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Abstract

In a previous work, the author has introduced a notion of
quaternionic Cayley transform, valid for some classes of
pairs of symmetric operators. In a second work, the former
definition was slightly modified, leading to more direct
proofs, using von Neumann’s Cayley transform.
In the present work, written in cooperation with Adrian
Sandovici, a quaternionic Cayley transform for linear
relations is introduced and some of its properties are
exhibited. We emphasize the role played by the linear
relations whose quaternionic Cayley transforms are unitary
operators, which happen to be normal relations, and
investigate the class of those linear relations which extend
to such normal relations.
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Introduction

Let (H, 〈·, ·〉) be a complex Hilbert space and let U be a unitary
operator acting in H. If I is the identity operator on H, set

S = {{(I − U)x , i(I + U)x}; x ∈ H}, (1)

which is a linear subspace of H2 = H×H. The space S is the
graph of a linear transformation in H if and only if the operator
I − U is injective. In this case, the corresponding linear
transformation is known as the inverse Cayley transform of the
unitary operator U, which is, in general, a (not necessarily
bounded) self-adjoint operator.
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Nevertheless, the space S given by (1) is well defined without
the condition I − U invertible, and it is what is called as a linear
relation in H (following Arens). Moreover, we have

S∗ := {{u, v} ∈ H2 : 〈x , v〉 = 〈y ,u〉, ∀ {x , y} ∈ S} = S,

where S∗ stands for the adjoint relation of S. In other words, S
is a self-adjoint linear relation (formal definitions will be later
given).
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We shall define a Cayley transform for some linear relations.
Briefly, considering a linear relation S in H2 (that is, a linear
subspace of H2 ×H2), we associate it with the linear relation

V = {{{x ′1, x ′2}+ {ix1,−ix2}, {x ′1, x ′2}+ {−ix1, ix2}} :

{{x1, x ′1}, {x2, x ′2}} ∈ S},

which is a quaternionic type Cayley transform of S . Under
some natural conditions, the linear space V is the graph of a
partial isometry in H2. Our aim is to study various properties
relating the linear relation S and the partial isometry V .
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An "extreme" situation is when U is an operator of the form

U =

(
T iA
iA T ∗

)
,

with T normal and A self-adjoint in H, such that TT ∗ + A2 = I
and AT = TA. In this case, U is unitary, and it is a quaternionic
Cayley transform of the linear relation

{{i(T− I)x−Ay ,Ax− i(T ∗− I)y}, (T + I)x+ iAy , iAx+(T ∗+ I)y},

{x , y} ∈ H2},

which is normal (in a sense to be defined).
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Notation and Preliminaries

Let H be a complex Hilbert space. A linear relation (briefly, a lr )
in H is a vector subspace of H2 = H×H. The elements of H2

are represented as pairs {x , y}, with x , y ∈ H.
For a lr T in H, we denote by D(T ),R(T ),N(T ),M(T ) its
domain of definition, its range, its kernel, and its multivalued
part, respectively.

We often identify a linear map S : D(S) ⊂ H 7→ H with its graph
G(S).
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If S,T are lr in H2, their composition is given by

ST = {{x , z};∃y : {x , y} ∈ T , {y , z} ∈ S}.

The adjoint T ∗ of T is given by

T ∗ = {{u, v} : 〈u, y〉 = 〈v , x〉; ∀{x , y} ∈ T}.

If T ⊂ T ∗, T is said to be symmetric.

If T = T ∗, T is said to be self-adjoint.
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Normal Relations

A linear relation S in a Hilbert space H is said to be formally
normal (Coddington) if there exists an isometry V : S → S∗ of
the form

V{x , x ′} = {x , x ′′}, {x , x ′} ∈ S, {x , x ′′} ∈ S∗. (2)

In particular, ‖x ′‖ = ‖x ′′‖.

A formally normal linear relation S in H is said to be normal
(Coddington) if the isometry V is surjective.

Normal relations are automatically closed.
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Characterization of Normality

As in the case of (unbounded) normal operators, we have the
following:

Theorem (Sandovici+V)
Let S be a linear relation in a Hilbert space H. Equivalent are:

1 S is a normal linear relation in H;
2 S is closed, D(S) = D(S∗), and S∗S = SS∗.
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Quaternionic Cayley Transform of Linear Relations

Let S be a symmetric linear relation in H. We define the relation

V = {{x ′ + ix , x ′ − ix}; {x , x ′} ∈ S},

which is called the Cayley transform of S (Arens).

Because S is symmetric, we have

‖x ′ ± ix‖2 = ‖x‖2 + ‖x ′‖2, {x , x ′} ∈ S.

Therefore, V is (the graph of) an isometry, defined on
D(V ) = {x ′ + ix , ; {x , x ′} ∈ S} ⊂ H, whose range is
R(V ) = {x ′ − ix ; {x , x ′} ∈ S} ⊂ H.
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Version of a von Neumann’s Theorem

The next result was proved by Arens:

Theorem Let S be a symmetric relation in the Hilbert space H.
The relation S is self-adjoint if and only if the Cayley transform
of S is a unitary operator in H.
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Recall: Algebra of Quaternions

Consider the 2× 2-matrices

I =
(

1 0
0 1

)
, J =

(
1 0
0 −1

)
,

K =

(
0 1
−1 0

)
, L =

(
0 1
1 0

)
.

