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Abstract. We compute the Hausdorff dimension of sets of very well approximable vectors on
rational quadrics. We use ubiquitous systems and the geometry of locally symmetric spaces. As
a byproduct we obtain the Hausdorff dimension of the set of rays with a fixed maximal singular
direction, which move away into one end of a locally symmetric space at linear depth, infinitely
many times.
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1. Introduction

The main result in the present paper is the computation of the Hausdorff dimen-
sions of the sets of very well approximable vectors on a rational quadric Q. The
method is to consider the rational non-degenerate quadratic form q : R

n → R

such that the quadric Q is defined by q = 1 and the quadratic form Lq : R
n+1 →

R , Lq(x1, . . . , xn+1) = x2
n+1 − q(x1, . . . , xn). The connected component of the

identity SOI (Lq) of the stabilizer SO(Lq) of the form Lq is a semisimple group
(simple if n �= 3). The integer points of this group compose a lattice. One can con-
sider the symmetric space associated to SOI (Lq) and its quotient by the lattice,
which is a locally symmetric space. The set of very well approximable vectors on
Q can be defined in terms of the geometry of the locally symmetric space, and its
Hausdorff dimension can be estimated using an ubiquitous system which appears
in this context and the general properties of ubiquitous systems.
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1.1. Hausdorff dimension of sets of very well approximable vectors in R
n

We denote by ‖ · ‖e the Euclidean norm and by ‖ · ‖ the max-norm in R
n,

‖x‖ = max{|x1|, |x2|, . . . , |xn|} .
Throughout ψ : R+ → R+ denotes a decreasing function satisfying

limx→∞ ψ(x) = 0, also called an approximating function. Rational vectors are
always written in the form 1

q
p̄, where q ∈ N, p̄ = (p1, . . . , pn) ∈ Z

n and
gcd(q, p1, . . . , pn) = 1.

Let M be a submanifold of R
n. The set of simultaneously ψ-approximable

vectors inM is defined by

Sψ(M) = {x̄ ∈ M ; ‖qx̄ − p̄‖ ≤ ψ(q) for infinitely many q ∈ N , p̄ ∈ Z
n
}
.

In the particular case when ψ(x) = 1
xα

with α > 1
n
, the set is also denoted by

Sα(M) and it is called the set of simultaneously α-very well approximable vectors
inM . A subset of it is the set of simultaneously exactly-α-very well approximable
vectors inM ,

ESα(M) = {x̄ ∈ M ; x̄ ∈ Sα(M) and x̄ �∈ Sβ(M) , ∀β > α} .
Likewise is defined the set of linearly ψ-approximable vectors inM , by

Lψ(M)=
{
x̄ ∈ M ; |q̄ · x̄ − p| ≤ ψ(‖q̄‖) for infinitely many q̄ ∈ Z

n , p ∈ N
}
,

where q̄ · x̄ = ∑n
i=1 qixi . In particular when ψ(x) = x−β , with β > n, the

previous set is denoted by Lβ(M) and it is called the set of linearly β-very well
approximable vectors inM .

Khintchine’s transference principle [BD, §1.3.1] implies that
⋃

α>1/n

Sα(Rn) =
⋃

β>n

Lβ(Rn) .

The vectors in this set are called very well approximable vectors. A conse-
quence of the Khintchine-Groshev Theorem [BD, §1.3.4] is that the set of very
well approximable vectors in R

n is of Lebesgue measure zero. Thus, in order
to study the sets of type Sψ and Lψ when ψ decreases sufficiently quickly at
infinity so that they are of Lebesgue measure zero, a more appropriate tool is
the Hausdorff dimension and the Hausdorff measure. In the sequel we denote by
dimH A the Hausdorff dimension of a subset A in a metric space. We denote by
Hs the Hausdorff measure corresponding to the parameter s (see Section 4.2 for
definitions). It has been proved in [Ja] that given s ∈ [0, n),

Hs(Sψ(Rn)) =
{

0 , if
∑∞
k=1 k

n−sψ(k)s <∞ ,

∞ , if
∑∞
k=1 k

n−sψ(k)s = ∞ .
(1)
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In particular, for any α > 1
n

d = dimH Sα(Rn) = n+ 1

α + 1
and Hd(Sα(Rn)) = ∞ . (2)

This implies that both relations also hold for ESα(Rn) instead of Sα(Rn).
In [BoD] it was shown that

dimH Lβ(Rn) = n− 1 + n+ 1

β + 1
, ∀β > n. (3)

Moreover the following holds [DV]. Let s ∈ (n − 1, n) and let ψ be an
approximating function. Then

Hs(Lψ(Rn)) =
{

0 , if
∑∞
k=1 k

2n−1−sψ(k)s−(n−1) <∞ ,

∞ , if
∑∞
k=1 k

2n−1−sψ(k)s−(n−1) = ∞ .
(4)

1.2. Known results on very well approximable vectors on manifolds

The general question to ask is under what conditions the vectors in a submani-
fold M of R

n behave similarly to the vectors in R
n, with respect to Diophantine

approximation. IfM is a rational affine subspace of dimension k < n in R
n then

M = S 1
k
(M). Therefore, rational affine subspaces must be avoided.

M.M. Dodson, B.P. Rynne and J.A.G. Vickers have shown in [DRV3] and
in [DRV4] that under some non-zero curvature condition, the set of very well
approximable vectors in M is of measure 0. D. Kleinbock and G.A. Margulis
have shown in [KM2] the same result in a submanifoldM of R

n non-degenerate
almost everywhere (they have actually shown that a larger set, the set of very well
multiplicatively approximable vectors inM , has measure 0 in this case). A point
x̄ ∈ M is non-degenerate if in a neighborhood of x̄, M is not near to any affine
subspace. More precisely, in a neighborhood of x̄ the submanifoldM is parame-
terized by a function f which is l times continuously differentiable and such that
its partial derivatives in x̄ up to order l span R

n. A submanifoldM non-degenerate
almost everywhere is a submanifold in which almost every point is non-degenerate.

A Khintchine-Groshev type theory was equally developed in the setting of
manifolds. Concerning the linear approximation (that is, the Groshev type the-
ory) it has been shown that any submanifold non-degenerate almost everywhere
is of Groshev type (see [Ber], [BKM], [BBKM], [BDV2]). For the known results
in simultaneous approximation, that is for a Khintchine type theory on manifolds,
we refer to [BD], [BDV1], [BDV2], [DRV3], [DRV4] and references therein.

Consider a submanifoldM with the set of very well approximable vectors of
measure zero. Such a submanifold is also called extremal. One can ask what is
the Hausdorff dimension of each set Sα(M) with α > 1

n
and Lβ(M) with β > n.

More is known about the sets Lβ(M). R.C. Baker [Bak] proved that if M is a
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planar curve of class C3 whose curvature is zero at most in a set of points of
Hausdorff dimension zero, then

dimH Lβ(M) = 3

1 + β ,∀β ≥ 2 . (5)

M.M. Dodson, B.P. Rynne and J.A.G. Vickers [DRV1] later proved that ifM
is a C3-submanifold of dimension m ≥ 2 in R

n such that at least two principal
curvatures are not zero except on a set of Hausdorff dimension at most m − 1,
then

dimH Lβ(M) = m− 1 + n+ 1

1 + β ,∀β ≥ n . (6)

H. Dickinson and M.M. Dodson have shown in [DD2] that if M is extremal
then

dimH Lβ(M) ≥ m− 1 + n+ 1

1 + β ,∀β ≥ n.

Finally, in [BDV2], V. Beresnevich, D. Dickinson and S. Velani have shown
that, given M an m-dimensional submanifold in R

n, with n ≥ 2, M non-degen-
erate almost everywhere, the following holds. Consider s ∈ (m− 1,m). If

∞∑

k=1

ψ(k)s−(m−1)kn+m−1−s = ∞ then Hs(Lψ(M)) = ∞ .

In particular for ψ(x) = x−β this implies the result of H. Dickinson and
M.M. Dodson, under the given hypotheses forM , and moreover it shows that for
d = m− 1 + n+1

1+β , the Hausdorff measure Hd
(
Lβ(M)

)
is ∞.

These results and Khintchine’s transference principle can be used to obtain
upper and lower bounds for the Hausdorff dimensions of the sets Sα(M). As far
as the exact Hausdorff dimension for sets Sα goes, the known results are the fol-
lowing. In [BDV2] it is shown that, given ψ an approximating function such that
limx→∞ xψ(x) = 0 and s ∈ (0, 1), the following holds.

Hs(Sψ(S1)) =





0 , if
∑∞
k=1

(
ψ(k)

k

)s
<∞ ,

∞ , if
∑∞
k=1

(
ψ(k)

k

)s
= ∞ .

In particular this implies that

dimH Sα(S1) = 1

1 + α and H1/(1+α)(Sα(S1)) = ∞ , ∀α > 1. (7)

The first equality in (7) had already been proved in [DD1].
In [BD, Theorem 4.8] it is proved that if k ∈ N , k ≥ 3, and

Ck = {(x, y) ∈ R
2 ; xk + yk = 1} ,
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then Sα(Ck) contains at most four points for α > k − 1, hence dimH Sα(Ck) = 0
for α > k − 1.

The examples of S
1 and Ck , k ≥ 3, already emphasize that, unlike in the case

of linear approximation, a condition of non-zero curvature is not enough to deduce
the Hausdorff dimensions of the sets Sα. B.P. Rynne [Ry] showed moreover that
for every Ck-submanifoldM of R

n of dimension m there exist Ck-submanifolds
Mz and Mp arbitrarily Ck-close to M (in a suitable sense) such that for α suffi-
ciently large Sα(Mz) = ∅ and dimH Sα(Mp) > m+1

k(α+1) . It follows that conditions
taking into account only the structure of differential submanifold and depending
continuously on this structure cannot suffice to obtain information about Sα(M),
at least not for large values of α. The following result from [BDV1] on the other
hand seems to indicate that for values of α near to 1

n
, where n is the dimension

of the ambient space R
n, there should exists however a formula holding for any

non-degenerate submanifold of R
n. More precisely, in [BDV1] it is shown the

following. Let f ∈ C3([a, b]), a < b, let Cf = {(t, f (t)) ; t ∈ [a, b]}, let
s ∈ (1/2, 1) and let ψ be an approximating function.

• If
∑∞
k=1 k

1−sψ(k)s+1 = ∞ then Hs(Sψ(Cf )) = ∞;
• Let λψ = lim infx→∞ − lnψ(x)

ln x . If the Hausdorff dimension of the set {t ∈
[a, b] ; f ′′(t) = 0} is at most 2−λψ

1+λψ then d = dimH(Sψ(Cf )) = 2−λψ
1+λψ .

Assume moreover that λψ ∈ (1/2, 1). Then lim supx→∞ x2−dψ(x)d+1 > 0
implies that Hd(Sψ(Cf )) = ∞.

In the particular case when ψ(x) = x−α with α ∈ (1/2, 1) this gives the
following.

• dimH Sα(Cf ) ≥ d = 2−α
1+α and Hd(Sα(Cf )) = ∞;

• If moreover the Hausdorff dimension of the set {t ∈ [a, b] ; f ′′(t) = 0} is at
most 2−α

1+α then dimH Sα(Cf ) = d.

In the particular case of a rational quadric Q in R
2 one obtains dimH Sα(Q) =

2−α
1+α for α ∈ [1/2, 1). Note that for Q = S

1 this differs from the formula for
α > 1 given in (7). Thus in this case, unlike in the cases treated in (2), (3), (5)
and (6), the Hausdorff dimension of the sets of very well approximable vectors is
not a rational function in α but a piecewise rational function in α, with different
expressions for α ∈ [1/2, 1) and for α > 1.

In [DL] the Hausdorff dimension of Sα(M) has been computed for large values
ofα and forM a manifold parameterized by polynomials with integer coefficients.

1.3. Very well approximable vectors on rational quadrics

The purpose of the present paper is to compute the Hausdorff dimension of the
sets Sα(Qq) for α > 1, where Qq is a quadric defined by the equation q = 1,
for a given non-degenerate rational quadratic form q : R

n → R. Obviously q
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cannot be negative definite. The main result of the paper, formulated not in the
most general form, is the following.

Theorem 1.1. Letψ be an approximating function such that limx→∞ xψ(x) = 0.

(1) If Qq ∩ Q
n = ∅ then Sψ(Qq) = ∅.

(2) If Qq ∩ Q
n �= ∅ then

dimH Sψ(Qq) = σ(n− 1) ,

where σ = lim supx→∞
ln x

ln x−lnψ(x) .

Moreover, if lim supx→∞ x1−σψ (x)σ > 0 then Hσ(n−1)
(
Sψ(Qq)

) = ∞.
In particular the set Sα(Qq) has Hausdorff dimension d = n−1

1+α for any α > 1
and Hd(Sα(Qq)) = ∞. Both statements also hold for the set ESα(Qq).

According to [BSh, Chapter 1, §7] a rational non-degenerate quadratic form
in n ≥ 5 variables takes the zero value on Z

n \ {(0, . . . , 0)} if and only if it is not
defined. This theorem applied to the formLq implies that for n ≥ 4, Qq ∩Q

n �= ∅
for any rational quadratic form q . For n = 2, 3 see [BSh, Chapter 1, §7].

Outline of proof of Theorem 1.1.
Statement (1) is a straightforward consequence of Lemma 4.1.1. Therefore

we may assume that Qq ∩ Q
n �= ∅. The symmetric space corresponding to the

semisimple group SOI (Lq) is the space Pn+1(Lq) of minimal positive definite
quadratic forms Q such that |Lq(x̄)| ≤ Q(x̄) , ∀x̄ (see [Bo] or Section 3.3).
The boundary at infinity of it, ∂∞Pn+1(Lq), is a spherical building which can
be canonically identified with the spherical building of flags of R

n+1 composed
of subspaces totally isotropic with respect to Lq ([Mo, §15, §16], [Wi, §4.G]).
In particular ∂∞Pn+1(Lq) contains a maximal singular stratum corresponding to
the 1-dimensional subspaces totally isotropic with respect to Lq. We call it the
stratum ℘ and the points composing it points of type ℘. Correspondingly we say
that a geodesic ray in Pn+1(Lq) is of type ℘ if its point at infinity is.

Convention: Throughout, a semisimple group acts by isometries on the right on
the symmetric space associated to it and on its boundary at infinity.

The quadric Qq can be identified with an open Zariski dense subset of the
stratum℘ in ∂∞Pn+1(Lq). On the other hand, for any geodesic ray � in Pn+1(Lq)

of type ℘, the opposite unipotentU+(�) of � (see Section 2.3 for a definition) can
be identified with an open Zariski dense subset of the stratum ℘ via the bijection
u �→ �(∞)u. With a countable covering argument we can replace in our study
Sψ(Qq) by Sψ(	), where 	 is a relatively compact open subset whose closure
is contained in the image of U+(�) for some �. The set 	 can be identified with
a relatively compact open subset of U+(�).
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Let 
 = SOI (Lq) ∩ SL(n + 1,Z). The locally symmetric space V =
Pn+1(Lq)/
 has ends if and only if Qq ∩ Q

n �= ∅. Moreover there exist finitely
many geodesic rays r̄i , i ∈ {1, 2, . . . , k}, in V such that their lifts ri in Pn+1(Lq)

are of type ℘ and the following holds. Let ri
 be the 
-orbit of ri , let Cspi
be the corresponding set of points at infinity ri(∞)
 and let Csp be the set of
points at infinity

⋃k
i=1 Cspi . Then Csp intersected with Qq seen as a subset of

∂∞Pn+1(Lq) is Qq ∩ Q
n. In particular	∩ Q

n = 	∩Csp , and it can be seen as
a subset of U+(�). For each w ∈ Csp ∩	 we use uw to denote its corresponding
unipotent element in U+(�).

