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Unbounded Normal Operators

Let H be a complex Hilbert space. A natural extension of the
concept of bounded normal operator to the class of densely
defined linear operators is given by the following.

Definition Let N : D(N) ⊂ H 7→ H be a densely defined closed
linear operator. We say that N is normal if D(N∗) = D(N) and
‖N∗x‖ = ‖Nx‖ for all x ∈ D(N).

As in the bounded case, normal operators have many important
properties, useful for both theory and applications. As the
conditions from the definition are not easily verified, one seeks
for conditions implying normaliy.
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Formally Normal Operators

A larger class of operators for which the conditions from the
definition are more easily checked is the following.

Definition Let S : D(S) ⊂ H 7→ H be a densely defined closed
linear operator. We say that S is formally normal if
D(S) ⊂ D(S∗) and ‖S∗x‖ = ‖Sx‖ for all x ∈ D(S).

Clearly, every normal operator is formally normal but the
converse is not true, in general.

An important problem in this context is to describe those
formally normal operators having normal extensions.
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Coddington’s Theorem

For an operator T , N(T ) denotes its null-space.

Coddington’s Theorem (1960)

Let S be a formally normal operator in a Hilbert space H. Let
also S̄ := S∗|D(S), andM := N(I + S∗S̄∗).
There exists a normal extension N of S in H if and only if there
exists a linear map W fromM into itself, with the following
properties:
(i) W 2 = I|M;
(ii) ‖x‖2 + ‖S̄∗x‖2 = ‖Wx‖2 + ‖S̄∗Wx‖2, x ∈M;
(iii) (I −W )M = S̄∗(I −W )M;
(iv) ‖S̄∗(I −W )x‖ = ‖S∗(I −W )x‖, x ∈M.
The operator N is given by Nx = S̄∗x for all
x ∈ D(N) := D(S) + (I −W )M.
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A Matricial Strategy

Unlike in Coddington’s work, a different approach to the
extension problem, based on matrices, can be adopted.
Let D be a dense subspace in a Hilbert space H. Let also T be
a densely defined linear operator in H, with the property that T
and its adjoint T ∗ are both defined on D. Writing T = A + iB,
with A = (T + T ∗)/2 and B = (T − T ∗)/2i , and so A and B are
symmetric operators on D, we can associate the operator T
with the matrix operator

QT =

(
A B
−B A

)
.

It is known that T is normal in H if and only if if the operator QT
is normal in the Hilbert space H⊕H.
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Continuation

Because our techniques, based on a quaternionic Cayley
transform, give conditions to insure the existence of a normal
extension for a matrix operator resembling to QT , we can go
back to the operator T , which satisfies only some verifiable
conditions. In fact, we have such results actually for the case
when A and B are symmetric operators defined on a not
necessarily dense domain in H, so the final extension result
applies to larger class than that of formally normal operators.
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Recall: Algebra of Quaternions

We start with some notation. Consider the 2× 2-matrices

J =

(
1 0
0 −1

)
, K =

(
0 1
−1 0

)
, L =

(
0 1
1 0

)
.

The Hamilton algebra of quaternions H is identified with the
R-subalgebra of the algebra M2 of 2× 2-matrices with complex
entries, generated by the matrices iJ, K, iL, and the identity I.
Nevertheless, we regard the elements of H as matrices and we
perform some operations in M2 rather than in H.

Although the matrices J and L do not belong to H, they play an
important role in our development.
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Continuation

We have the properties

J∗ = J, K∗ = −K, L∗ = L, J2 = −K2 = L2 = I,

JK = L = −KJ, KL = J = −LK, JL = K = −LJ,

where the adjoints are computed in the Hilbert space C2.

Setting E = iJ, we have E∗ = −E, E2 = −I.
We also set F = iL, and we have F∗ = −F, F2 = −I.
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Some Notation

Let H be a complex Hilbert space, whose scalar product is
denoted by 〈∗, ∗〉, and whose norm is denoted by ‖ ∗ ‖. We
especially work in the Hilbert space H2 = H⊕H, whose scalar
product, naturally induced by that from H, is denoted by 〈∗, ∗〉2,
and whose norm is denoted by ‖ ∗ ‖2.
The matrices from M2 naturally act on H2 simply by replacing
their entries with the corresponding multiples of the identity on
H. In particular, the matrices I,J,K,L,E,F, defined in the
previous section, naturally act on H2, and we still have the
relations already mentioned.
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Continuation

We fix some notation and terminology for Hilbert space (always
linear) operators. For an operator T acting in H, we denote by
D(T ) its domain of definition. The range of T is denoted by
R(T ), while N(T ) stands for the kernel of T .
If T is densely defined, let T ∗ be its adjoint.
If T2 extends T1, we write T1 ⊂ T2 or T2 ⊃ T1, which is an order
relation in the space of linear operators.