The Hamilton algebra of quaternions H can be identified with
the R-subalgebra of the algebra M2 of 2× 2-matrices with
complex entries, generated by the matrices I, iJ, K and iL. This
allows us to regard the elements of H as matrices and to
perform some operations in M2 rather than in H.
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Recall: Some Elementary Operations

We have J∗ = J, K∗ = −K, L∗ = L, J2 = −K2 = L2 = I,
JK = L = −KJ, KL = J = −LK, JL = K = −LJ, where the
adjoints are computed in the Hilbert space C2.
We also put E = iJ, F = iL, and we we have E∗ = −E, E2 = −I,
F∗ = −F, F2 = −I
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A Preliminary Lemma

Let H be a complex Hilbert space. The matrices from M2
clearly act on H2 (whose natural norm is denoted by ‖ ∗ ‖2).

Lemma

Let S be a linear relation in H2. Suppose that the linear relation
JS is symmetric. Then we have

‖x ′ ± Ex‖22 = ‖x ′‖22 + ‖x‖22, {x , x ′} ∈ S. (3)
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E–Cayley Transform

Let S be a linear relation in H2 such that JS is symmetric.

E–Cayley transform of S:

V :=
{
{x ′ + Ex , x ′ − Ex} : {x , x ′} ∈ S

}
. (4)

As we have ‖x ′ + Ex‖2 = ‖x ′ − Ex‖2, it follows that V is (the
graph of) a partial isometry with D(V ) = R(S + E) and
R(V ) = R(S − E).

In fact, V given by

V : R(S+E) 7→ R(S−E), V (x ′+Ex) = x ′−Ex , {x , x ′} ∈ S.

Author: VASILESCU
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F–Cayley Transform

If LS is symmetric, a similar discussion leads to the definition of
an operator W given by

W : R(S+F) 7→ R(S−F), W (x ′+Fx) = x ′−Fx , {x , x ′} ∈ S,

which is again a partial isometry. The operator W is called the
F–Cayley transform of S.
Because the two Cayley transforms defined above are alike, in
the sequel we shall mainly deal with the E–Cayley transform.
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Properties of the E–Cayley Transform

Lemma
Let S be a linear relation in H2 such that JS is symmetric, and
let V be the E–Cayley transform of S. We have the following:
(a) V is closed if and only if S is closed, and if and only if the
spaces R(S ± E) are closed;
(b) One has N(I− V ) = M(S). The operator I− V is injective if
and only if S is an operator. Moreover, S is densely defined if
and only if the space R(I− V ) is dense in H2;
(c) If SK ⊂ KS, then SK = KS and V−1 = −KVK;
(d) The lr JS is self-adjoint if and only if V is unitary in H2.
(e) The E–Cayley transform is an inclusion preserving map.
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Inverse E–Cayley Transform

Let V : D(V ) ⊂ H2 7→ H2 be a partial isometry, for which we
define the following:

Inverse E–Cayley transform:

S := {{E(V − I)x , (V + I)x} : x ∈ D(V )} ,

which is a linear relation in H2.

In a similar way, we can define the inverse F–Cayley transform.
These two (quaternionic) inverse Cayley transforms have
similar properties, and so we shall deal only with the inverse
E–Cayley transform.
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Properties of the Inverse E–Cayley Transform

Lemma Let V : D(V ) ⊂ H2 7→ H2 be a partial isometry. Then
the linear relation

S = {{E(V − I)x , (V + I)x} : x ∈ D(V )} .

has the following properties:
(i) the linear relation JS is symmetric and the E–Cayley
transform of S is V ;
(ii) we have V−1 = −KVK if and only if SK = KS.
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Global Properties

We summarize the properties of the quaternionic Cayley
transform:

Theorem
The E-Cayley transform is an inclusion preserving bijective map
assigning to each linear relation S in H2 with JS symmetric a
partial isometry V in H2. Moreover:
(1) the operator V is closed if and only if the linear relation S is
closed;
(2) the equality V−1 = −KVK holds if and only if the equality
SK = KS holds;
(3) the linear relation JS is self-adjoint if and only if V is unitary
on H2.
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Special Unitary Operators

In this this section we are particularly interested in those unitary
operators producing normal linear relations (in particular
(unbounded) normal operators), via the inverse E–Cayley
transform.
Lemma Let U be a bounded operator on H2. The operator U is
unitary and has the property U∗ = −KUK if and only if there
are a bounded operator T and bounded self-adjoint operators
A, B on H such that TT ∗ + A2 = I, T ∗T + B2 = I, AT = TB and

U =

(
T iA
iB T ∗

)
,

where I the identity on H.
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Some Auxilliary Results

Lemma Let U be a unitary operator on H2 with U∗ = −KUK. If
we set

S = {{E(U − I)x , (U + I)x} : x ∈ H} .

we have that S is a closed linear relation and

S∗ = {{(I− U)x ,E(I + U)x} : x ∈ H} .