Note that to every point w = ri(∞)γ in Csp it is naturally associated a
horoballHbw = Hb(riγ ) having it as a basepoint (see Section 2.1 for the defini-
tion of a horoball). Let �op be the geodesic ray opposite to � . To every element
w ∈ Csp∩	 one can associate a weight dw ∈ R+ which is the distance from the
horoball Hb(�op) to the horoball Hbw. In 	 seen as a subset of U+(�) one can
then consider the set S̃0

�(	) of elements u such that

dist(u , uw) ≤ �(dw) , for infinitely many w ∈ Csp , (8)

where dist is a left invariant metric onU+(�) and� is an approximating function.
It turns out that, due to Lemma 4.1.1, the sets Sψ(	) and S̃0

�(	) are closely
related, for an appropriate choice of the function �. This relation is established
using some explicit formulas obtained in Sections 3.3 and 3.4. See the double
inclusion (29) and the whole discussion in Section 4.4 for details.

It suffices to study the set S̃0
�(	) from the point of view of the Hausdorff

dimension. Moreover, it is not difficult to see that one can restrict the study to a
subset S̃ i�(	) defined by replacing in (8) the set Csp by the subset Cspi .

In the particular cases when q is positive definite or of signature (1, n − 1),
Pn+1(Lq) is isometric to the hyperbolic space H

n, and all the results in this
paper follow from the results in [BDV2, §8.3], generalizing previous results from
[HV]. We give an argument for the remaining cases. This argument actually works
for the two previous cases too, with some slight modification. The inequality
dimH S̃ i�(	) ≤ σ(n − 1) is not difficult to obtain. The main ingredient in its
proof is the counting result Corollary 2.7.2, which gives an estimate of the num-
ber of balls B(uw , �(dw)) in U+(�) of a given size. This counting result itself
follows from the equidistribution result Proposition 2.6.6.

For the converse inequality we use ubiquitous systems. We deduce from the
equidistribution result Proposition 2.6.5 and the counting result Corollary 2.7.2
that the set of points  = {uw ; w ∈ Cspi ∩ 	} together with the weight func-
tion  : Cspi ∩ 	 → R+, (w) = dw, compose a local ubiquitous system
with respect to an appropriate ubiquitous function and an appropriate increasing
sequence of positive numbers, in the terminology of Section 4.3. We then use
the properties of ubiquitous systems as developed in [BDV2] to deduce the lower
bound of the Hausdorff dimension of S̃ i�(	), as well as the other results.
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Some comments are necessary concerning the counting result Corollary 2.7.2.
This statement corresponds in our case to the result in [Su, §6, Proposition 4],
given for the rank one case. A generalization of Sullivan’s result in the setting of
geometrically finite Kleinian groups has been given in [HV]. A consequence of
Corollary 2.7.2 is the following statement.

Corollary 1.2 (equidistribution of rational vectors on rational quadrics). Suppose
that Qq ∩ Q �= ∅. Let 	 be a relatively compact open subset of Qq such that its
closure does not intersect Tx̄0Qq for some x̄0 ∈ Qq. Let a > 1. For every open
subset O of 	 we denote by N(k ; O) the cardinal of the set of rational vectors

{
1

q
p̄ ∈ Q

n ∩ O ; |q| ∈ [ak, ak+1)

}
.

For any a ≥ a0(q , 	) we have that

K1a
(k+1)(n−1)ν(O) ≤ N(k ;O) ≤ K2 a

(k+1)(n−1)ν(O), for every k ≥ k0(O, 	),

where ν is the canonical measure on Qq and Ki = Ki (q , 	).

It is worth mentioning that our methods cannot be used to obtain either Khint-
chine type results or results on badly approximable vectors in Qq or any other type
of results concerning vectors approximable nearly as well as the generic vectors
in R

n. This can be seen for instance by applying the logarithm law ([Su], [KM1])
in our setting. It implies that for every ε > 0, for almost every x̄ ∈ Qq, we have

∥∥∥∥x̄ − 1

q
p̄

∥∥∥∥ ≥ c1(x̄)

q(ln q)
1
n−1 +ε >

1

q1+ 1
n

, ∀ 1

q
p̄ ∈ Qq .

Consequently, for almost all x̄ ∈ Qq the rational approximants are outside Qq.
It seems that in order to study badly approximable and Khintchine type approxi-
mable vectors in Qq, the study of the intrinsic geometry of V is not sufficient, and
one has to consider also the “ambient” geometry of Tn+1 = Pn+1/SL(n+ 1,Z),
where Pn+1 is the symmetric space of positive definite quadratic forms on R

n+1 of
determinant 1 in the canonical basis. The locally symmetric space Tn+1 contains
a proper embedding of V [Bo, §5].

1.4. Rays moving away in the cusp

We consider again the set S̃ i�(	) defined in Section 1.3. Without loss of generality
we may assume that	 = U+(�) and we may denote the corresponding set simply
by S̃ i� . This set can be related to a set of geodesic rays moving away in the cusp for
infinitely many times t at depth at least t−φ(t), where the depth is measured with
respect to the ray r̄i and φ : [a,+∞)→ [b,+∞) is a function depending on the
function �. The results on the Hausdorff dimension of the set S̃ i� can be thereby
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translated in terms of this set of rays. To simplify the exposition we present here
a particular case of the results that can be obtained with such an argument, the
general statements can be found in Section 5.

Let β ∈ (0, 1) and define

Rβ = {u ∈ U+(�); fr̄i (proj (�(t)u)) ≤ −βt infinitely many times as t → ∞} .
Above we have resumed the notation in Section 1.3, proj denotes the projection
of Pn+1(Lq) onto V and fr̄i denotes the Busemann function of the ray r̄i in V , as
defined in Section 2.1.

Note that Rβ can also be seen as a set of geodesic rays, by identifying each u
to the ray � u. The condition defining Rβ means that for infinitely many times t
the projection onto V of the geodesic ray � u goes into the cusp at depth at least
βt , the depth into the cusp being measured with respect to the ray r̄i . We also
consider a subset of Rβ , representing the rays which in some sense do not go
deeper than βt in the cusp as t → ∞:

ERβ = Rβ \
⋃

β ′>β

Rβ ′ =
{

u ∈ Rβ ; lim sup
t→+∞

−fr̄i (proj (�(t)u))
t

= β
}
.

Theorem 1.3 (Corollary 5.1.5). For any β ∈ (0, 1),
dimH Rβ = dimH ERβ = (1 − β) dimU+(�)

= d and Hd
(
Rβ

) = Hd
(
ERβ

) = ∞ .

For a discussion of the cases β = 0, 1 see Section 5.1.
A natural question to ask is whether other results on the Hausdorff dimension

and measure of sets of very well approximable vectors have an interpretation in
terms of rays moving away in the cusp of some locally symmetric space. We
establish such an interpretation for the formulas (1) and (4). Most likely this can
be done in other cases as well. For the two formulas that we discuss the appro-
priate symmetric space is Pn+1, and the appropriate locally symmetric space is
Tn+1 = Pn+1/SL(n + 1,Z). Let proj be the projection of Pn+1 onto Tn+1 . Let
r1 and rn be the geodesic rays in Pn+1 defined as in (19). The ray ri, i = 1, n,
projects onto a geodesic ray r̄i in Tn+1. We define the set

Ri
β = {u ∈ U+(ri); fr̄i (proj (ri(t)u)) ≤ −βt infinitely many times as t → ∞} ,

where i = 1, n, and β ∈ (0, 1). We also consider the subset

ERi
β = Ri

β \
⋃

β ′>β

Ri
β ′ =

{
u ∈ Ri

β ; lim sup
t→∞

−fr̄i (proj (ri(t)u))
t

= β
}
.

Formula (1) implies the following.
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Theorem 1.4 (Corollary 5.2.3). For any β ∈ (0, 1),
dimH Ri

β = dimH ERi
β = (1 − β) dimU+(ri)

= d and Hd(Ri
β) = Hd(ERi

β) = ∞ , i = 1, n .

Formula (4) also can be expressed in terms of sets of rays moving away in
the cusp, but the situation slightly changes. In this case the ray in the cusp with
respect to which the depth is measured and the rays whose behavior is studied
are not in the same orbit of SL(n + 1,R), or in the terminology of Section 2.4,
they do not have the same slope. This explains why in this case the parameter β
does not get near to 1, but is bounded by a smaller constant depending on the two
slopes. More precisely, we define for every β ∈ (0, 1

n

)

R1n
β ={u ∈ U+(r1); fr̄n (proj (r1(t)u)) ≤−βt infinitely many times as t → ∞} .

Let ER1n
β = R1n

β \⋃β ′>β R1n
β ′ . The sets Rn1

β and ERn1
β can be defined similarly

by intertwining 1 and n.

Theorem 1.5 (Corollary 5.3.4). For any β ∈ (0, 1
n

)
,

dimH Rij

β = dimH ERij

β = (1 − β) dimU+(ri)

= d and Hd(Rij

β ) = Hd(ERij

β ) = ∞ , {i, j} = {1, n} .

For the cases β = 0 , 1
n

, see Section 5.3.

1.5. Open question

Theorems 1.3, 1.4 and 1.5 suggest that there might be a general formula for the
Hausdorff dimension of the set of rays moving away into the cusp at linear depth.
This justifies the following question.

LetX be a symmetric space of non-compact type without Euclidean factors, let
G be the connected semisimple group of isometries of X, let 
 be a non-uniform
irreducible lattice of isometries of X, let V = X/
 and let proj be the projection
of X onto V . Consider � a geodesic ray in X, r̄ a geodesic ray in V and r a lift
of r̄ in X. The ray r is contained in some Weyl chamber of vertex r(0). In this
same Weyl chamber there exists a unique ray �1 of vertex r(0) and contained in
the orbit �G. The Busemann function fr restricted to �1 has the form −β0t for
some β0 ≥ 0. This implies that, as soon as β0 > 0, proj(�1) moves away in the
cusp of V and the depth at which it moves away at time t measured with respect
to the ray r̄ is β0t . Note that among all the geodesic rays in �G with origin on the
horosphere H(r), the ray �1 has the maximal depth at moment t with respect to
r̄ .
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Question 1.6. For every β ∈ (0, β0), consider the set

Rβ = {u ∈ U+(�) ; −fr̄ (�(t)u) ≥ βt infinitely many times as t → ∞} .
Is it true that d = dimH Rβ = (1 − β) dimU+(�) and that Hd

(
Rβ

) = ∞ ?

1.6. Organization of the paper

Section 2 contains preliminaries on horoballs, symmetric spaces and semisim-
ple groups. The equidistribution results Proposition 2.6.5 and Proposition 2.6.6
in Section 2.6 play an important part in our arguments. In particular the latter
implies the counting results Proposition 2.7.1 and Corollary 2.7.2.

In Section 3 are given the formulas for the Busemann functions in the ambi-
ent symmetric space Pn+1 as well as in the symmetric space associated to the
quadric, Pn+1(Lq) . In Sections 3.4 and 3.5 we study the geometry of horoballs of
Pn+1(Lq). The obtained results together with the counting result Corollary 2.7.2
yield the equidistribution of rational vectors on rational quadrics as formulated in
Corollary 1.2, and also a more general result, Proposition 3.4.4.

Section 4 contains the proof of Theorem 1.1. The notion of ubiquitous system
is recalled in Section 4.3. In Section 4.4 we show the relation between the set
Sψ(Qq) and the set of unipotents S̃0

� . We end our argument in Section 4.5 by
exhibiting a local ubiquitous system and applying results from [BDV2].

In Section 5 we prove results on the Hausdorff dimension and measure of sets
of locally geodesic rays moving away in the cusp of a locally symmetric space.
In Section 5.1 we study the case of rays of type ℘ in the locally symmetric space
Pn+1(Lq)/
, where
 is an arbitrary lattice in SOI (Lq). In the other two sections
we deduce from (1) and (4) respectively results about rays in the locally symmetric
space Tn+1.

2. Preliminaries on (locally) symmetric spaces

The reader acquainted with semisimple groups and symmetric spaces may skip
Sections 2.1 to 2.5 and refer to them only when needed.

2.1. Notation and conventions

We denote by PZ
n the set of primitive integer vectors in R

n,

{(p1, p2, . . . , pn) ∈ Z
n \ {(0, . . . 0)} ; gcd(p1, p2, . . . , pn) = 1} ,

and we denote by PZ
n
+ the subset

{(p1, p2, . . . , pn) ∈ PZ
n ; pn > 0 or pi > 0 , pi+1 = · · · = pn = 0} .
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In a metric space (X, dist), for any subsetA ofX, we denote by Na(A) the set

{x ∈ X ; dist(x,A) < a} .
When A = {x0} then Na(A) becomes an open ball and we use the notation
B(x0, a).

We denote by diag(a1, a2, . . . , an) the diagonal matrix having entries
a1, a2, . . . , an on the diagonal. In the particular case when a1 = · · · = ak = 1
and ak+1 = · · · = ak+� = −1 , k+ � = n, we denote by Ik,� the diagonal matrix.
We denote by Idn the identity matrix.

Throughout by line we mean a 1-dimensional linear (sub)space.
LetA be a subset of R

n. We denote by RA the union of all the lines intersecting
A. We denote by PA the image of RA in P

n−1
R. If B ⊂ P

n−1
R we denote by RB

the subset in R
n which is union of all lines contained in B.

We denote by 〈v1, . . . , vk〉 the linear subspace generated by the vectors
v1, . . . , vk.

Given two functions f and g with values in R, we write f � g if f (x) ≤
C · g(x), for every x, where C > 0 is a universal constant. We write f � g if
both f � g and f � g hold. We write f ∼ g if f (x)

g(x)
→ 1 when x → ∞. We

denote by ‖f ‖∞ the supremum norm of the function f .
If G is a group, we denote by Z(G) its center {z ∈ G ; zg = gz , ∀g ∈ G}.

If H is a subgroup of G we denote by CG(H) the center of H in G, that is the
group {z ∈ G ; zh = hz , ∀h ∈ H }.

If G is a topological group, we denote by Ge its connected component con-
taining the identity.

Let G be a Lie group. A lattice in G is a discrete subgroup 
 of G such that
G/
 has a finiteG-invariant measure induced by the Haar measure onG. IfG/

is compact, the lattice is called uniform, otherwise it is called non-uniform.

If a group G acts on a space X, for every point x ∈ X we denote by Gx the
stabilizer of x in G, that is the subgroup {g ∈ G ; gx = x}.

Let X be a complete Riemannian manifold of non-positive curvature. Two
geodesic rays in X are called asymptotic if they are at finite Hausdorff distance
one from the other. This defines an equivalence relation ∼ on the set R of all geo-
desic rays in X. The boundary at infinity of X is the quotient R/∼. It is usually
denoted by ∂∞X. Given ξ ∈ ∂∞X and a geodesic ray r in the equivalence class
ξ , one writes r(∞) = ξ .

Let r be a geodesic ray in X. The Busemann function associated to r is the
function

fr : X → R , fr(x) = lim
t→∞[dist(x, r(t))− t] .

Since the function t → dist(x, r(t)) − t is non-increasing and bounded, the
limit exists. The level hypersurfaces Ha(r) = {x ∈ X ; fr(x) = a} are called
horospheres, the sublevel sets Hba(r) = {x ∈ X ; fr(x) ≤ a} are called closed
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horoballs and their interiors, Hboa(r), are called open horoballs. For a = 0 we
use the notationH(r) for the horosphere, andHb(r), Hbo(r) for the closed and
open horoball, respectively.