An operator S : D(S) ⊂ H 7→ H is said to be symmetric if
〈Sx , y〉 = 〈x ,Sy〉 for all x , y ∈ D(S). If, moreover, S is densely
defined, then S ⊂ S∗.
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A Preliminary Result

Lemma 1 Let S : D(S) ⊂ H2 7→ H2. Suppose that the operator
JS is symmetric. Then we have

‖(S ± E)x‖22 = ‖Sx‖22 + ‖x‖22, x ∈ D(S).

If, in addition, JD(S) ⊂ D(S), we have

‖(S ± E)Ex‖22 = ‖Sx‖22 + ‖x‖22, x ∈ D(S),

if and only if ‖SJx‖2 = ‖Sx‖2 for all x ∈ D(S).
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E-Cayley Transform

Let S : D(S) ⊂ H2 7→ H2 be such that JS is symmetric. Lemma
1 allows us to correctly define the operator

V : R(S +E) 7→ R(S−E), V (S +E)x = (S−E)x , x ∈ D(S),

which is a partial isometry. In other words,
V = (S − E)(S + E)−1, defined on D(V ) = R(S + E).

The operator V will be called the E–Cayley transform of S.
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F-Cayley Transform

Similarly, if LS is symmetric, the corresponding version of
Lemma 1 leads to the definition of an operator

W : R(S +F) 7→ R(S−F), V (S +F)x = (S−F)x , x ∈ D(S),

which is again a partial isometry, and W = (S − F)(S + F)−1,
defined on D(W ) = R(S + F).

The operator W is called the F–Cayley transform of S.
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Because the two Cayley transforms defined above are alike, in
the sequel we shall mainly deal with the E–Cayley transform,
also designated by the expression quaternionic Cayley
transform (briefly, QCT).

For a symmetric operator, by Cayley transform we always mean
the classical concept, as defined by von Neumann.

Let V : D(V ) ⊂ H2 7→ H2 be a partial isometry. Then the
inverse V−1 is well defined on the subspace D(V−1) = R(V ).
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Properties of the QCT

We summarize the properties of the QCT, stated for not
necessarily densely defined operators.

Theorem 1
The E-Cayley transform is an order preserving bijective map
assigning to each operator S with S : D(S) ⊂ H2 7→ H2 and JS
symmetric a partial isometry V in in H2 with I− V injective.
Moreover:
(1) V is closed if and only if S is closed;
(2) the equality V−1 = −KVK holds if and only if the equality
SK = KS holds;
(3) JS is self-adjoint if and only if V is unitary on H2.
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Inverse QCT

Theorem 1 shows that given a partial isometry V in H2 with
I− V injective, we can find a unique operator S in H2 with JS
symmetric, such that the quaternionic Cayley transform of S is
V . In fact, S is given by the formula

S = (I + V )(I− V )−1E, defined on D(S) = ER(I− V ),

and called the inverse E–Cayley transform of V .

When V is unitary, the operator JS is actually self-adjoint. For
our extension problem, it is of great interest to characterize
those unitary operators U, with with I− U injective, such that
the inverse E–Cayley transform S is a normal operator.
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Unitaries in the Range of QCT

Theorem 2

Let U be a unitary operator on H2 with the property
U∗ = −KUK, and such that I− U is injective. Let also S be the
inverse E–Cayley transform of U. The operator S is normal if
and only if (U + U∗)E = E(U + U∗).

If U is a unitary operator as in the previous statement, then U
has necessarily the form

U =

(
T iA
iA T ∗

)
,

with T normal and A self-adjoint in H, TT ∗ + A2 = I, and
AT = TA. In this case, S = (I + U)(I− U)−1E.
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Some Notation

Let U(H2) be the set of all unitary operators in H2. We also set

UC(H2) = {U ∈ U(H2); U∗ = −KUK,N(I− U) = {0},

(U + U∗)E = E(U + U∗)},
that is, those unitary operators whose inverse E–Cayley
transform is a normal operator, via the previous theorem.