Lemma Let U be an operator on H2 having the form

U =

(
T iA
iB T ∗

)
,

with T , A = A∗, B = B∗ bounded operators on H, such that
TT ∗ + A2 = I, T ∗T + B2 = I, AT = TB. We have the equality
(U + U∗)E = E(U + U∗) if and only if T is normal and A = B.
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Intertwining Isometries

Lemma Let V be a partial isometry such that V−1 = −KVK.
Let S be the inverse E–Cayley transform of V . Equivalent are:
(i) JD(S) ⊂ D(S) and there exists an isometry H : S → S of
the form H{x , x ′} = {Jx , x ′′};
(ii) there exists an isometry G : D(V ) 7→ D(V ) such that
E(I− V ) = (I− V )G.
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Remark
(1) The isometry G given by the previous Lemma is not
uniquely determined. If G1,G2 are two isometries as in this
lemma, then the operator G1 −G2 is clearly defined on D(V )
and has values in the kernel of I− V .
(2) Assume that the isometry H in the previous Lemma is
surjective. Then it can be shown that the isometric operator G
may be chosen to be surjective. Conversely, if G is surjective,
the operator H may be also chosen to be surjective.
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Proposition

Let U be a unitary operator on H2 with the property
U∗ = −KUK. Let also S be the inverse E–Cayley transform of
U. The linear relation S is normal if and only is there exists a
unitary operator GU on H2 such that E(I− U) = (I− U)GU and
(GU)

∗ = −GU .
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Main result and the Class UC(H2)

Theorem

Let U be a unitary operator on H2 with the property
U∗ = −KUK, and let S be the inverse E–Cayley transform of U.
The linear relation S is normal if and only if
(U + U∗)E = E(U + U∗).

Definition Let U(H2) be the set of all unitary operators in H2.
We also set

UC(H2) = {U ∈ U(H2);U∗ = −KUK,

(U + U∗)E = E(U + U∗)},

that is, those unitary operators whose inverse E–Cayley
transform is a normal linear relation, via the previous theorem.
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The Class NIC(H2)

Definition We introduce the following class of linear relations in
H2:

NIC(H2) = {S ⊂ H2 ×H2;

S normal, (JS)∗ = JS, KS = SK}.

Remark The previous results show that the map

NIC(H2) 3 S 7→ US ∈ UC(H2),

where US stands for the E–Cayley transform of S, is bijective.
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NIC(H2) 3 S 7→ US ∈ UC(H2),

where US stands for the E–Cayley transform of S, is bijective.
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Subnormality

Adapting the terminology from operator theory, we may say that
a linear relation S in a Hilbert space H is subnormal if there
exists a Hilbert space K ⊃ H and a normal relation N in K such
that S ⊂ N. Nevertheless, we are particularly interested to
solve such a problem with the restriction K = H. In fact, to
apply the quaternionic Cayley transform machinery, we
consider only linear relations in the Hilbert space H2.
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The Class SIC(H2)

We start by introducing a class of linear relations having
necessary properties connected to subnormality.

Let T : be a linear relation in H2, with D(T ) = D0 ⊕D0, D0 ⊂ H,
which is equivalent to the inclusions
(i) JD(T ) ⊂ D(T ) and KD(T ) ⊂ D(T ).
Furthermore, assume that T satisfies the following conditions:
(ii) JT is symmetric;
(iii) T K = KT ;
(iv) there exists a surjective isometry HT : T → T of the form
HT{x , x ′} = {Jx , x ′′}; for all {x , x ′} ∈ T .
Denote by SIC(H2) the set of those linear relations T in H2

such that (i)–(iv) hold.
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The Class PC(H2)

Let PC(H2) be the set of those partial isometries
V : D(V ) ⊂ H2 7→ H2 such that:
(a) V−1 = −KVK;
(b) ER(I− V ) = R(I− V );
(c) there exists a surjective isometry G : D(V ) 7→ D(V ) such
that E(I− V ) = (I− V )G.
It was proved that the E–Cayley transform is a bijective map
from SIC(H2) onto PC(H2). Note also that UC(H2) ⊂ PC(H2) by
some of the previous results.
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Normal Extensions

A decomposition result:
Proposition Let U ∈ UC(H2) and let D ⊂ H2 be a closed
subspace with the properties KU(D) ⊂ D and
E(I− U)(D) ⊂ (I− U)(D). If V = U|D, E = D⊥ and W = U|E ,
then U = V ⊕W and V ,W ∈ PC(H2).

Main extension result:

Theorem

Let T ∈ SIC(H2). Equivalent are:
(i) the linear relation T has an extension S in NIC(H2) such
that HT = HS|T ;
(ii) there exists a W ∈ PC(H2), with D(W ) = R(T + E)⊥.
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that HT = HS|T ;
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The next assertion provides an extension result for linear
relations. In particular, this includes the case of not necessarily
densely defined operators.

Corollary

Let T ∈ SIC(H2) be closed and let V be the E–Cayley
transform of T . Then the linear relation T has an extension in
NIC(H2) if and only if there exists a W ∈ PC(H2), with the
property D(W ) = R(T + E)⊥.
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Thank you for your attention!
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