained as follows. If Q0 is a
cofinal subset of Q with 1 ∈ Q0,
we define Fq for some q ∈ Q0 to
be the vector space generated by
all fractions of the form r/q, where
r ∈ Q0 and r|q. It is clear that the
subspace F = ∑

q∈Q0Fq has the
properties required to apply The-
orem B.

Corollary C. Suppose that con-
dition (b) in Theorem B is satis-
fied. Then there exists a positive
B(H)–valued measure F on the
Borel subsets of Ω such that

φ(f )(x, y) =
∫
Ω f dFx,y,
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for all f ∈ F , x, y ∈ D. For ev-
ery such measure F and every
q ∈ Q0, we have F (Z(q)) = 0.

Example 2.2. We extend to in-
finitely many variables the Exam-
ple 1.7. Let I be a (nonempty)
family of indices. Denote by z =
(zι)ι∈I the independent variable in
CI . Let also z̄ = (z̄ι)ι∈I . As be-
fore, let Z(I)

+ be the set of all collec-
tions α = (αι)ι∈I of nonnegative
integers, with finite support. Set-
ting z0 = 1 for 0 = (0)ι∈I and
zα = ∏

αι 6=0 z
αι
ι for z = (zι)ι∈I ∈

CI , α = (αι)ι∈I ∈ Z(I)
+ , α 6=

0, we may consider the algebra of
those complex-valued functions SI
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on CI consisting of expressions of
the form ∑

α,β∈J cα,βz
αz̄β, with cα,β

complex numbers for all α, β ∈ J ,
where J ⊂ Z(I)

+ is finite.
We can embed the space SI into

the algebra of fractions derived from
the basic algebra C((C∞)I), us-
ing a suitable set of denominators.
Specifically, we consider the family
RI consisting of all rational func-
tions of the form rα(t) = ∏

αι 6=0(1+
|zι|2)−αι, z = (zι)ι∈I ∈ CI , where
α = (αι) ∈ Z(I)

+ , α 6= 0, is arbi-
trary. Of course, we set r0 = 1.
The function rα can be continu-
ously extended to (C∞)I \ CI for
all α ∈ Z(I)

+ . In fact, actually the

31



function fβ,γ(z) = zβz̄γrα(z) can
be continuously extended to (C∞)I\
CI whenever βι + γι < 2αι, and
βι = γι = 0 if αι = 0, for all ι ∈ I
and α, β, γ ∈ Z(I)

+ . Moreover, the
familyRI becomes a set of denom-
inators in C((C∞)I). This shows
that the space SI can be embedded
into the algebra of fractionsC((C∞)I)/RI .
To be more specific, for all α ∈

Z(I)
+ , α 6= 0, we denote by S(1)

I,α
the linear spaces generated by the
monomials zβz̄γ, with βι + γι <
2αι whenever αι > 0, and βι =
γι = 0 if αι = 0. Put S(1)

I,0 = C.
We also define S(2)

I,α, for α ∈ Z(I)
+ , α 6=

0, to be the linear space generated
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by the monomials |z|2β = ∏
βι 6=0(zιz̄ι)βι,

0 6= β, βι ≤ αι for all ι ∈ I and
|z| = (|zι|)ι∈I . We define S(2)

I,0 =
{0}.
Set SI,α = S(1)

I,α + S(2)
I,α for all

α ∈ Z(I)
+ . Note that, if f ∈ SI,α,

the function rαf extends continu-
ously to (C∞)I and that SI,α ⊂
SI,β if αι ≤ βι for all ι ∈ I.
It is now clear that the algebra
SI = ∑

α∈Z(I)
+
SI,α can be identi-

fied with a subalgebra ofC((C∞)I)/RI .
This algebra has the properties of
the space F appearing in the state-
ment of Theorem B.
Let now T = (Tι)ι∈I be a fam-

ily of linear operators defined on
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a dense subspace D of a Hilbert
space H such that Tι(D) ⊂D and
TιTκx = TκTιx for all ι, κ ∈ I,
x ∈ D.
Setting Tα as in the case of com-

plex monomials, which is possible
because of the commutativity of the
family T on D, we may define a
unital linear map φT : SI → SF (D)
by
φT (zαz̄β)(x, y) = 〈Tαx, Tβy〉,

for all x, y ∈ D, α, β ∈ Z(I)
+ , which

extends by linearity to the subspace
SI generated by these monomials.
For all α, β in Z(I)