Suppose moreover that X is simply connected.
Given an arbitrary point x ∈ X and an arbitrary point at infinity ξ ∈ ∂∞X,

there exists a unique geodesic ray r with r(0) = x and r(∞) = ξ .
The Busemann functions of two asymptotic rays in X differ by a constant

[BH]. Therefore we shall sometimes call them Busemann functions of basepoint
ξ , where ξ is the common point at infinity of the two rays. The families of horo-
balls and horospheres are the same for the two rays. We shall say that they are
horoballs and horospheres of basepoint ξ .

Two points ξ and ζ in ∂∞X are said to be opposite if there exists a complete
geodesic G such that the point at infinity of G|[0,+∞) is ξ and the point at infinity
of G|(−∞,0] is ζ .

Definition 2.1.1. The oriented distance odist(Hb(r1),Hb(r2)) between two
horoballs Hb(r1) and Hb(r2) of opposite basepoints is infx∈Hb(r2) fr1(x).

2.2. Semisimple groups and symmetric spaces

Henceforth by X we denote a symmetric space of non-compact type without
Euclidean factors, and byG the connected component of the identity in its group
of isometries. Then G is a semisimple Lie group. We identify the symmetric
space X with K\G, where K is a maximal compact subgroup of G. Hence we
consider the action of G on X by isometries to the right, and correspondingly
we consider the action of G on itself by isometries to the right (with respect to
the proper metric), and the action by conjugation also to the right, i.e. a : G →
Aut (G) , a(g0)(g) = g−1

0 gg0. For the theory of symmetric spaces and associated
semisimple groups we refer to [He].

We recall that every connected semisimple real Lie group is isomorphic to the
identity component of the real Lie group of real points of a semisimple algebraic
group. Therefore, one can always talk about polynomial, rational and bi-rational
maps on G. Moreover G has a faithful embedding f : G → SL(n,R) such that
f (G)T = f (G) and f (K) = f (G)∩O(n,R). Details can be found for instance
in [OV], [Mo] or in [Ra].

Notation: We denote dist(e, g) by |g|, where dist is the right invariant metric
on G.

An element g0 in SL(n,R) is hyperbolic if there exists g ∈ GL(n,R) such
that gg0g

−1 is diagonalizable with all the eigenvalues real positive.
All the Lie groups considered in the sequel are real Lie groups, unless otherwise

stated.
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Consider a field K ⊂ R. We say that a Lie group G is defined over K if G
has finitely many connected components and if its connected component of the
identity coincides with the connected component of the identity of a real algebraic
group defined over K [Wi, Definition 6.2].

A torus is a closed connected Lie subgroup of SL(n,R) which is diagonal-
izable over C, i.e. such that there exists g ∈ GL(n,C) with the property that
g T g−1 is diagonal. A torus is called K-split if it is defined over K and diagonal-
izable over K, that is if there exists g ∈ GL(n,K) with the property that g T g−1

is diagonal.
A torus (and more generally a reductive group) is called K-anisotropic if it is

defined over K and if it does not contain any non-trivial K-split torus. Note that
a Q-anisotropic torus T has the property that the set of its integer points TZ is a
lattice in it [Bo].

Conventions: Henceforth by torus we mean a non-trivial R-split torus. The only
exception is when we talk about K-anisotropic torus, in which case the word
keeps its general meaning. By wall/Weyl chamber we mean a closed wall/Weyl
chamber. By its relative interior we mean the open wall/Weyl chamber.

We call singular torus in G a torus A0 which, in every maximal torus A con-
taining it, can be written as

⋂
λ∈� ker λ, where � is a non-empty set of roots on

A. Any such torus is a union of walls of Weyl chambers.
Let �A0 be a wall or a Weyl chamber in the torus A0, and let �Aop0 be the

opposite wall. We consider the parabolic group corresponding to �A0,

P(�A0) = {g ∈ G ; sup
n∈N

|anga−n| < +∞ , ∀a ∈ �A0} ,

and the unipotent group corresponding to �A0,

U(�A0) = {g ∈ G ; lim
n→∞ anga−n = e , ∀a in the relative interior of � A0} .

We denote U(�Aop0 ) by U+(�A0).
We have that P(�A0) = CG(A0)U(�A0) = U(�A0)CG(A0), U(�A0) is the

unipotent radical of P(�A0), and P(�A0) is the normalizer of U(�A0) inG. The
center decomposes as CG(A0) = MA0 = A0M , where Z(M) is compact and
M/Z(M) is semisimple. It follows that

P(�A0) = MA0U(�A0) = U(�A0)A0M ,

which is called the Langlands decomposition of P(�A0).

Remark 2.2.1. The action of M on U(�A0) by conjugation preserves the Haar
measure.
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Proof. Any semisimple connected Lie group coincides with its commutator sub-
group (see for instance [OV, §1.4.1 and §4.1.3]), hence any linear representation
of a semisimple group preserves the volume. Consequently Ad(M) restricted to
the Lie algebra u of U preserves the volume, which yields the conclusion. ��

The Lie algebras u and u+ of U(�A0) and U+(�A0) decompose into proper
subspaces for Ad(A0), u = ⊕λ(�A0)>1 uλ and u+ = ⊕λ(�A0)<1 uλ, respectively.
Here λ(�A0) > 1 signifies that λ > 1 when restricted to the relative interior of
�A0.

The sets P(�A0)U+(�A0) and U+(�A0)P (�A0) are open and Zariski dense
in G. Therefore they both give coordinate systems in G near e.

Suppose that the groupG is defined over Q, that A0 is a Q-split torus and that
�A0 is a Q-wall or a Q-Weyl chamber in it. Then CG(A0) and U(�A0) are also
defined over Q. Moreover CG(A0) = M ′A0 = A0M

′, where M ′ is defined over
Q, Z(M ′)e is a Q-anisotropic torus andM ′/Z(M ′)e is semisimple. Recall that in
this case 
 = GZ is a lattice in G, that U(�A0) ∩ 
 is a uniform lattice and that
M ′ ∩ 
 is a lattice inM ′.

For details on the previous results we refer to [Bo], [Ra] and [Wi].
We recall that a flat inX is a totally geodesically embedded copy of an Euclid-

ean space in X, and that a maximal flat is a flat which is maximal with respect
to the inclusion. Every maximal flat F is the orbit of a maximal torus A. Given
a point x ∈ F , a Weyl chamber or a wall with vertex x is a set of type x � A0,
where �A0 is a Weyl chamber or respectively a wall in the torus A. A singular
flat through x is an orbit xA0, where A0 is a singular torus in A. In the particular
case when G is defined over Q, A, A0 are Q-split, �A0 is a Q-Weyl chamber or
wall, the corresponding maximal/singular flat, Weyl chamber or wall are called
Q-maximal/singular flat, Q-Weyl chamber and Q-wall, respectively.

The group G acts transitively on the collection of maximal flats, as well as
on the collection of Weyl chambers in X. This is equivalent to saying that it acts
transitively by conjugation on the collection of maximal tori and on the collection
of Weyl chambers in G. The stabilizer in G of a Weyl chamber W0 in X is a
compact subgroupK0. ThereforeK0\G can be identified with the fiber bundle of
the Weyl chambers in X.

2.3. Geodesic rays, Busemann functions

Let A = (at ) be a one-parameter subgroup of G composed of hyperbolic ele-
ments and let A+ be the positive sub-semigroup (at )t≥0. Let r be a geodesic ray
in X such that r(t) = r(0)at for every t ≥ 0. We consider A0 either the minimal
singular torus containing A or, if no such torus exists, the unique maximal torus
containing A. We have the equality CG(A) = CG(A0). If A0 has dimension one
we call the one-parameter group A, the semigroup A+ and the geodesic ray r
maximal singular.
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Let �A0 be the wall/Weyl chamber containing A+ \ {e} in its relative interior.
We denote P(�A0),U(�A0) andU+(�A0) also by P(r),U(r) andU+(r), respec-
tively, and we call them the parabolic, the unipotent and the opposite (expanding)
unipotent group of the ray r .

The parabolic group P(r) decomposes as P(r) = AP 0(r), where P 0(r) is
a codimension 1 subgroup acting transitively with compact stabilizer on every
horosphere Ha(r). We call P 0(r) the horospherical group of r .

The following simple lemma will be useful in the future.

Lemma 2.3.1. Let r be a geodesic ray in the symmetric space X and let G be the
unique geodesic containing it, parameterized by arc length such that r = G|[0,+∞).
Let P 0 be the horospherical group of r . A function� : X → R which is invariant
with respect to P 0 and such that �(G(t)) = −t , ∀t ∈ R, coincides with fr .

Proof. For every x ∈ X there exists a unique t ∈ R and p ∈ P 0 such that
x = G(t)p. We have�(x) = �(G(t)p) = �(G(t)) = −t = fr(G(t)) = fr(x).

��
Consider the particular case when G is defined over Q and when A+ = �A0

is a Q-wall. By the discussion in the end of Section 2.2, the horospherical group
P 0 equalsM ′U(�A0) = U(�A0)M

′, whereM ′ and U(�A0) are defined over Q.

2.4. Boundary at infinity

If W is a Weyl chamber or a wall in X then its boundary at infinity W(∞) is a
spherical simplex in ∂∞X, also called spherical chamber or respectively spherical
wall. These simplices cover ∂∞X and determine a structure of spherical building
on it ([Mo, Chapters 15,16], [BGS, Appendix 5]).

LetW0 be an arbitrary Weyl chamber in X. The group G acts on ∂∞X on the
right with fundamental domainW0(∞). Given a point ξ in the relative interior of
a spherical wallW(∞), whereW = x �A0, the stabilizer of ξ is the stabilizer of
the whole wallW(∞), and it is the parabolic group P(�A0). Since any parabolic
group acts transitively on X, it follows that for every point x ∈ X there exists a
wallWx of vertex x and such thatWx(∞) = W(∞).

Given a fixed Weyl chamberW0, ∂∞X/G can be identified withW0(∞), and
one can define a projection sl : ∂∞X → W0(∞). The image sl(ξ) of every point
ξ in ∂∞X is called the slope of ξ . The slope of a geodesic ray r is the slope of
r(∞).

Let x0 be an arbitrary point in X and letK be the maximal compact subgroup
fixing x0. Given a wallW with vertex x0, its stabilizerKW inK is contained in the
stabilizerKF of the minimal singular flat containingW , and it fixes bothW and F
pointwise. The groupK acts transitively on the set of Weyl chambers of vertex x0.
Hence, given the stabilizer KW0 of a Weyl chamberW0 of vertex x0, the quotient
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KW0\K can be identified with the set of Weyl chambers of vertex x0. In particular,
by the previous remarks, K acts transitively on the set of spherical chambers of
∂∞X, and every spherical chamberW0(∞) can be seen as the quotient ∂∞X/K .

2.5. Locally symmetric spaces

Let
 be a lattice inG. Here we shall be mainly interested in non-uniform irreduc-
ible lattices in semisimple groups of real rank at least 2. By MargulisArithmeticity
Theorem [Wi] such a lattice 
 is an arithmetic lattice of Q-rank r ≥ 1. The quo-
tient space V = X/
 is a locally symmetric space. It contains finitely many
totally geodesic Euclidean sectorsW1, · · · ,Wm, of dimension r, eventually glued
to each other along faces, such that V is at finite Hausdorff distance of the union
W1 ∪ · · · ∪Wm. Every sectorW1, . . . ,Wm is the projection of a Q-Weyl chamber.
The quotient V can have several topological ends if and only if r = 1. For details
see [BoS] and [Le].

Notation: We denote by proj the projection of X onto V and by projG the pro-
jection of G onto G/
.

Given a geodesic ray r̄ entering one of the sectors Wi, i ∈ {1, . . . , m}, the
depth into the end containing Wi can be measured by the Busemann function fr̄
of r̄ . If r̄ is a face of dimension one of Wi , i ∈ {1, . . . , m}, then we call it a
maximal singular cusp ray. Let r be a lift of r̄ in X.

Remarks 2.5.1. (1) For a < 0 with |a| large enough, the projection proj(Hba(r))
is Hba(r̄).

(2) There exists α = α(r̄) > 0 such that

lim
a→−∞

ln volHba(r̄)

a
= α .

Proof. (1) Since the projection proj is a contraction, fr̄(proj(x)) ≤ fr(x) , ∀x ∈
X. This implies that proj(Hba(r)) ⊂ Hba(r̄).

One can identify V with a fundamental domain of 
 in X, contained in a
Siegel set as in [Bo, Theorem 15.5]. Suppose that r is chosen so that under this
identification r̄ becomes r . Obviously for a < 0 with |a| large enough, Hba(r̄)
coincides with the trace of Hba(r) on the fundamental domain. This implies that
Hba(r̄) ⊂ proj(Hba(r)).

(2) follows by looking at the form of the Siegel set as given in [Bo, Theorem
15.5]. ��

Suppose that 
 is arithmetic. Then without loss of generality we may sup-
pose that G admits a Q-structure such that r̄ is the projection of a Q-wall r . The
horospherical group P 0(r) can be written asM ′U(�A0) = U(�A0)M

′, with both
M ′ and U(�A0) defined over Q. In what follows, we denote P 0(r) and U(�A0)
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simply by P 0 and respectively U . According to [Bo, Corollary 7.13], P 0 ∩ 
 is
commensurable to the semidirect product (U∩
)(M ′∩
). ThereforeP 0/(P 0∩
)
and P 0/(U ∩
)(M ′ ∩
) have a common finite covering. Now given D a funda-
mental domain of U with respect to U ∩ 
 and F a fundamental domain of M ′

with respect toM ′ ∩ 
, the set FD is a fundamental domain of P 0 with respect
to (U ∩ 
)(M ′ ∩ 
). Indeed:

• FD(U ∩ 
)(M ′ ∩ 
) = FU(M ′ ∩ 
) = F(M ′ ∩ 
)U = M ′U ;
• if u ∈ U ∩ 
 and m ∈ M ′ ∩ 
 are such that for some fi ∈ F and di ∈ D,
i = 1, 2, f1d1um = f2d2, then f1mm

−1(d1u)m = f2d2, whence f1m = f2

and m−1(d1u)m = d2. The former equality implies that m = e, the latter
implies that u = e.

2.6. Equidistribution results

LetG be a connected semisimple Lie group without compact factors and with triv-
ial center. Let A = (at )be a one-parameter subgroup ofG composed of hyperbolic
elements, and A+ = (at )t≥0. LetA0 be either the minimal singular torus contain-
ing A or the unique maximal torus containing A, and �A0 its unique wall/Weyl
chamber containing A+ \ {e} in its relative interior. Let C = CG(A0) = CG(A),
P = P(�A0), U = U(�A0) and U+ = U+(�A0), endowed with their Haar
measures.

Notation: For every subset S ofG, we denote by St the subset a(a−t )S. We denote
by S−1 the image of S under the inversion in G.

For p ∈ P fixed, we consider the (partially defined) map �p from U+ to U+,
defined by

�p(u+) = u′
+ such that Pu+ = Pu′

+p .