Let also
NIC(H2) = {S : D(S) ⊂ H2 → H)2;

S normal, (JS)∗ = JS, KS = SK}.
Theorems 1 and 2 show the bijectivity of the map

NIC(H2) 3 S 7→ (S − E)(S + E)−1 ∈ UC(H2).
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Remark 1

In fact, we have S ∈ NIC(H2) if and only if S is a densely
defined operator in H2 having the form

S =

(
A B
−B A

)
,

where A and B are commuting self-adjoint operators.
(The commutativity of A and B means that (A− i)−1 and
(B − i)−1 commute, which is a strong commutativity.)
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A Special Class

Let T : D(T ) ⊂ H2 7→ H2. In order that T have a normal
extension S ∈ NIC(H2), the following conditions are necessary:
(i) JD(T ) ⊂ D(T ) and KD(T ) ⊂ D(T ).
(ii) JT is symmetric;
(iii) TK = KT ;
(iv) ‖T Jx‖2 = ‖Tx‖2 for all x ∈ D(T ).

We denote by SIC(H2) the set of those operators
T : D(T ) ⊂ H2 7→ H2 such that (i)–(iv) hold.
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Another Special Class

Let PC(H2) be the set of those partial isometries
V : D(V ) ⊂ H2 7→ H2 such that:
(a) V−1 = −KVK;
(b) I− V is injective;
(c) ER(I− V ) = R(I− V ) and (I− V )−1E(I− V ) is an isometry
on D(V ).

It follows from our results that the E–Cayley transform is a
bijective map from SIC(H2) onto PC(H2).

Note also that UC(H2) = PC(H2) ∩ U(H2).
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Main Result

The interesting question concerning the existence of an
extension S ∈ NIC(H2) of an operator T ∈ SIC(H2) is
equivalent to the description of those partial isometries in
PC(H2) having extensions in the family UC(H2). Here is an
answer to this question.

Theorem 3

Let T ∈ SIC(H2) be densely defined. The operator T has an
extension in NIC(H2) if and only if there exists a W ∈ PC(H2),
with D(W ) = R(T + E)⊥.
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with D(W ) = R(T + E)⊥.
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Non-density

The hypothesis in Theorem 3 concerning the density on the
domain of the given operator may be replaced by a hypothesis
concerning some ranges.

Corollary

Let T ∈ SIC(H2) be closed and let V be the E–Cayley
transform of T . The operator T has an extension in NIC(H2) if
and only if there exists a W ∈ PC(H2), with the properties
D(W ) = R(T + E)⊥ and R(I− V ) ∩ R(I−W ) = {0}.
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Commuting Self-Adjoint Extensions

By our results, if T ∈ SIC(H2) is densely defined and the space
R(T + E) is dense in H2, then T has an extension in NIC(H2).
This remark can be applied in the following situation. Let A,B
be a pair of linear operators having a joint domain of definition
D0 ⊂ H. As in the Introduction, we associate this pair with a
matrix operator

T =

(
A B
−B A

)
,

defined on D(T ) = D0 ⊕ D0 ∈ H2. First of all, let us find
equivalent conditions on A,B such that T ∈ SIC(H2). Clearly,
JD(T ) ⊂ D(T ) and KD(T ) ⊂ D(T ).
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Continuation

It is easily seen that T is symmetric if and only if both A,B are
symmetric. The equality KT = TK is also easily verified.
Finally, the equality ‖T Jx‖2 = ‖Tx‖2 holds for all x ∈ D(T ) if
and only if

〈Au,Bv〉+ 〈Bv ,Au〉 = 〈Bu,Av〉+ 〈Av ,Bu〉 (C)

for all u, v ∈ D0, which is a weak commutativity condition.
Consequently, if A,B are symmetric and condition (C) holds,
then T ∈ SIC(H2). In that case, the E–Cayley transform of T is
in the class PC(H2).
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Commuting Extensions

Theorem 4
Let A,B be symmetric operators on a dense joint domain of
definition D0 ⊂ H, satisfying condition (C). If the space

{((A + iI)u + Bv)⊕ ((A− iI)v − Bu); u, v ∈ D0} (D)

is dense in H2, then the operators A and B have commuting
self-adjoint extensions.