+ with β − α ∈
Z(I)

+ , and x ∈ D \ {0}, we have
0 < 〈x, x〉 ≤ φT (r−1

α )(x, x) ≤ φT (r−1
β )(x, x) .
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The polynomial 1/rα will be de-
noted by sα for all α ∈ Z(I)

+ .
The family T = (Tι)ι∈I is said to

have a normal extension if there
exist a Hilbert space K ⊃ H and a
family N = (Nι)ι∈I consisting of
commuting normal operators in K
such that D ⊂ D(Nι) and Nιx =
Tιx for all x ∈ D and ι ∈ I.
A family T = (Tι)ι∈I having a

normal extension is also called a
subnormal family.
The following result is a version of

theorem by Albrecht and V, valid
for an arbitrary family of operators
We mention that, where the basic
space is modified.

Theorem 2.3. Let T = (Tι)ι∈I
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be a family of linear operators de-
fined on a dense subspace D of
a Hilbert space H. Assume that
D is invariant under Tι for all
ι ∈ I and that T is a commut-
ing family on D. The family T
admits a normal extension if and
only if the map φT : SI 7→ SF (D)
has the property that for all α ∈
Z(I)

+ , m ∈ N and x1, . . . , xm,
y1, . . . , ym ∈ D with

m∑
j=1

φT (sα)(xj, xj) ≤ 1,

m∑
j=1

φT (sα)(yj, yj) ≤ 1,

and for all p = (pj,k) ∈Mm(SI,α)
with supz ‖rα(z)p(z)‖m ≤ 1, we
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have∣∣∣∣∣∣∣∣∣
m∑

j,k=1
φT (pj,k)(xk, yj)

∣∣∣∣∣∣∣∣∣ ≤ 1.

Remark. Let S : D(S) ⊂ H 7→
H be an arbitrary linear operator.
If B : D(B) ⊂ K 7→ K is a nor-
mal operator such that H ⊂ K,
D(S) ⊂ D(B), Sx = PBx and
‖Sx‖ = ‖Bx‖ for all x ∈ D(S),
where P is the projection ofK onto
H, then we have Sx = Bx for all
x ∈ D(S). Indeed, 〈Sx, Sx〉 =
〈Sx,Bx〉 and 〈Bx, Sx〉 = 〈PBx, Sx〉 =
〈Sx, Sx〉 = 〈Bx,Bx〉. Hence, we
have ‖Sx − Bx‖ = 0 for all x ∈
D(S).
Remark 2.4. Let T = (Tι)ι∈I be

a family of linear operators defined
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on a dense subspace D of a Hilbert
space H. Assume that D is invari-
ant under Tι and that T is a com-
muting family on D. If the map
φT : SI 7→ SF (D)) is as in The-
orem 2.3, the family has a proper
quasi-invariant subspace. In other
words, there exists a proper Hilbert
subspace L of the Hilbert space H
such that the subspace {x ∈ D(Tι)∩
L;Tx ∈ L} is dense in in L for
each ι ∈ I.
For the proof of Theorem 2.3, we

need the following version of the
spectral theorem.

Theorem 2.5. Let (Nι)ι∈I be
a commuting family of normal op-
erators in H. Then there exists a
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unique spectral measure G on the
Borel subsets of (C∞)I such that
each coordinate function (C∞)I 3
z → zι ∈ C∞ is G-almost every-
where finite. In addition,
〈Nιx, y〉 =

∫
(C∞)I zιdEx,y(z),

for all x ∈ D(Nι), y ∈ H, where
D(Nι) = {x ∈ H;

∫
(C∞)I |zι|

2dEx,x(z) <∞},

for all ι ∈ I.
If the set I is at most count-

able, then the measure G has sup-
port in CI.
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