Let Dp be its maximal domain of definition. Associated to this map, we have
the maps πp : Dp → P , υp : Dp → U and κp : Dp → C defined by the relations

�p(u+)p = πp(u+)u+ and πp(u+) = υp(u+)κp(u+) . (9)

Notation: For α > 0 we define Qα = {p ∈ P ; p = uc , u ∈ U , |u| ≤ α , c ∈
C , |c| ≤ α}.
Lemma 2.6.1. (i) For any p ∈ P , the domainDp is an open Zariski dense sub-

set of U+ and the map�p is bi-rational. It satisfies the relation a(at )◦�p =
�a(at )(p) ◦ a(at ), where a : G → Aut(G) is the action to the right of G on
itself by conjugation.

(ii) LetK be a compact subset in P . The set
⋂
p∈K Dp contains a neighborhood

of e.
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Fig. 1. The map �p

(iii) LetK be a compact subset inP and	 an open subset inU+. The intersection⋂
p∈K �p(	 ∩Dp) is open.

(iv) The map �p : Dp → U+, �p(u+) = u−1
+ �p(u+) tends to the constant map

equal to the identity element e uniformly on compact subsets as p ∈ Qα and
α → 0.

(v) The Jacobian of the map�p, which we denote by
∣∣∣ d�pdu+

∣∣∣, tends to the constant

map equal to 1 uniformly on compact subsets as p ∈ Qα and α → 0.
(vi) The map Sα(u+) = supp∈Qα

(|υp(u+)| + |κp(u+)|
)

tends to zero uniformly
on compact subsets as p ∈ Qα and α → 0.

Proof. (i) Let Dp = U+ ∩ PU+p, which is an open Zariski dense subset of U+.
For every u+ ∈ Dp, u+p−1 = p u+ ∈ PU+. It follows that �p(u+) = u+. The
map fromPU+ toU+ defined byp u+ → u+ is a rational map. Hence the map�p
is rational. Moreover, since the converse map is �p−1 , the map �p is bi-rational.
The behavior of �p with respect to the action of the group (at ) can be deduced
by applying a(at ) in the first equality in (9).

(ii) Suppose that
⋂
p∈K Dp does not contain a neighborhood of e. Then there

exists a sequence u+
n → e and a sequence pn ∈ K such that u+

n p
−1
n �∈ PU+ for

any n ∈ N. A subsequence of u+
n p

−1
n converges to some p0 ∈ P ⊂ PU+. This

contradicts the fact that PU+ is open.
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(iii) We prove that
⋃
p∈K ��p(	 ∩ Dp) is closed. Let u+

n be a sequence in
this set, converging to u+. For every n ∈ N there exists pn ∈ K such that
u+
n �∈ �pn(	 ∩Dpn). Up to taking a subsequence, pn converges to p ∈ K . Sup-

pose that u+ ∈ �p(	 ∩ Dp), which is equivalent to the fact that u+p ∈ P	.
Since P	 is an open set in G and u+

n pn → u+p, for some n large enough we
have u+

n pn ∈ P	, that is u+
n ∈ �pn(	 ∩Dpn). This contradicts the hypothesis.

From its definition it is straightforward that when p ∈ Qα and α → 0 the map
�p → Id uniformly in the C1 topology on compact subsets. This implies (iv),
(v) and (vi). ��

Let 	 be a relatively compact open neighborhood of e in U+ and let α be a
small positive number. We suppose that α ≤ 1 and that 	 is small enough to be
contained in

⋂
p∈Q1∪Q−1

1
Dp.

Definitions 2.6.2. The (α , 	)-box of basepoint g0 is the set

Boxα,	(g0) =
⋃

p∈Qα

⋃

u+∈�p(	)
u+pg0 .

We call

atBoxα,	(g0) =
⋃

p∈(Qα)t

⋃

u+∈�p(	t )
u+pgt ,

where gt = at g0, the t-pushed (α , 	)-box.

We denote by δ(α , 	) and S(α , 	) the maximal values, for p ∈ Qα, of

supu+∈	
∣∣∣
∣∣∣ d�pdu+

∣∣∣− 1
∣∣∣ and of supu+∈	 Sα(u+) respectively.

Definitions 2.6.3. We call ε-base of 	 an open relatively compact neighborhood
	ε of e in U+ such that ν(	 � 	K) ≤ εν(	), for every nonempty K ⊂ 	ε,
where ν is the Haar measure on U+ and A � B = (A \ B) ∪ (B \ A).

We call (ε, α)-base of 	 any subset of U+ of the form

	ε,α =
⋂

p∈Qα

�p−1

(
	ε ∩Dp−1

)
,

where 	ε is an ε-base of 	. According to Lemma 2.6.1, (iii), 	ε,α is an open
relatively compact neighborhood of e.

We call Boxα,	ε,α (g0) an ε-base of the box Boxα,	(g0).
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Fig. 2. A box and an ε-base of it

Notation: We denote
∮
D
f dµ = 1

µ(D)

∫
D
f dµ.

Lemma 2.6.4. Let f be a bounded uniformly continuous function on G, of mod-
ulus of continuity ω. Let 	 be a sufficiently small relatively compact open neigh-
borhood of e in U+, let ε be a small positive number and let 	ε be an ε-base of
	. For α > 0 sufficiently small we have that

∣∣∣∣

∮

	t

f (u+y) dν(u+)−
∮

	t

f (u+y ′) dν(u+)
∣∣∣∣

= O (ω (S(α,	))+ ‖f ‖∞ [ε + δ (α,		ε)]) , (10)

for every g0 ∈ G, every t ∈ [0,+∞) and every y, y ′ in the t-pushed ε-base
atBoxα,	ε,α (g0).

Proof. We suppose that α < 1 and that 	 ⊂ ⋂p∈Q1∪Q−1
1
Dp. It suffices to prove

(10) for y ′ = gt . Since y ∈ atBoxα,	ε,α (g0), we may write y = at ũ+pg0, where
p ∈ Qα and ũ+ ∈ �p(	ε,α) ⊂ 	ε. Then

∮

	t

f (u+y) dν(u+) =
∮

	t

f (u+at ũ+pg0) dν(u+)

=
∮

	

f (at η+ũ+pg0) dν(η+) =
∮

	ũ+
f (at η+pg0) dν(η+) .

By the definition of 	ε, we have that ν (	 � 	ũ+) ≤ εν(	). It follows that
∮

	ũ+
f (at η+pg0) dν(η+) =

∮

	

f (at η+pg0) dν(η+)+O (ε‖f ‖∞) .
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We want to change the integration domain from 	 to �p(	). We consider α
small enough so that �p(	) ⊂ 	ε, for any p ∈ Qα ∪ Q−1

α .
We have

�p(	) = {�p(u+) ; u+ ∈ 	} = {u+�p(u+) ; u+ ∈ 	} ⊂ 		ε .
Therefore ν(�p(	) \	) ≤ εν(	).
We write	\�p(	) as the image under�p of�p−1(	)\	.An argument similar

to the previous implies that �p−1(	) ⊂ 		ε, hence ν(�p−1(	) \ 	) ≤ εν(	).
Since the Jacobian of�p differs from 1 byO (δ (α , 		ε)) on�p−1(	), we may
conclude that ν(	 \�p(	)) ≤ εν(	) [1 + δ (α , 		ε)]. Consequently

∮

	

f (at η+pg0) dν(η+) = 1

ν(	)

∫

�p(	)

f (at η+pg0) dν(η+)

+O (ε‖f ‖∞ [1 + δ (α , 		ε)]) .
With the change η+ = �p(η′

+) we may write

1

ν(	)

∫

�p(	)

f (at η+pg0) dν(η+) =
∮

	

f
(
at�p(η′

+)pg0
)
dν(η′

+)

+O ( δ(α,	) ‖f ‖∞ ) .

Using the notation in (9) we may write
∮

	

f
(
at�p(η′

+)pg0
)
dν(η′

+) =
∮

	

f
(
atυp(η′

+)κp(η
′
+)η

′
+g0
)
dν(η′

+) .

By the right invariance of the metric on G we have that

dist
(
atυp(η′

+)κp(η
′
+)η

′
+g0 , at η′

+g0
)

= dist
(
a(a−t )

(
υp(η

′
+)
)
κp(η

′
+) , e

) ≤ S(α,	) .
Therefore the last integral is equal to

∮

	

f (at η′
+g0) dν(η

′
+)+O(ω( S(α,	)) )

=
∮

	t

f (u+gt ) dν(u+)+O(ω( S(α,	)) ) .

��
Proposition 2.6.5. Let 
 be an irreducible lattice in G and let f : G/
 → R

be a function which is uniformly continuous and bounded. Let (at )t∈R be a one-
parameter group composed of hyperbolic elements and let U+ be the expanding
unipotent subgroup corresponding to (at )t≥0. Let	 be an open relatively compact
set in U+, with the property that there exists u0 ∈ 	−1 such that for any t0 ∈ R,



Diophantine approximation on rational quadrics 427

the family of sets a(a−t ) (	u0) , t ∈ [t0,+∞), is a summing net for U+, in the
sense of [Pa, §4.15]. For any ḡ0 ∈ G/
,

∮

	

f (atu+ḡ0) dν(u+)→
∮

G/


f dµ as t → +∞ ,

where µ is the measure on G/
 induced by the Haar measure on G.

Proof. Step 1.We suppose that	 is a neighborhood of e contained in
⋂
p∈Q1∪Q−1

1
Dp

and that u0 = e. We denote by ω the modulus of continuity of f . We fix arbitrary
ḡ0 ∈ G/
 and ε small positive number. We consider	ε an ε-base of	 and α > 0
sufficiently small so that the conclusion of Lemma 2.6.4 holds, and also so that
ω(S(α,	)) ≤ ε and δ (α,		ε) ≤ ε

‖f ‖∞ .
The group U+ acts ergodically on G/
 [Zi, §2.2]. This and the fact that the

family of sets	t = a(a−t ) (	) is a summing net implies that
∮
	t
f (u+ḡ) dν(u+),

seen as a function of ḡ ∈ G/
, converges to
∮
G/


f dµ in L2(G/
) as t → ∞
[Pa, §5]. This implies that for the given ε and for any small λ > 0 there exists
T = T (ε, λ,	) such that for every t ≥ T the set of points ḡ ∈ G/
 satisfying

∣∣∣∣

∮

	t

f (u+ḡ) dν(u+) −
∮

G/


f dµ

∣∣∣∣ ≥ ε (11)

has measure strictly smaller than λ. We take λ to be the measure of the projection
in G/
 of the ε-base Boxα,	ε,α (g0). Hence, for every t ≥ T , at least one point ȳ
in the projection of the t-pushed ε-base satisfies the inequality opposite to (11).
This and Lemma 2.6.4 imply that for every t ≥ T ,

∣∣∣∣

∮

	t

f (u+ḡt ) dν(u+) −
∮

G/


f dµ

∣∣∣∣ < Cε ,

where C = C(‖f ‖∞) and ḡt = at ḡ0.
Step 2. We suppose that u0 = e and that	 is an arbitrary open relatively com-

pact neighborhood of e in U+ satisfying the hypothesis and not necessarily con-
tained in

⋂
p∈Q1∪Q−1

1
Dp. There exists τ ∈ (0,+∞) so that 	−τ = a(aτ ) (	) ⊂

⋂
p∈Q1∪Q−1

1
Dp. We apply the result obtained in Step 1 to	−τ and with a change

of variables we obtain the same result for 	.
Step 3. We consider the general case. By Step 2 we have the conclusion of

the Proposition for 	u0. This implies the conclusion for 	. ��
Proposition 2.6.6. Let 
 be a lattice in G and f : G/
 → R a bounded uni-
formly continuous function. Let (at )t∈R be a one-parameter group composed of
hyperbolic elements and letU+ be the expanding unipotent subgroup correspond-
ing to (at )t≥0 and C be the center of the group in G. Let 	 be an open relatively
compact set in U+, with the same property as in Proposition 2.6.5 and let �
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be a finite volume submanifold in C. We denote by ϑ the volume on �. For any
ḡ0 ∈ G/
,

∮

�	

f (atcu+ḡ0) dν(u+)dϑ(c)→
∮

G/


f dµ as t → +∞ ,

where µ is the measure on G/
 induced by the Haar measure on G.

Proof. We fix an arbitrary small positive number ε. There exists a compact subset
K = K(ε) in � such that ϑ(� \K) < ε

2‖f ‖∞ ϑ(�). It follows that
∣∣∣∣

∮

�	

f (atcu+ḡ0) dν(u+)dϑ(c)−
∮

K	

f (atcu+ḡ0) dν(u+)dϑ(c)
∣∣∣∣ < ε .

Let ω be the modulus of continuity of f . Let δ > 0 be such that ω(δ) < ε. By
compactness ofK , there exist k1, . . . ,km inK so that the set of ballsB(ki , δ), i ∈
{1, . . . , m}, is a cover of K . Thus, for every c ∈ K there exists i ∈ {1, . . . , m}
such that dist(c,ki ) < δ, which by the right invariance of the distance and the fact
that the projection is a contraction implies that dist(catu+ḡ0 , kiatu+ḡ0) < δ, for
any t ∈ R,u+ ∈ U+ and g0 ∈ G. It follows that

|f (catu+ḡ0)− f (kiatu+ḡ0)| < ε ,
whence

∣∣∣∣

∮

	

f (catu+ḡ0)dν(u+)−
∮

	

f (kiatu+ḡ0)dν(u+)
∣∣∣∣ < ε ,

for any t ∈ R and g0 ∈ G.
Now

∮

	

f (kiatu+ḡ0)dν(u+) =
∮

ki	k−1
i

f (atu+ki ḡ0)dν(u+) .

The set ki	k−1
i also satisfies the hypothesis of Proposition 2.6.5. It follows that

there exists T > 0 such that for any t ≥ T and any i ∈ {1, . . . , m},
∣∣∣∣∣

∮

ki	k−1
i

f (atu+ki ḡ0)dν(u+)−
∮

G/


f dµ

∣∣∣∣∣
< ε .

We conclude that for every t ≥ T
∣∣∣∣

∮

K	

f (catu+ḡ0)dν(u+)dϑ(c)−
∮

G/


f dµ

∣∣∣∣ < 2ε

and that
∣∣∣∣

∮

�	

f (catu+ḡ0)dν(u+)dϑ(c)−
∮

G/


f dµ

∣∣∣∣ < 3ε .

��
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2.7. Counting results

Throughout the whole of this section we work in the following setting.We consider

 an irreducible lattice in G and V = X/
 the corresponding locally symmet-
ric space. Let r̄ be a maximal singular cusp ray in V , let r be a lift of it and let
ξ = r(∞). We denote by Hbt the horoball Hbt(r) and by Ht its boundary hor-
osphere. When t = 0 we drop the index. Consider P = P(r), P 0 = P 0(r) and
U = U(r) the parabolic, horospherical and respectively the unipotent group of r .
Let A0 = (at )t∈R be the one-dimensional singular torus such that r(t) = r(0)at
for every t ≥ 0. Assume that u �→ a(at )(u) = a−tuat is a dilating homothety on
U of factor eλt , with λ > 0. We denote the topological dimension of U by �.

Notation: For every y ∈ X we denote by K(y) the maximal compact subgroup
ofG stabilizing y. According to Section 2.4, we can identify ξG with ξK(y) and
with K(y)ξ\K(y). Every such identification endows ξG with a natural measure
coming from the measure on K(y)ξ\K(y), which we denote by θy .

Every open set	 in ξG can be identified with an open set inK(y)ξ\K(y). We
denote by 	K(y) its pre-image in K(y), also open. The set 	K(y) is the maximal
set in K(y) such that 	 = ξ	K(y).
Proposition 2.7.1. Let O be an open set in ξG, let x be a point in X and let
T > 0. For every k ∈ N, let Nx (k,O) be the number of horoballs Hbγ , γ ∈ 
,
with basepoint in O and such that dist(x,Hbγ ) is in [kT , (k + 1)T ). For any
T ≥ T0(G) and any x ∈ X we have that

C1e
λ(k+1)T �θx(O)≤Nx (k,O) ≤ C2e

λ(k+1)T �θx(O) for every k≥k0(x,O, Hb),
where Ci = Ci (G, 
) for i = 1, 2.