The density of the space from (D) is precisely the density of
R(T + E) in H2, implying R(T + E)⊥ = {0}.
This resultis a criterion of commutativity of self-adjoint
extension of some pairs of symmetric operators.
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A Moment Problem with Constraints

Let (s, t ,u) denote the variable in R3, and let P be the algebra
of all polynomials in s, t ,u, with complex coefficients.

We recall that the linear map Λ : P 7→ C is a square positive
functional (briefly, a spf ) if Λ(p̄) = Λ(p), and Λ(|p|2) ≥ 0 for all
p ∈ P. If, moreover, Λ(1) = 1, we say that Λ is unital square
positive functional (briefly, a uspf ).

A representing measure for the uspf Λ : P 7→ C with support in
the measurable subset Σ ⊂ R3 is a probability measure µ on Σ
such that Λ(p) =

∫
Σ pdµ all p ∈ P.

Finding a representing for Λ means to solve a moment problem.

Author: Vasilescu Short Title: NMQ



Unbounded Normal Operators
Quaternionic Cayley Transforms (QCT)

QCT with Unitary Range
Normal Extensions

Applications

Commuting Self-Adjoint Extensions
A Moment Problem with Constraints

A Moment Problem with Constraints

Let (s, t ,u) denote the variable in R3, and let P be the algebra
of all polynomials in s, t ,u, with complex coefficients.

We recall that the linear map Λ : P 7→ C is a square positive
functional (briefly, a spf ) if Λ(p̄) = Λ(p), and Λ(|p|2) ≥ 0 for all
p ∈ P. If, moreover, Λ(1) = 1, we say that Λ is unital square
positive functional (briefly, a uspf ).

A representing measure for the uspf Λ : P 7→ C with support in
the measurable subset Σ ⊂ R3 is a probability measure µ on Σ
such that Λ(p) =

∫
Σ pdµ all p ∈ P.

Finding a representing for Λ means to solve a moment problem.

Author: Vasilescu Short Title: NMQ



Unbounded Normal Operators
Quaternionic Cayley Transforms (QCT)

QCT with Unitary Range
Normal Extensions

Applications

Commuting Self-Adjoint Extensions
A Moment Problem with Constraints

A Moment Problem with Constraints

Let (s, t ,u) denote the variable in R3, and let P be the algebra
of all polynomials in s, t ,u, with complex coefficients.

We recall that the linear map Λ : P 7→ C is a square positive
functional (briefly, a spf ) if Λ(p̄) = Λ(p), and Λ(|p|2) ≥ 0 for all
p ∈ P. If, moreover, Λ(1) = 1, we say that Λ is unital square
positive functional (briefly, a uspf ).

A representing measure for the uspf Λ : P 7→ C with support in
the measurable subset Σ ⊂ R3 is a probability measure µ on Σ
such that Λ(p) =

∫
Σ pdµ all p ∈ P.

Finding a representing for Λ means to solve a moment problem.

Author: Vasilescu Short Title: NMQ



Unbounded Normal Operators
Quaternionic Cayley Transforms (QCT)

QCT with Unitary Range
Normal Extensions

Applications

Commuting Self-Adjoint Extensions
A Moment Problem with Constraints

A Moment Problem with Constraints

Let (s, t ,u) denote the variable in R3, and let P be the algebra
of all polynomials in s, t ,u, with complex coefficients.

We recall that the linear map Λ : P 7→ C is a square positive
functional (briefly, a spf ) if Λ(p̄) = Λ(p), and Λ(|p|2) ≥ 0 for all
p ∈ P. If, moreover, Λ(1) = 1, we say that Λ is unital square
positive functional (briefly, a uspf ).

A representing measure for the uspf Λ : P 7→ C with support in
the measurable subset Σ ⊂ R3 is a probability measure µ on Σ
such that Λ(p) =

∫
Σ pdµ all p ∈ P.

Finding a representing for Λ means to solve a moment problem.