Proof. We fix an arbitrary point x in X and an open set O in ξG. We put K
for K(x). We also fix a Weyl chamber W0 having r as a face and we denote its
stabilizer in G by K0. Since P acts transitively on X it follows that there exists
p ∈ P such that r(0)p = x. ThenW0p is a Weyl chamber of vertex x, containing
ξ in its boundary at infinity, andW0pOK is the set of Weyl chambers of vertex x
containing one of the points in O in their boundaries at infinity.

The set of Weyl chambers with vertices onHs containing ξ in their boundaries
at infinity is W0a−sP 0. Consider the horoball Hbγ . It has its basepoint ξγ in O
and it is at distance at least kT and smaller than (k + 1)T from x if and only if
for some s ∈ [kT , (k + 1)T ), W0a−sP 0γ ∩W0pOK �= ∅. This is equivalent to
K0a−sP 0γ ∩ pOK �= ∅. Since K0 commutes with A0 and it is contained in P 0,
we have that K0a−sP 0 = a−sP 0. Thus, Nx (k,O) is the cardinal of the set
{
γ ∈ (
 ∩ P 0)\
; ∃s ∈ [kT , (k + 1)T ) such that pOK ∩ a−sP 0γ �= ∅}

= {γ ∈ 
/(
 ∩ P 0); ∃s ∈ [kT , (k + 1)T ) such that pOKγ ∩ a−sP 0 �= ∅}

= {γ ∈ 
; ∃s ∈ [kT , (k + 1)T ) such that pOKγ ∩ a−sP 0/(
 ∩ P 0) �= ∅} ,
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where in the last set either we may suppose that we are in G/(
 ∩ P 0), or we
may suppose that we are inG, in which case P 0/(
∩P 0) signifies a fundamental
domain of P 0 with respect to 
 ∩ P 0.

Case 1. Suppose thatG has real rank at least 2. Then 
 is an arithmetic lattice and
r is a maximal singular Q-wall. According to Section 2.3, the horospherical group
P 0 is equal toUM ′ = M ′U , whereU/U ∩
 is compact andM ′/M ′ ∩
 has finite
volume. By Section 2.5, P 0/(
 ∩P 0) and P 0/(U ∩
)(M ′ ∩
) have a common
finite covering. Consequently, we can replace in the counting problem above the
former by the latter. Also according to Section 2.5, if F is a fundamental domain
ofM ′ with respect toM ′ ∩
, and D is a fundamental domain ofU with respect to
U ∩
 then FD is a fundamental domain of P 0 with respect to (U ∩
)(M ′ ∩
).
The counting problem above becomes the counting of the number of times when
projG (a−sFD) intersects projG (pOK) in G/
, for s ∈ [kT , (k + 1)T ).

Notation: For a small positive number ε we denote by Bε the open ball B(x, ε)
in X.

We also consider Oε− ⊂ O ⊂ Oε+ with Oε− and Oε+ two open subsets of
ξG very near O.

The map

 : K0\G→ K(r(0))\G× P \G � X × ξG
defined by the two projections is C∞. Therefore for two open sets B in X and 	
in ξG, −1(B ×	) is an open set inK0\G. We denote its pre-image inG by	B.
The set	B is the maximal set inGwith the property thatW0	B is the set of Weyl
chambers with vertices in B and containing a point from 	 in their boundary at
infinity. A picture of a set W0	B can be seen in Figure 3, in the particular case
when X is the hyperbolic disk D

2.

Upper estimate. We want to define a continuous function f1 onG taking values
in [0, 1] and such that f1 is 1 on OBε and 0 outside Oε+

B2ε
. There exists a continuous

function f 1
1 : X → [0, 1], f 1

1 = 1 on Bε and f 1
1 = 0 outside B2ε. If Oε+ is well

chosen then there exists a continuous function f 2
1 : ξG → [0, 1], f 2

1 = 1 on
O and f 2

1 = 0 outside Oε+. The function f : X × ξG → [0, 1] defined by
f (x, ξg) = f 1

1 (x)f
2
1 (ξg) is 1 on Bε×O and 0 outside B2ε×Oε+, and by means

of it and of the projection  one can obtain the function f1.
If ε is small enough, f1 can also be seen as a function inG/
. Note that f1 is

a bounded function with compact support, hence uniformly continuous. Proposi-
tion 2.6.6 applied to f1, the semigroup (a−s)s≥0, D ⊂ U and F ⊂ M ′ (or their
relative interiors), and g0 = e gives that

∮

FD
f1(a−scuē)dν(u)dϑ(c)→

∮

G/


f1dµ when s → ∞ ,
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Ω

B

Fig. 3. Example of a setW0	B

where ν and ϑ are the measures induced from the Haar measures on U and M ′,
respectively. In particular, for s ≥ s(f1), we have
∮

FD
f1(a−scuē)dν(u)dϑ(c) ≤ 2

∮

G/


f1dµ ≤ 2vol(B2ε)[νK(OK)+ χ ] ,

where νK is the Haar measure onK and χ → 0 when ε → 0 and Oε+ converges
to O.

This is equivalent to the fact that for s ≥ s(f1),
∮

FDs
f1(cuā−s)dν(u)dϑ(c) ≤ 2vol(B2ε)[νK(OK)+ χ ] ,

where Ds = a−sDas . We can rewrite the previous inequality as
∫

FDs
f1(cuā−s)dν(u)dϑ(c) ≤ 2ϑ(F)eλs�ν(D)vol(B2ε) [νK(OK)+ χ ] .

By integration we obtain

∫ t+τ

t

∫

FDs
f1(cuā−s)dν(u)dϑ(c) ds ≤ C1e

(t+τ)λ� , (12)

where C1 = 2
λ�
ϑ(F)ν(D)vol(B2ε) [νK(OK)+ χ ].
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We have that
∫ t+τ

t

∫

FDs
f1(cuā−s)dν(u)dϑ(c) ds

≥
∫ t+τ

t

∫

FDs
1OBε (cuā−s)dν(u)dϑ(c) ds. (13)

The second term is the same as
∫ t+τ

t

∫

FDs
1⊔

γ∈
 OBε γ (cua−s)dν(u)dϑ(c) ds

=
∫ t+τ

t

∫

FD
1⊔

γ∈
 OBε γ (a−scu)dν(u)dϑ(c)eλ�s ds

=
∑

γ∈


∫ t+τ

t

∫

FD
1OBε γ (a−scu)dν(u)dϑ(c)eλ�s ds .

Since FD and a fundamental domain P of P 0 with respect to P 0 ∩
 have a com-
mon finite covering, the integral above is equivalent (in the sense of the relation �
defined in Section 2.1) to the integral

∑

γ∈


∫ t+τ

t

∫

P
1OBε γ (a−scu)dν(u)dϑ(c)eλ�s ds

=
∑

γ∈
/P 0∩


∑

γ1∈P 0∩


∫ t+τ

t

∫

P
1OBε γ γ1(a−scu)dν(u)dϑ(c)eλ�s ds

=
∑

γ∈
/P 0∩


∑

γ1∈P 0∩


∫ t+τ

t

∫

Pγ1

1OBε γ (a−scu)dν(u)dϑ(c)eλ�s ds

=
∑

γ∈
/P 0∩


∫ t+τ

t

∑

γ1∈P 0∩


∫

Pγ1

1OBε γ (a−scu)dν(u)dϑ(c)eλ�s ds

=
∑

γ∈
/P 0∩


∫ t+τ

t

∫

P 0
1OBε γ (a−scu)dν(u)dϑ(c)eλ�s ds . (14)

The projection G → K0\G sends K0a−sP 0 = a−sP 0 onto the set of Weyl
chambers containing the point ξ in their boundaries at infinity and with vertices
on the horosphere Hs . The image of the set K0OBεγ = OBεγ is the set of Weyl
chambers containing each one point from Oγ in their boundaries at infinity, and
with vertices in Bεγ .

This shows that 1OBε γ takes the value 1 on a−sP 0 for some s ∈ [t, t + τ ] if
and only if ξ ∈ Oγ and Bεγ intersects the closed strip Hbt+τ \Hbot .

Let γ (P 0 ∩ 
) be such that Bεγ is entirely contained in the closed strip
Hbt+τ \ Hbot and such that ξ ∈ Oγ . The first condition is equivalent to
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d = dist(xγ,H) ∈ [t + ε, t + τ − ε]. The second condition is equivalent to
the fact that pOKγ ∩ a−dP 0 �= ∅. We can write

∫ t+τ

t

∫

P 0
1OBε γ (a−scu)dν(u)dϑ(c)eλ�s ds

≥
∫ d+ε

d−ε

∫

P 0
1OBε γ (a−scu)dν(u)dϑ(c)eλ�s ds

The latter term can be rewritten as
∫ +ε

−ε

∫

P 0
1OBε γ (cua−(d+s))dν(u)dϑ(c) ds = vol(Bε)νKξ (Kξ ) .

Here νKξ is the measure induced on Kξ by the Haar measure on P 0.
It follows that the sum in (14) is larger than N vol(Bε)νKξ (Kξ ), where N is

the number of γ ∈ 
/(
 ∩ P 0) such that d = dist(xγ,H) ∈ [t + ε, t + τ − ε]
and pOKγ ∩ a−dP 0 �= ∅. If we put t + ε = kT and t + τ − ε = (k + 1)T then
N is nothing else than Nx (k,O). Inequalities (12) and (13) imply that

Nx (k,O) vol(Bε) ≤ c2vol(B2ε) [νK(OK)+ χ ] eλ�εeλ�(k+1)T ,

where c2 = c2(G, 
).
For small ε the ratio vol(B2ε)

vol(Bε)
is bounded from above. Also, if ε is small enough

and Oε+ is close enough to O, we have that χ < νK(OK) and that eλ�ε < 2.
Thus we obtain

Nx (k,O) ≤ C2 νK(OK)eλ�(k+1)T , for k ≥ k0(O, x,Hb) .

Lower estimate. Consider f2 : G→ [0, 1] a continuous function defined to be
1 on Oε−

Bε
and 0 outside OB2ε . Such a function can be constructed for Oε− well

chosen in a way similar to f1. For small ε, f2 can also be seen as a function in
G/
. We apply Proposition 2.6.6 as for the upper estimate, but with the function
f2. We get

∮

FD
f2(a−scuē)dν(u)dϑ(c)→

∮

G/


f2dµ ,

when s → ∞. As above, we obtain that for s ≥ s ′(f2), we have
∮

FDs
f2(cuā−s)dν(u)dϑ(c) ≥ 1

2

∮

G/


f2dµ ≥ 1

2
vol(Bε)[νK(OK)− χ ′] ,

where χ ′ → 0 when ε → 0 and Oε− converges to O.
Computations similar to the previous yield

∫ t+τ

t

∫

FDs
f2(cuā−s)dν(u)dϑ(c) ds ≥ C ′

2e
tλ� ,

where C ′
2 = 1

2
eτλ�−1
λ�

ϑ(F)ν(D)vol(Bε)
[
νK(OK)− χ ′].
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For τ large enough eτλ� − 1 ≥ 1
2e
τλ� and we have

∫ t+τ

t

∫

FDs
f2(cuā−s)dν(u)dϑ(c) ds ≥ C2e

(t+τ)λ� , (15)

where C2 = 1
4λ� ϑ(F)ν(D)vol(Bε)

[
νK(OK)− χ ′].

Now we write
∫ t+τ

t

∫

FDs
f2(cuā−s)dν(u)dϑ(c) ds

≤
∫ t+τ

t

∫

FDs
1OB2ε

(cuā−s)dν(u)dϑ(c) ds . (16)

The previous argument implies that the second term in (16) is equivalent to
the sum

∑

γ∈
/P 0∩


∫ t+τ

t

∫

P 0
1OB2ε γ

(a−scu)dν(u)dϑ(c)eλ�s ds . (17)

The considerations above imply that the sum in (17) is smaller thanN ′ vol(B2ε)

νKξ (Kξ ), where N ′ is the number of γ ∈ 
/
 ∩ P 0 such that B2εγ intersects
Hbt+τ \Hbot and such that ξ ∈ Oγ . These conditions are equivalent to the fact
that the distance d = dist(xγ,H) is in [t−2ε, t+τ+2ε] and topOKγ ∩a−dP 0 �=
∅. Consequently, if we choose t−2ε = kT and t+ τ +2ε = (k+1)T , we obtain
N ′ = Nx (k,O). Inequalities (15) and (16) imply that

Nx (k,O) vol(B2ε) ≥ c1vol(Bε)
[
νK(OK)− χ ′] e−2ελ�eλ�(k+1)T ,

whence we obtain that for ε small enough

Nx (k,O) ≥ C1 νK(OK)eλ�(k+1)T for every k ≥ k1(O, x,Hb).

We now note that νK(OK) � θx(O).
Case 2. Suppose thatG has real rank 1. Then the horospherical group P 0 is equal
to the unipotent group U , and we have that U/U ∩ 
 is compact. One can repeat
the same argument as previously, simplified by the fact that there is no central
factorM ′, hence F no longer appears, use Proposition 2.6.5 instead of 2.6.6, and
get the same estimate. ��
Corollary 2.7.2. Let ρ be a geodesic ray such that ρ(∞) is opposite to ξ and let
U = U(ρ). The subset ξU is open and dense in ξG, it can be identified withU and
thus equipped with a measure induced from the measure onU , which we denote by
νu. Let	 be a relatively compact open subset of ξU and let T > 0. For every open
subset O of 	, we denote by Nr (k,O) the number of horoballs Hbγ , γ ∈ 
,
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with basepoints ξγ ∈ O and such that the oriented distance odist (Hb(ρ),Hbγ )
is in [kT , (k + 1)T ). For any T ≥ T0(G, ρ,	) we have that

K1e
λ(k+1)T �νu(O) ≤ Nr (k,O)

≤ K2e
λ(k+1)T �νu(O), for every k ≥ k0(O, ρ,Hb),

where Ki = Ki (G, 
, ρ,	) for i = 1, 2.

Proof. Let G be a geodesic line such that G(+∞) = ξ , G(−∞) = ρ(∞) and
G(0) ∈ H(ρ). Let 	U be the relatively compact open subset of U such that
ξ	U = 	. The set G(0)	U is a relatively compact subset of H(ρ) of diam-
eter D. We choose a point x in it. Let H̃b be a horoball with basepoint ξ̃ in
	 and such that odist

(
Hb(ρ), H̃b

)
is positive and large enough. We have that

dist
(
x, H̃b

) ≥ odist
(
Hb(ρ), H̃b

)
.

Let ũ ∈ 	U be such that ξ ũ = ξ̃ and let G̃ = Gũ. Let t > 0 be such that G̃(t)
is the entrance point of G̃ into H̃b. Then odist

(
Hb(ρ), H̃b

) = t .
We have that dist

(
x, H̃b

) ≤ dist
(
x, G̃(t)

) ≤ t + dist
(
x, G̃(0)

) = t +
dist (x,G(0)̃u) ≤ t +D. Overall we obtain

odist
(
Hb(ρ), H̃b

) ≤ dist
(
x, H̃b

) ≤ odist
(
Hb(ρ), H̃b

)+D .

This inequality, together with Proposition 2.7.1 and the fact that on	 the two
measures νu and θx are equivalent implies the desired conclusion. ��

3. Symmetric spaces of positive definite quadratic forms

3.1. The ambient space

Throughout the paper we shall identify a quadratic formQ on R
s with its matrix

MQ in the canonical basis of R
s . The matrix of Q in some other basis B of R

s

shall be denoted byMB
Q. We shall denote by bQ the bilinear form associated toQ.

Let Ps = SO(s)\SL(s,R). This space can be identified with the space of
positive definite quadratic forms of determinant one on R

s by associating to each
right coset SO(s) Y the quadratic form QY whose matrix in the canonical basis
isMY = YT · Y .

We recall that Ps is equipped with a canonical metric defined as follows. Given
Q1 , Q2 ∈ Ps , there exists an orthonormal basis with respect toQ1 in whichQ2

becomes diagonal with coefficients λ1, . . . , λs ∈ R
∗
+. We define

d(Q1,Q2) =
√√√√

s∑

i=1

(ln λi)2 . (18)
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Let Qs be the space of quadratic forms on R
s and PQs the space of positive

definite quadratic forms. The group GL(s,R) acts on the right on Qs by

� : GL(s,R)× Qs → Qs , �(B,M) = BTMB .
This action can be written in terms of quadratic forms as �(B,Q) = Q[B] =
Q ◦ B.

The space PQs is a cone over Ps . It is composed of strata of the form

Ps(δ) = {Q : R
s → R ; Q positive definite quadratic form, detMQ = δ},

where δ ∈ R
∗
+. We endow each of these strata with a metric defined as in (18).

For each δ ∈ R
∗
+, any B ∈ GL(s,R) with detB = b induces an isometry from

Ps(δ) to Ps(b2δ). In particular, each Ps(δ) is an orbit of SL(s,R).
The subgroupA = {diag(et1, et2, . . . , ets ) ; t1+t2+· · ·+ts = 0} is a maximal

Q-split torus as well as a maximal R-split torus. A Q-Weyl chamber (as well as an
R-Weyl chamber) is �A = {diag(et1, et2, . . . , ets ) ; t1 + t2 + · · · + ts = 0, t1 ≥
t2 ≥ · · · ≥ ts}.

LetQ0 be the quadratic form of matrix Ids . The maximal flatF0 = Q0[A] is the
set of positive definite quadratic forms {diag (et1, et2, . . . , ets ) ; t1+t2+· · ·+ts =
0}. The Weyl chamberW0 = Q0[�A] is the subset of quadratic forms whose matri-
ces moreover satisfy t1 ≥ t2 ≥ · · · ≥ ts .

The dimension 1 walls (singular rays) of W0, parameterized with respect to
the arc length, are the sets of quadratic forms

ri = {diag (eλi t , . . . , eλi t︸ ︷︷ ︸
s−i times

, e−µi t , . . . e−µi t︸ ︷︷ ︸
i times

) ; t ∈ R+} , (19)

where λi =
√

i
s(s−i) and µi =

√
s−i
si

, i ∈ {1, 2, . . . s − 1}.
The parabolic group of ri is the group

P(ri) =
{(
M1 0
N M2

)
∈ SL(s,R) ;

M1 ∈ GL(s − i,R),M2 ∈ GL(i,R), N ∈ Mi×(s−i)(R)
}
.

The horospherical subgroup is

P 0(ri) =
{(
εM1 0
N εM2

)
;

M1 ∈SL(s − i,R),M2 ∈ SL(i,R), ε∈{±1}, N ∈ Mi×(s−i)(R)
}
.

The opposite unipotent group is

U+(ri) =
{(
Ids−i N

0 Idi

)
; N ∈ M(s−i)×i (R)

}
. (20)
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The boundary at infinity ∂∞Ps can be identified with the spherical building of
flags in R

s . Via this identification, r1(∞) = 〈es〉 and more generally ri(∞) is the
subspace 〈es−i+1, . . . , es〉, for i ∈ {1, 2, . . . s−1}. The spherical chamberW0(∞)
is identified with the flag 〈es〉 ⊂ · · · ⊂ 〈es−i+1, . . . , es〉 ⊂ · · · ⊂ 〈e2, . . . , es〉.

According to Section 2.4, we can define a projection sl : ∂∞Ps → W0(∞)
and thus define the slope of a point in ∂∞Ps and of a ray in Ps . In particular a
maximal singular ray r has slope ri(∞) if and only if r(∞) is a linear subspace
of dimension i.

Given a flag F : V1 ⊂ · · · ⊂ Vk in R
s and a matrixM ∈ GL(s,R) we denote

byMF the flagM(V1) ⊂ · · · ⊂ M(Vk).
Remark 3.1.1. The isometric action to the right � of SL(s,R) on Ps induces the
action to the right� on ∂∞Ps identified with the spherical building of flags in R

s ,
defined by �(B,F) = B−1F , where F is an arbitrary flag.

3.2. The Busemann functions in the ambient space

By means of Lemma 2.3.1 we can deduce the Busemann function fri .

Lemma 3.2.1. Let Q be a positive definite quadratic form of determinant 1 on
R
s , let Qi be its restriction to 〈es−i+1, . . . , es〉 and let detQi be the determinant

ofQi in the basis {es−i+1, . . . , es}. Then

fri (Q) =
√

s

(s − i)i ln detQi .

Proof. According to Lemma 2.3.1, it is enough to prove that the function � :

Ps → R, �(Q) =
√

s
(s−i)i ln detQi , is invariant with respect to P 0(ri) and

coincides with the Busemann function on the geodesic line Gi containing ri . The
second property is obvious.

It suffices to show that the function �(Q) = detQi is P 0(ri)-invariant. The
symmetric matrixMQ ofQ can be written as

MQ =
(
E F

FT H

)
,

E ∈ Ms−i (R), E = ET , H ∈ Mi(R), H = HT , F ∈ M(s−i)×i (R) .
We have �(Q) = detH . Let B ∈ P 0(ri),

B =
(
εM1 0
N εM2

)
,

M1 ∈ SL(s − i,R), M2 ∈ SL(i,R), ε ∈ {±1}, N ∈ Mi×(s−i)(R) .
The quadratic formQ◦B restricted to 〈es−i+1, . . . , es〉 has the matrixMT

2 HM2

in the basis {es−i+1, . . . , es}. It follows that�(Q◦B) = detMT
2 HM2 = detH =

�(Q). ��
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In particular we have

fr1(Q) =
√

s

s − 1
lnQ(es) and frs−1(Q) =

√
s

s − 1
lnQ∗(e1) ,

where Q∗ is the “dual quadratic form”, that is the quadratic form whose matrix
in the canonical basis isM∗

Q, ifMQ is the matrix ofQ.

Lemma 3.2.2. Let d be a line in R
s and let v be a non-zero vector on d.

(i) The function fv : Ps → R,

fv(Q) =
√

s

s − 1
lnQ(v) ,

is a Busemann function of basepoint d.
(ii) Every Busemann function of basepoint d is of the form fw, where w ∈ d,
w �= 0.

Proof. (i) We can write v = Bes for some B ∈ SL(s,R). Then fv(Q) =√
s
s−1 lnQ(Bes) = fr1(φ(B)(Q)) = fφ(B)−1r1(Q). According to Remark 3.1.1,

φ(B−1)r1(∞) = Br1(∞) = B〈es〉 = 〈v〉.
(ii) Let g be a Busemann function of basepoint d. Then g − fv is a constant

function c. This implies that g = fv + c = fw, where w = e c2
√

s−1
s v. ��

A similar argument gives the following.

Lemma 3.2.3. Let H be a linear hyperplane in R
s and let v be a non-zero vector

orthogonal to it.

(i) The function f ∗
v : Ps → R,

f ∗
v (Q) =

√
s

s − 1
lnQ∗(v) ,

is a Busemann function of basepoint H.
(ii) Every Busemann function of basepoint H is of the form f ∗

w, where w �= 0 is
orthogonal to H.

We have that fr1 = fes and frs−1 = f ∗
e1

.

Notation: Given a non-zero vector v ∈ R
n we denote byHbav andHav the horo-

ball and horosphere defined respectively by fv ≤ a and fv = a. We denote by
Hbav∗ and Hav∗ the horoball and horosphere defined respectively by f ∗

v ≤ a and
f ∗
v = a.
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3.3. Totally geodesic symmetric subspaces of Ps

For details on the discussion contained in this paragraph, see [Bo, §I.5]. Let
L : R

s → R be a non-degenerate quadratic form of signature (a, b) , a + b = s.
Following [Bo, Chapter I, §5], we denote by Ps(L) the set of positive definite
quadratic forms Q such that |L(x̄)| ≤ Q(x̄) , ∀x̄ ∈ R

s , and such that Q is mini-
mal in the partially ordered set of positive definite quadratic forms, verifying the
previous inequality.

Proposition 3.3.1 ([Bo], Chapter I, Proposition 5.2). The following are equiva-
lent:

(i) Q ∈ Ps(L) ;
(ii) There exists a basis B of R

s with respect to whichMB
Q = Ids andMB

L = Ia,b
(with the notation defined in Section 2.1).

Corollary 3.3.2. If detML = δ then Ps(L) ⊂ Ps(|δ|).
Proof. Let Q ∈ Ps(L). By Proposition 3.3.1, (ii), there exists P ∈ GL(s,R)
such thatML = PT Ia,bP andMQ = PT P . ��

We consider Ps(L) with the metric induced from Ps(|δ|).
Remarks 3.3.3. (1) For every B ∈ GL(s,R) we have Ps(L[B]) = Ps(L)[B].
(2) If L1 and L2 are two non-degenerate quadratic forms of the same signature

then Ps(L1) and Ps(L2) are isometric.

Proof. Statement (1) is obvious. Statement (2) is a consequence of (1) and of the
discussion in Section 3.1. ��
Remark 3.3.4. IfL is a non-degenerate quadratic form of determinant δ then Ps(L)
is a totally geodesic subspace of Ps(|δ|).
Proof. By the previous remarks it suffices to prove the statement for Ps(Ia,b) ⊂
Ps . The geodesic symmetry of Ps with respect to Ids isMQ → M−1

Q . The fact that
Ids ∈ Ps(Ia,b) and that Ps(Ia,b) is invariant with respect to the previous geodesic
symmetry, together with the homogeneity of Ps(Ia,b), imply that it is a totally
geodesic subspace of Ps . ��

Notation: For every quadratic form L : R
s → R we denote by ConL the set of

vectors x̄ in R
s satisfying the equation L(x̄) = 0.

Proposition 3.3.5 ([Mo], §15, §16, [Wi], §4.G).The boundary at infinity, ∂∞Ps(L),
of Ps(L) can be identified with the spherical building of flags of R

s composed of
subspaces totally isotropic with respect to L. In particular any line in ConL is a
maximal singular point in ∂∞Ps(L).
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Remark 3.3.6. The action to the right of SOI (L) on ∂∞Ps(L) seen as a set of flags,
which corresponds to the action to the right on Ps(L) as defined in this paper, is
the same as the one given in Remark 3.1.1.

We study the geometry of Ps(L) in more detail. By Remarks 3.3.3, it suffices
to study Ps(L0), where

L0 = 2x1xs + 2x2xs−1 + · · · + 2x�xs−�+1

+ε(x2
�+1 + · · · + x2

s−�) , � = min(a, b) , ε ∈ {±1} .

Let SOI (L0) be the connected component of the identity of the stabilizer of
L0. A maximal torus in it is [Bo, §11.16]

T = {diag(e−t1, . . . , e−t� , 1, . . . , 1︸ ︷︷ ︸
s−2�

, et� , . . . , et1) ; (t1, . . . , t�) ∈ R
�} ,

and a Weyl chamber is

W = {diag(e−t1, . . . , e−t� , 1, . . . , 1︸ ︷︷ ︸
s−2�

, et� . . . et1) ; t1 ≥ t2 ≥ · · · ≥ t�} .

Consider the one-parameter group A = (at )t∈R , with

at = diag
(
e−t/2

√
2, 1, . . . , 1, et/2

√
2
)
, (21)

and its sub-semigroup A+ = (at )t≥0. Let r be the geodesic ray defined by r(t) =
aTt at , ∀t ≥ 0. The parabolic group P = P(r) writes as

P =










a −a

(
ML′

0
X−1b̄

)T
− a

2L
′
0(b̄)

0 X b̄

0 0 a−1






∈ SOI (L0) ; a ∈ R
∗ , X ∈ SO(L′

0) , b̄ ∈ R
s−2} ,

where L′
0 : R

s−2 → R , L′
0(x2, . . . , xs−1) = 2x2xs−1 + · · · + 2x�xs−�+1 +

ε(x2
�+1 + · · · + x2

s−�). We note that P = {g ∈ SOI (L0) ; g−1(Re1) = Re1}. For
this reason we also denote it by Pe1 .

The horospherical subgroup of r is

P 0
e1

=










ε −ε

(
ML′

0
X−1b̄

)T
− ε

2L
′
0(b̄)

0 X b̄

0 0 ε






∈ SOI (L0) ; ε ∈ {±1} , X ∈ SO(L′
0) , b̄ ∈ R

s−2} ,
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and the unipotent subgroup of r is

Ue1 =











1 −
(
ML′

0
b̄
)T

− 1
2L

′
0(b̄)

0 Ids−2 b̄

0 0 1




 ; b̄ ∈ R

s−2





.

We call a geodesic ray ρ in the orbit rSOI (L0) maximal singular ray of
type ℘. The parabolic group corresponding to it, P(ρ), can be written as {g ∈
SOI (L0) ; g−1(Rv) = Rv}, where v ∈ ConL0 \{0}. It follows that, with the iden-
tification of Proposition 3.3.5, ρ(∞) = Rv, that is a point in PConL0 . Whence
the notation ℘, coming from “point”. We extend in the natural way the notion of
maximal singular ray of type ℘ to the general case of a non-degenerate quadratic
form L.

Notation: Let d be a line in ConL. We denote by P(d) the parabolic group
corresponding to d seen as a point in PConL. We denote by U(d) the unipotent
radical of P(d).

Lemma 3.3.7. Let d1 and d2 be two lines in ConL. If bL(d1, d2) �= 0 then d1 and
d2, seen as maximal singular points in ∂∞Ps(L), are opposite.

Proof. We show that if bL(d1, d2) �= 0 then there exists a maximal singular geo-
desic G such that G(−∞) = d1 and G(+∞) = d2. Let v ∈ d1 and w ∈ d2 be
two vectors such that bL(v,w) = 1. We consider V = ker bL(v, ·)∩ ker bL(w, ·)
of dimension s−2. By the general theory of non-degenerate quadratic forms (see
[Be]) we may choose a basis {w1, . . . ws−2} of V such that in the coordinates with
respect to the basis B = {v,w1, . . . ws−2, w} the form L writes as

L = 2x1xs + 2x2xs−1 + · · · + 2x�xs−�+1

+ε(x2
�+1 + · · · + x2

s−�) , � = min(a, b) , ε ∈ {±1} . (22)

The geodesic G(t) = Qt with MB
Qt

= diag (e
t√
2 , 1, . . . , 1, e

− t√
2 ) satisfies

G(−∞) = d1 and G(+∞) = d2. ��

Remark 3.3.8. Let d1 and d2 be two lines in ConL such that bL(d1, d2) �= 0 and
let H1 be the hyperplane defined by bL(d1, ·) = 0. The map

U(d1)→ P (ConL \ H1)

u �→ u−1d2

is a bijection.
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Proof. By Remarks 3.3.3 and the argument in the proof of Lemma 3.3.7, we may
suppose that L = L0, d1 = Re1, d2 = Res and H1 = ker e∗s . It follows that
U(d1) = Ue1 . Consider a unipotent element in Ue1 ,

u(b̄) =






1 −
(
ML′

0
b̄
)T

− 1
2L

′
0(b̄)

0 Ids−2 b̄

0 0 1




 .