Author: Vasilescu Short Title: NMQ



Unbounded Normal Operators
Quaternionic Cayley Transforms (QCT)

QCT with Unitary Range
Normal Extensions

Applications

Commuting Self-Adjoint Extensions
A Moment Problem with Constraints

Consequence of Schmüdgen’s Theorem

Let S3 be the unit sphere of R3, and let
S3

+={(s, t ,u) ∈ S3; 0 ≤ s ≤ 1}, which is a compact
semi-algebraic set. Let also θ(s, t ,u) = 1− s2 − t2 − u2 and
σ(s) = s. As we have

S3
+ = {(s, t ,u) ∈ R3; θ(s, t ,u) = 0, σ(s) ≥ 0, (1− σ)(s) ≥ 0},

we obtain from a well-known theorem by Schmüdgen that the
unital square positive functional Λ : P 7→ C has a representing
measure with support in S3

+ if and only if

Λθ = 0, and Λσ, Λ1−σ, Λσ(1−σ) (P)
are square positive functionals (where for a given q ∈ P and a
map Λ : P 7→ C, we put Λq(p) = Λ(qp) for all p ∈ P).
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A Problem with Constraints

A more complicated situation, which can be treated with our
methods, occurs when we impose some constraints, and the
solution given by Schmüdgen ’s theorem is not necessarily the
"good" one.

Problem. Characterize those unital square positive functionals
Λ on P with the property (P), which have a representing
measure with support in the set
S3

++ := {(s, t ,u) ∈ S3
+; 0 ≤ s < 1}, such that all functions

(1− s)−m(m ≥ 1 an integer) are integrable.
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Notation

From now on, let Λ : P 7→ C be a square positive functional with
the property (P). This implies that Λ(q) = 0 for each polynomial
q with q|S3

+ = 0. We denote by P(S3
+) the algebra consisting of

all (classes of) functions of the form p|S3
+, p ∈ P, modulo the

ideal of those polynomials q with q|S3
+ = 0. The map induced

by Λ on P(S3
+) will still be designated by Λ.
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A Useful Formula

To give a solution to the Problem, we should first extend the
map Λ to the algebra R(S3

++) generated by the rational
functions sj tkul(1− s)−m restricted to S3

++, where j , k , l ,m are
nonnegative integers.
First of all, we note the formula

(5.1)
1

(1− s)m+1 =
∑
α≥m

(
α

m

)
sα−m,

valid for all integers m ≥ 0, where the series is convergent at
each point s ∈ [0,1).
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A Necessary Condition

The series (5.1) suggests the following supplementary
hypothesis on Λ:

Condition. Setting

(5.2) pm,n(s) =
n∑

α=m

(
α

m

)
sα−m,

for all nonnegative integers m,n (n ≥ m) and s ∈ [0,1), we
assume that

(L) lim
n1,n2→∞

Λ(|pm,n1 − pm,n2 |
2) = 0

for all m ≥ 0.

Condition (L) is necessary via the Lebesgue theorem of
dominated convergence.

Author: Vasilescu Short Title: NMQ



Unbounded Normal Operators
Quaternionic Cayley Transforms (QCT)

QCT with Unitary Range
Normal Extensions

Applications

Commuting Self-Adjoint Extensions
A Moment Problem with Constraints

Sufficiency of (L): Step 1

We shall prove that (L) is also sufficient.
Using (L), for each polynomial p ∈ P(S3

+) and every integer
m ≥ 0, we may define

Λ̃(prm) = lim
n→∞

Λ(ppm,n), (5.3)

where rm(s) = (1− s)−m−1. Note that the limit exists via the
Cauchy-Schwarz inequality. Moreover,

Λ̃(prm1) = Λ̃((1− σ)m2−m1prm2) (5.4)

if m2 ≥ m1.
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Step 2

Let now p1,p2 ∈ P(S3
+), and let m1,m2 be nonnegative integers

such that r−1
m2

p1 − r−1
m1

p2 = q, where q|S3
+ = 0. Assuming, with

no loss of generality, that m2 ≥ m1, we infer
p2 = (1− σ)m2−m1p1 − qrm1 . This relation also shows that qrm1

is a polynomial, which is null on S3
+. Therefore

lim
n→∞

Λ(p2pm2,n) = lim
n→∞

Λ(p1pm1,n).

Consequently,
Λ̃(p2rm2) = Λ̃(p1rm1). (5.5)
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Step 3

Relation (5.5) shows that Λ̃ induces a map on the algebra of
fractions F(S3

++) build from the algebra P(S3
+), with

denominators in the set S = {(1− s)m; m ≥ 0}. This map is
denoted again by Λ. The map Λ : F(S3

++) 7→ C is a unital
square positive functional. Indeed, fixing f = p/(1− σ)m, we
have, via the properties of Λ : P(S3

+) 7→ C,

Λ(f̄ ) = lim
n→∞

Λ(p̄pm,n) = Λ(f ), Λ(|f |2) = lim
n→∞

Λ(|f |2p2m,n) ≥ 0,

Λσ(|f |2) = lim
n→∞

Λ(σ|f |2p2m,n) ≥ 0, (5.6)

Λ1−σ(|f |2) = lim
n→∞

Λ((1− σ)|f |2p2m,n) ≥ 0.
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Step 4

In particular, the map Λ : F(S3
++) 7→ C satisfies the

Cauchy-Schwartz inequality, and so the set
IΛ = {f ∈ F(S3

++); Λ(|f |2) = 0} is an ideal in the algebra
F(S3

++). Moreover, the assignment (f ,g) 7→ Λ(f ḡ) induces an
inner product on the quotient D0 = F(S3

++)/IΛ. The completion
of this quotient with respect to this inner product is a Hilbert
space denoted by H.
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Step 5

We now consider in H the multiplication operators B0,C0
induced by the functions −t/(1− s) and u/(1− s), respectively,
defined on D0. Then B0,C0 leave invariant the space D0 and
commute. Moreover, for every pair g1,g2 ∈ D0, the system(

−t
1− s

+ i
)

f1 +
u

1− s
f2 = g1

(5.7)

−u
1− s

f1 +

(
−t

1− s
− i
)

f2 = g2

has the solution f1 = −2−1((t + i − is)g1 + ug2),
f2 = 2−1(ug1− (t − i + is)g2), via s2 + t2 + u2 = 1, so f1, f2 ∈ D0.
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Step 6

Setting S0 = B0I + C0K on D0 ⊕ D0, the system (5.7) is
precisely the equation (S0 + E)(f1 ⊕ f2) = g1 ⊕ g2, showing that
R(S0 + E) is equal to D0 ⊕ D0. Hence, denoting by U0 the
E-Cayley transform of S0, a direct computation shows that U0 is
the matrix multiplication operator

U0 =

(
s + it iu

iu s − it

)
,

defined on D0 ⊕ D0.
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Step 7

We clearly have S0 ∈ SIC(H2). Then the closure S of S0 also
belongs to SIC(H2). If U is the E-Cayley transform of S, then U
should be closed. As U extends U0, U must be a unitary
operator on H2. Specifically, U ∈ UC(H2) because U is a
unitary operator in PC(H2). In particular, I− U is injective

Let T ,A be the bounded operators associated to U, via
Theorem 2.
Note that we also have that I − Re(T ) is injective.
In fact, the multiplication by s + it on D0 is extended by T , and
the multiplicatin by u on D0 is extended by A.
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Step 8

Let E be the joint spectral measure of the pair (T ,A), which is
concentrated on S3

+. Indeed, if A is the unital (commutative)
C∗-algebra generated by T and A, the equality T ∗T + A2 = I
shows that the joint spectrum of the pair (T ,A) may be
identified with a compact subset of the sphere S3. In addition,
as 0 ≤ Re(T ) ≤ I, which is implied by the properties of the
square positive forms Λσ and Λ1−σ given by (5.6), it follows that
the measure E is concentrated in the set S3

+. As the operator
I − Re(T ) is injective, it follows that E({(1,0,0)}) = 0.
Consequently, the measure E is supported by the set S3

++.
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Last Step

Since 1 + IΛ = (I − Re(T ))m((1− σ)−m + IΛ), it follows that
1 + IΛ is in the domain of (I − Re(T ))−m for all integers m ≥ 1.
Therefore, setting µ(∗) = 〈E(∗)(1 + IΛ),1 + IΛ〉, we obtain

Λ(prm) = 〈prm + IΛ,1 + IΛ〉 =

〈(p(Re(T ), Im(T ),A)(I−Re(T ))−m(1+IΛ),1+IΛ〉 =

∫
S3

++

prmdµ,

for all f = prm ∈ F(S3
++), showing that µ is a representing

measure for Λ : F(S3
++) 7→ C. In addition∫

S3
++

(1− s)−2mdµ = ‖(I − Re(T ))−2m(1 + IΛ)‖2 <∞,

for all integers m ≥ 1, which completes our assertion.
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