To it corresponds the line d(b̄) inConL \H1 containing the vector
(
− 1

2L
′
0(b̄),

−b̄,1
)

and this establishes a bijection betweenUe1 and the set of lines inConL\H1.

��

Notation: For every line d ∈ P (ConL \ H1), we denote by ud the unipotent in
U(d1) corresponding to it by the previous bijection.

3.4. Horoballs in Ps(L) and counting result

Lemma 3.4.1. Let d be a line in ConL and let v be a non-zero vector on d.

(i) The function fv : Ps(L)→ R,

fv(Q) =
√

2 lnQ(v) ,

is a Busemann function of basepoint d.
(ii) Every Busemann function of basepoint d is of the form fw, where w ∈ d,
w �= 0.

(iii) Let v be a vector and r a geodesic ray such that fv = fr . Then fλv =
fr + 2

√
2 ln λ.

Proof. (i) SinceL is non-degenerate, there existsw∈ConL such thatbL(v,w)=1.
We proceed as in the proof of Lemma 3.3.7 and consider a basis B with v
and w the first and respectively last vector, with respect to which L can be
written as in (22). We consider the geodesic G joining d and Rw, G(t) =
( −1)T diag (e

t√
2 , 1, . . . , 1, e

− t√
2 ) −1, where is the matrix having the vectors

ofB as columns. The geodesic ray corresponding tod is r(t) = G(−t) , t ≥ 0, and
its horospherical subgroup is  P 0

e1
 −1. For every p ∈  P 0

e1
 −1, fv(Q[p]) =√

2 lnQ(p(v)) = √
2 lnQ(v), since p(v) = v. Also, fv(G(t)) = t . Lemma 2.3.1

allows to conclude.
(ii) is proved as in Lemma 3.2.2 and (iii) follows immediately from the formula

of fv. ��
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Notation: For every v ∈ ConL\{0} we denote byHav ,Hbav andHboav the horo-
sphere defined by fv = a, and the horoball and open horoball defined by fv ≤ a
and fv < a, respectively. For a = 0 we simply write Hv, Hbv and Hbov.

Lemma 3.4.2. Let v,w be two vectors in ConL such that bL(v,w) �= 0. The
oriented distance between the horospheres Hbv and Hbw is 2

√
2 ln |bL(v,w)|.

Proof. Let w1 = 1
χ
w with χ = bL(v,w). The Busemann function fw is equal to

fw1 +2
√

2 ln |bL(v,w)|. Therefore it suffices to prove the statement of the lemma
when bL(v,w) = 1. By Remark 3.3.3 we may suppose that L = L0. Moreover,
by Witt Theorem ([Be], [Wi, §4.G]), we may suppose that v = e1 and w = es .

A geodesic joining Re1 and Res is G(t) = diag (e
− t√

2 , 1, . . . , 1, e
t√
2 ). We have

that G ∩He1 = G ∩Hes = {Ids}, which finishes the proof. ��
Corollary 3.4.3. Let v0 ∈ ConL \ {0} be fixed and let H0 be the hyperplane
defined by bL(v0, ·) = 0. For every compact setK in P(ConL\H0), we have that
|odist (Hbv0, Hbw)− 2

√
2 ln ‖w‖ | is bounded uniformly in w ∈ RK .

Corollary 3.4.3 and the counting result Corollary 2.7.2 give the following.

Proposition 3.4.4. Let 
 be an irreducible lattice in SOI (L) and let r̄ be a maxi-
mal singular cusp ray in Ps(L)/
 such that if r is a lift of it in Ps(L), then r is of
type ℘. Let r(∞) = d ∈ PConL and let v be a non-zero vector on d. Let 	 be a
relatively compact open subset of PConL such that its closure does not intersect
P ker bL(v0, ·) for some v0 ∈ ConL \ {0}. Let a > 1. For every open subset O of
	 we denote by N(k ; O) the cardinal of the set of vectors

{
vγ ; γ ∈ 
 , Rvγ ∈ O , ‖vγ ‖ ∈ [ak, ak+1)

}
.

For any a ≥ a0(L,	) and for any k ≥ k0(O, 	, v), we have that

K1a
(k+1)(s−2)ν(O) ≤ N(k ; O) ≤ K2a

(k+1)(s−2)ν(O),
where ν is the canonical measure on PConL and Ki = Ki (L, 
,	).

Lemma 3.4.5. Let d0 be a fixed line inConL and let H0 be the hyperplane defined
by bL(d0, ·) = 0. With the notation following Remark 3.3.8, on every compact sub-
set K of P(ConL \ H0) the angle between two lines d1 and d2 in K is bi-Lipschitz
equivalent to the distance between ud1 and ud2 in U(d0).

Proof. Up to isometry, we can reduce to the case when L = L0, d0 = Re1 and
H0 = ker e∗s . In this case U(d0) = Ue1 . The Riemannian distance on Ue1 coming
from the Lie group isomorphism

R
s−2 → Ue1

b̄ �→ u(b̄)

is invariant. With the notation in the proof of Remark 3.3.8, the angle between
two lines d(b̄) and d(b̄′) is bi-Lipschitz equivalent to ‖b̄− b̄′‖e, if b̄ and b̄′ are in
a compact set of R

s−2. ��



444 C. Druţu

3.5. Traces of horoballs on unipotent orbits

Throughout this section we fix v0 a vector in ConL \ {0} and a geodesic G in
Ps(L) with G(−∞) = d0, where d0 = Rv0, and G(0) in Hv. Let H0 be the
hyperplane ker bL(v0, ·), and let P(d0) be the parabolic group corresponding to
d0. This group has a Langlands decomposition, P(d0) = MAU such that G is an
orbit of A. We denote by r the geodesic ray G|[0,+∞).

Let w be an arbitrary vector in ConL\H0 and let D be the oriented distance
between the horoballs Hbv0 and Hbw. We wish to study the trace of the horoball
Hbw on U identified with the orbit of r(t) under U , that is the set

T rt (w) = {u ∈ U ; r(t)[u] ∈ Hbw} . (23)

We put the condition t = D+ τ , τ ≥ 0, otherwise T rt (w) is empty. We have
the following lemma.

Lemma 3.5.1. We consider the unipotent group U endowed with an invariant
metric and with the Haar measure ν. For any vectorw in ConL\H0 the following
holds. Let D = odist(Hbv0, Hbw).

(1) For any τ ≥ 0

T rD+τ (w) ⊂ B
(

uw, κ0 e
− D

2
√

2

)
, (24)

where uw ∈ U is such that G[uw](+∞) = Rw, and κ0 is a constant depending
on v0 and on the metric chosen on U .

(2) If L has signature (a, b) with min(a, b) ≥ 2 then

C1e
−D(s−2)+τ

2
√

2 ≤ ν(T rD+τ (w)) ≤ C2e
−D(s−2)+τ

2
√

2 ,

where C1 and C2 are constants depending on v0.

Proof. Step 1. First we consider the particular case when L = L0, v0 = e1 and

G0(t) = Qt = diag
(
e
t√
2 , 1, . . . , 1, e

− t√
2

)
. Via the isometry b̄ �→ u(b̄) we iden-

tify Ue1 to R
s−2, its Haar measure ν is the Lebesgue measure, and we choose

as invariant metric the Euclidean metric. We take the vector w to be λes , with

λ = e D

2
√

2 , for an arbitrary D ≥ 0. Let r(t) = Qt for t ≥ 0.
(1) We have

T rt (λes) = {u ∈ Ue1 ; Qt [u] ∈ Hbλes
} =
{

u ∈ Ue1 ; Qt [u](es) ≤ 1

λ2

}

=
{

u(b̄) ∈ Ue1 ; 1

4
e
t√
2 [L′

0(b̄)]
2 + ‖b̄‖2

e + e− t√
2 ≤ e− D√

2

}

=
{

u(b̄) ∈ Ue1 ; 1

4
e
τ√
2

[
L′

0

(
e
D

2
√

2 b̄
)]2

+
∥∥∥e

D

2
√

2 b̄

∥∥∥
2

e
+ e− τ√

2 ≤ 1

}
.
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We denote by Oα the homothety in R
s−2 of center the origin and of factor α.

We identify T rt (λes) with Oη(Mτ ), where η = e− D

2
√

2 and

Mτ =
{
b̄ ∈ R

s−2 ; 1

4
e
τ√
2 [L′

0(b̄)]
2 + ‖b̄‖2

e + e− τ√
2 ≤ 1

}
.

The set Mτ is quasi-conformal to the set

M′
τ =
{
b̄ ∈ R

s−2 ; ‖b̄‖2
e ≤ 1 − e− τ√

2 ,
1

4
e
τ√
2 [L′

0(b̄)]
2 ≤ 1 − e− τ√

2

}
,

in the sense that O1/
√

2(M′
τ ) ⊂ Mτ ⊂ M′

τ . We have that M′
τ ⊂ B(0, 1). We

conclude that

T rt (λes) ⊂ B
(

0, e
− D

2
√

2

)
.

(2) We can rewrite M′
τ as Oχ

(
M′′

τ

)
, where χ = √

2
(

1 − e− τ√
2

) 1
4
e
− τ

4
√

2 and

M′′
τ =
{
b̄ ∈ R

s−2 ; |L′
0(b̄)| ≤ 1 , ‖b̄‖e ≤ 1√

2

(
1 − e− τ√

2

) 1
4
e

τ

4
√

2

}
.

Lemma 3.8 from [EMM] implies that

ν
(
M′′

τ

) ∼ C ′e
τ(s−4)

4
√

2 as τ → ∞ ,

where C ′ is an absolute constant. Hence

ν
(
M′

τ

) ∼ Ce− τ

2
√

2 as τ → ∞ ,

and

C1e
− τ

2
√

2 ≤ ν (Mτ ) ≤ C2e
− τ

2
√

2 ,

where C1 and C2 are universal constants. This and the fact that T rD+τ (λes) is
isometric to O

e−D/2
√

2Mτ yields the conclusion.

Step 2. We place ourselves in the general case. There exists B ∈ GL(n,R) such
that �(B)(L0) = L. Remark 3.3.3 implies that �(B) is an isometry between
Ps(L0) and Ps(L). The fact that SOI (L) acts transitively on geodesics with both
points at infinity lines inConL implies that we may suppose that�(B) (G0) = G.
Let uw ∈ U be such that G[uw](+∞) = Rw. Since uw acts by isometry on U to
the right, it suffices to prove the result in the particular case when uw = id.

We then have that B−1Ue1B = U and that B−1T rt (λes)B = T rt (w). The
conjugation by B transforms the Haar measure on Ue1 into the Haar measure on
U and the Euclidean metric on Ue1 into an invariant metric on U , bi-Lipschitz
equivalent to the one that was chosen. ��
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3.6. Quotient spaces, equidistribution of rational vectors

Let Ps be the ambient symmetric space defined in Section 3.1. Let 
 be the lattice
SL(s,Z). Its Q-rank r is equal to the R-rank of SL(s,R) and with s − 1.

Notation: We denote by Ts the quotient space Ps/
. In accordance with the
notation introduced in Section 2.5, we denote by proj the projection of Ps onto Ts .

The projection W 0 = proj(W0) is isometric to W0. Moreover, Ts is at finite
Hausdorff distance of W 0. We denote by r̄i the projection of the ray ri defined
in (19). According to Remark 2.5.1, (1), and to Lemma 3.2.2, for a < 0 with |a|
large enough, the projection ofHbaes isHba(r̄1) and its pre-image is

⋃
v∈PZs

Hbav .
Likewise Hba

e∗1
projects onto Hba(r̄s−1) and its pre-image is

⋃
v∈PZs

Hbav∗ .
Let L be a non-degenerate rational quadratic form on R

s . The group SOZ(L)

is a lattice, which we denote by 
L. It has Q-rank r equal to the dimension of
the maximal rational linear subspace totally isotropic with respect to L (that is,
contained in ConL).

Notation: We denote by VL the quotient space Ps(L)/
L. We denote by projL
the projection of Ps(L) onto VL.

The manifold VL is a locally symmetric space of finite volume, at finite Haus-
dorff distance of a finite union of Euclidean sectors of dimension r, which are
projections of Q-Weyl chambers in Ps(L) ([BoS], [Le]). Let r̄1, r̄2, . . . , r̄k be
all the maximal singular cusp rays in VL such that their lifts r1, r2, . . . , rk in
Ps(L) are of type ℘ . The set {r̄1(∞), r̄2(∞), . . . , r̄k(∞)} can be identified with
the quotient under the action of 
L of the set of all rational lines in ConL. The
latter set can also be seen as the set (PZ

s ∩ ConL) / ± 1 = PZ
s
+ ∩ ConL. Let

ri(∞) = vi ∈ PZ
s
+ ∩ConL. By the previous considerations, {v1, v2, . . . , vk} can

also be identified with
(
PZ

s
+ ∩ ConL

)
/
L. By Lemma 3.4.1, fri = fλivi , where

λi ∈ (0,∞).
According to Remark 2.5.1, (1), if a < 0 with |a| large enough then for any

i ∈ {1, 2, . . . , k}, projL
(
Hbavi

)
coincides withHbai (r̄i), for some ai < 0, and the

pre-image of it isHbavi
L =⋃v∈vi
L Hbav . Therefore the projection of
⋃k
i=1Hb

a
vi

is
⋃k
i=1Hbai (r̄i) and it has the pre-image

⋃
v∈PZ

s+∩ConL Hb
a
v .

The application of the Proposition 3.4.4 to each of the rays r̄i gives the fol-
lowing.

Proposition 3.6.1. Let	 be a relatively compact open subset of PConL such that
its closure does not intersect P ker bL(v0, ·) for some v0 ∈ ConL \ {0}. Let a > 1.
For every open subset O of 	 we denote by N(k ; O) the cardinal of the set of
vectors

{
v ∈ PZ

s ∩ ConL ; Rv ∈ O , ‖v‖ ∈ [ak, ak+1)
}
.
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For any a ≥ a0(L,	) we have that

K1a
(k+1)(s−2)ν(O) ≤ N(k ; O) ≤ K2a

(k+1)(s−2)ν(O) , for every k ≥ k0(O, 	),

where ν is the canonical measure on PConL and Ki = Ki (L,	).

A consequence of this proposition is Corollary 1.2 in the introduction.

4. Diophantine approximation on a rational quadric

4.1. Some preliminary considerations

Let q : R
n → R be a non-degenerate quadratic form with rational coefficients and

let Qq be the quadric defined by q = 1. Before beginning the proof of Theorem 1.1,
we wish to point out that an argument with a projection on a rational hyperplane
does not work. This can be illustrated on the example of Qq = S

n(0 , 1) ⊂ R
n+1.

For simplicity we replace Qq by S
n(en+1 , 1), which we denote in what follows

by T S
n. We recall that the stereographic projection with respect to 2en+1 is

pr : T S
n → R

n

x̄ �→ 2
2−xn+1

x̄ − 2xn+1
2−xn+1

en+1 .

Its inverse is

inv : R
n → T S

n

ȳ �→ 4
4+‖ȳ‖2

e
ȳ + 2‖ȳ‖2

e

4+‖ȳ‖2
e
en+1 .

We have that
• pr (Sα(T S

n)) ⊂ Sα−ε(Rn), for any α and ε ;
• inv (Sα(Rn)) ⊂ S α−1

2 −ε(T S
n), for any α and ε.

It follows that

inv
(
S1+2α+2ε(R

n)
) ⊂ Sα(T S

n) ⊂ inv (Sα−ε(Rn)
)
. (25)

On the other hand, by Jarnı́k Theorem, dimH Sα(Rn) = n+1
α+1 for all α ≥ 1

n
.

This and relation (25) imply that

n+ 1

2(α + 1)
≤ dimH Sα(T S

n) ≤ n+ 1

α + 1
. (26)

For n = 1 we obtain dimH Sα(T S
1) ≥ 1

1+α , which together with the inequal-
ity of Melnichuk, dimH Sα(T S

1) ≤ 1
1+α [DD1], imply the result of H. Dickinson

and M.M. Dodson. For n > 1 both bounds given by (26) are not sharp.
The first step in the proof of Theorem 1.1 is the following Lemma.
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Lemma 4.1.1. Letψ be an approximating function such that limx→∞ xψ(x) = 0.
Let x̄ ∈ Qq and let 1

q
p̄ ∈ Q

n be such that
∥∥∥∥x̄ − 1

q
p̄

∥∥∥∥ ≤ ψ(q)

q
. (27)

If q is large enough then 1
q
p̄ ∈ Qq.

Proof. We have q(x̄)=∑1≤i≤j≤n aij xixj=1, where x̄ = (x1 , . . . , xn) and aij ∈
Q,∀i, j . Relation (27) implies that qxi = pi + εi , where p̄ = (p1 , p2 , . . . , pn)

and εi = O (ψ(q)). It follows thatq2=∑1≤i≤j≤n aij qxi qxj=
∑

1≤i≤j≤n aij (pi+
εi)(pj+εj ) = q(p̄)+∑1≤i≤j≤n aij (piεj+pjεi)+

∑
1≤i≤j≤n aij εiεj .We have that

∑
1≤i≤j≤n aij (piεj + pjεi) = O (qψ(q)) and

∑
1≤i≤j≤n aij εiεj = O

(
ψ(q)2

)
.

Both sums tend to 0 when q → ∞. Since q has rational coefficients, q(Zn) ⊂ 1
N

Z

for some N ∈ N. It follows that q2 − q(p̄) ∈ 1
N

Z. On the other hand, for q large

enough |q2 − q(p̄)| < 1
N

. We conclude that q
(

1
q
p̄
)

= 1 for q large enough. ��
The previous lemma implies in particular that if Qq ∩Q

n = ∅ then Sψ(Qq) =
∅ forψ such that limx→∞ xψ(x) = 0. In what follows we work under the hypoth-
esis that Qq ∩ Q

n �= ∅.

4.2. Generalized notion of Hausdorff measure, Hausdorff dimension

Definitions 4.2.1. (1) A dimension function is a function ϕ : R+ → R+ which is
increasing and continuous and such that limx→0 ϕ(x) = 0.

(2) We say that a dimension function ϕ dominates the function xδ for some δ > 0,
if

– x �→ x−δϕ(x) is a decreasing function;
– limx→0 x

−δϕ(x) = ∞.

Let (M, d) be a metric space and F a non-empty subset of M. For ε > 0 we
call ε-cover of F a countable collection of balls {Bj }j∈J of radii rj at most ε for
every j ∈ J , such that F ⊂⋃j∈J Bj . Define

Hϕ
ε (F ) = inf






∑

j∈J
ϕ(rj ) : {Bj }j∈J an ε − cover of F





.

The Hausdorff measure ofF with respect to the dimension functionϕ is defined
by

Hϕ(F ) = lim
ε→0

Hϕ
ε (F ) = sup

ε>0
Hϕ
ε (F ) .

Remark 4.2.2. When ϕ(x) = xs , Hϕ becomes the usual Hausdorff measure Hs .
Recall that one defines the Hausdorff dimension dimH F by

dimH F = inf{s ≥ 0 ; Hs(F ) = 0} = sup{s ≥ 0 ; Hs(F ) = ∞} .
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4.3. Ubiquitous systems

We need the notion of ubiquitous system as introduced in [BDV2], and one of its
main properties, which we recall in the sequel. We shall not need the notion in its
most general form, as the resonant sets we work with are points. See [BDV2] for
a more general and detailed presentation, as well as for proofs. We note that in the
particular case when the compact metric space considered below (M, dist) is a
bounded subset of R

n with the Euclidean metric, andm is the Lebesgue measure,
the notion of ubiquitous system and a weaker version of Theorem 4.3.2 were for-
mulated in [DRV2] (see also [BD]). In the case when the resonant sets are points
this notion coincides with the notion of regular system from [BaS]. Also, a variant
of the notion has been defined and used in [Bu].

Let (M, dist,m) be a compact metric space with a probability measure.
Assume that the measure m satisfies the following condition.

(M) There exists δ > 0 and R0 > 0 such that for any x ∈ M and R ≤ R0,

aRδ ≤ m(B(x,R)) ≤ bRδ .
The constants a and b are independent of the ball and can be assumed to satisfy

0 < a < 1 < b .

Remark 4.3.1. The condition (M) implies that the Hausdorff dimension
dimH M = δ.

Let I be an infinite countable family of indices and let  : I → R+ be a
weight function on it. Assume that for everyM > 0, the set {i ∈ I ; (i) ≤ M}
is finite. Let  = {pi ; i ∈ I } be a collection of points in M, called resonant
points.

Let ρ : R+ → R+ be a function such that limx→∞ ρ(x) = 0. It will be called
the ubiquitous function. Let u = (un)n∈N be an increasing sequence of positive
real numbers such that limn→∞ un = ∞ .We assume that the function ρ is u-reg-
ular, that is there exists a constant 0 < λ < 1 such that for n ∈ N sufficiently
large,

ρ(un+1) ≤ λρ(un) .
The pair (,) is said to be a local m-ubiquitous system relative to (ρ, u)

if the following condition is satisfied. There exists R1 > 0 such that an arbitrary
ball B in M of radius R ≤ R1 satisfies

m



B ∩
⋃

(i)≤un
B (pi , ρ (un))



 ≥ κ m(B) ,

for every n ≥ n0(B), where κ > 0 is an absolute constant.
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We consider the lim-sup set

�( , ψ) = {x ∈ M ; dist(x, pi) < ψ((i)) for infinitely many i ∈ I } .
Theorem 4.3.2 ([BDV2], Theorem 3). Let (M, dist,m) be a compact metric
space equipped with a measure satisfying the property (M). Let ρ and u be a
function and respectively a sequence as above. Let (,) be a local m-ubiqui-
tous system relative to (ρ, u), let ψ be an approximating function and let ϕ be a
dimension function dominating xδ.

If
∑∞
n=1 ϕ(ψ(un)) ρ(un)

−δ = ∞ then

Hϕ (�( , ψ)) = ∞ .

Corollary 4.3.3 ([BDV2], §1.4.2). Let (M, dist,m), ρ, u, (,) be as above.
Let s ∈ [0, δ).

(1) If
∑∞
n=1 ψ(un)

s ρ(un)
−δ = ∞ then Hs (�( , ψ)) = ∞ .

(2) If limn→∞ ψ(un)

ρ(un)
= 0 then

dimH �( , ψ) ≥ σδ ,
where σ = lim supn→∞

ln ρ(un)
lnψ(un)

.

Moreover, if lim infn→∞ ρ(un)

ψ(un)σ
<∞ then Hσδ(�( , ψ)) = ∞.

4.4. A geometric definition of Sψ(Qq)

We proceed with the proof of Theorem 1.1. With a countable covering argument,
we reduce the problem to the study of Sψ(	), where 	 is a relatively compact
open subset of Qq such that its closure does not intersect Tx̄0Qq for some x̄0 ∈ Qq.
Let Lq : R

n+1 → R be defined as in the Introduction.
Convention: In what follows we shall drop the index of the form Lq and we

shall adopt for it all the notation introduced in the Sections 3.3 to 3.6.
We note that ȳ ∈ Qq if and only if (ȳ, 1) ∈ ConL. Thus we may identify

	 to an open subset of PConL, and consider R	. We denote by v0 the vec-
tor (x̄0, 1) ∈ ConL and by H0 the hyperplane ker bL(v0, ·). The condition that
the closure of 	 does not intersect Tx̄0Qq is equivalent to the condition that the
closure of R	 does not intersect H0. Let d0 = Rv0. Let P(d0) be the para-
bolic subgroup corresponding to d0 in SOI (L) and let M0A0U0 be a Langlands
decomposition of P(d0). In this case the group U0 is Abelian and A0 is a maxi-
mal singular torus (at )t∈R. We take its parametrization such that U0 = U+(A+

0 ),
where A+

0 = (at )t≥0. Let G be the maximal singular geodesic in Pn+1(L) which
is an orbit of A0, such that G(0) ∈ Hv0 and G(−∞) = d0. The geodesic ray
r0 = G|[0,+∞) has U+(r0) = U0.

According to Remark 3.3.8, to every d ∈ P (ConL\H0) corresponds a unique
ud ∈ U0 such that d = r0(∞)ud . By means of this, we identify 	 to a relatively
compact open subset of U0.
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Convention: We also denote by	 the open subset of PConL to which	 ⊂ Qq

is identified via the map ȳ ∈ Qq �→ (ȳ, 1) ∈ ConL. We likewise denote by 	
the subset in U0 to which the previous subset in PConL is identified via the map
defined above.

We want to study the set of vectors ȳ ∈ 	 such that ‖ȳ− 1
q
p̄‖ < ψ(q)

q
for infi-

nitely many 1
q
p̄ ∈ Qq ∩Q

n. Without loss of generality we may suppose moreover

that 1
q
p̄ ∈ 	 ∩ Q

n.
Let ȳ , ȳ ′ be points in 	 and let d , d ′ be the lines in ConL containing (ȳ, 1)

and (ȳ ′, 1), respectively. Lemma 3.4.5 implies that the distance in U0 between ud
and ud ′ is bi-Lipschitz equivalent to the angle between d and d ′, which in its turn
is bi-Lipschitz equivalent to ‖ȳ − ȳ ′‖ for ȳ , ȳ ′ ∈ 	. Corollary 3.4.3 implies that
‖(p̄, q)‖e is bi-Lipschitz equivalent to eodist (Hbv0 ,Hb(p̄,q))/2

√
2. Also, since 1

q
p̄ ∈ 	,

and 	 is relatively compact, ‖(p̄, q)‖e is bi-Lipschitz equivalent to q.
Thus we have

1

L
eodist (Hbv0 ,Hb(p̄,q))/2

√
2 ≤ q ≤ Leodist (Hbv0 ,Hb(p̄,q))/2

√
2 ,

for some L > 1 depending on 	.
Let us denote by S̃0

�(	) the following subset of U0.

S̃0
�(	) = {u ∈ 	 ; distU0(u,u(p̄,q))

≤ � (odist (Hbv0, Hb(p̄,q))
)

for infinitely many

(p̄, q) ∈ PZ
n+1
+ ∩ ConL} . (28)

The previous considerations imply that for someL1 > 1 we have the inclusions

S̃0
�1
(	) ⊂ Sψ(	) ⊂ S̃0

�2
(	) , where

�1(x) =
ψ
(
Lex/2

√
2
)

L1ex/2
√

2
and �2(x) = L1

ψ
(
ex/2

√
2

L

)

ex/2
√

2
. (29)

Therefore we may replace in our study the set Sψ(	) by the set S̃0
�(	) for

some approximating function �.
Let 
L, VL and {v1 , v2 , . . . , vk} ⊂ PZ

n+1
+ ∩ ConL be defined as in Sec-

tion 3.6. Every (p̄, q) ∈ PZ
n+1
+ ∩ ConL is in the 
L-orbit of one of the vectors

{v1 , v2 , . . . , vk}. We fix a vector v ∈ {v1 , v2 , . . . , vk} and we consider the set
of vectors Csp = v
L.

We restrict our attention to a subset of S̃0
�(	) defined as follows.

S̃�(	) =
{

u ∈ 	 ; distU0(u,uw)

≤ � (odist (Hbv0, Hbw)
)

for infinitely many w ∈ Csp
}
. (30)
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Since the set S̃0
�(	) is the union of the sets S̃�(	) defined as in (30) for

i ∈ {1, 2, . . . , k}, without loss of generality we may replace in our argument
S̃0
�(	) by S̃�(	).

Notation: In the particular case when �(x) = e
− (1+α)x

2
√

2 , with α > 0, in all the
previous notation the index � is replaced by the index α.

If the quadratic form q is positive definite or of signature (1, n− 1), Ps(L) is
a model of then-dimensional hyperbolic space.Via the map x̄ �→ (x̄, 1), Qq can be
identified with P

(
ConL\ker e∗n+1

)
. Ifq is positive definite then P

(
ConL\ker e∗n+1

)

= P (ConL), which is the whole boundary at infinity of the hyperbolic space
Ps(L). If q has signature (1, n − 1) then P

(
ConL\ker e∗n+1

)
is an open

Zariski dense subset of the boundary at infinity of the hyperbolic space. We change
the model Ps(L) with the half-space model H

n of the hyperbolic space, and we
suppose that ∞ = v0.

The set S̃�(	) can be identified with the set of points ϑ ∈ 	 ⊂ R
n−1 ⊂ ∂∞H

n

such that there are infinitely many ξ ∈ Csp satisfying the inequality

distU0(uϑ , uξ ) ≤ � (odist (Hb∞ , Hbξ )
)
.

The term on the left is ‖ϑ − ξ‖e and the term on the right is, up to some
insignificant changes of the function �, �(− ln hξ ), where hξ is the Euclidean
height of the horoballHbξ . The set S̃�(	) becomes the set of points ϑ ∈ 	 such
that the inequality

‖ϑ − ξ‖e ≤ �(− ln hξ )

has an infinity of solutions ξ ∈ Csp. The equality dimH S̃α(	) = n−1
1+α is in this

case a consequence of a more general result of R. Hill and S. L. Velani [HV].
Moreover, all the results stated in this paper are proved in this particular case in
[BDV2].

From now on we may therefore suppose that the form L = Lq is of signature
(a, b), with min(a, b) ≥ 2.

Notation: We denote dimU0 by �.
Since s = a + b ≥ 4, we have � = s − 2 ≥ 2.

4.5. Sets of points on a quadric very well approximable by cusp points

Let L be a non-degenerate quadratic form of signature (a, b), with min(a, b) ≥
2, a+ b = s, and let 
 be an irreducible lattice in SOI (L). Let V be the quotient
Ps(L)/
 and let proj denote the projection of Ps(L) onto V . As in Section 3.6,
we consider the set {r̄1 , r̄2 , . . . , r̄k} of all the maximal singular cusp rays in V
such that their lifts {r1 , r2 , . . . , rk} in Ps(L) are of type ℘. Let vi be a vector
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on the line ri(∞), i = 1, 2, . . . , k. The choice of vi shall be made more precise
later. We fix a vector v ∈ {v1 , v2 , . . . , vk} and we consider the set of vectors
Csp = v
.

Consider the set 	, the vector v0 ∈ ConL \ {0}, the geodesic G, the ray r0
and all the notation and properties as in Section 4.4. We define the projection
π0 : SOI (L)→ Ps(L), π0(g) = G(0)g and the projection π : SOI (L)/
 → V
induced by π0.

Identified with a subset of U0, 	 can be equipped with the restrictions of a
left-invariant metric dist and of the Haar measure ν. The space (	, dist, ν) satis-
fies the condition (M) with δ = �, provided that 	 is a ball in U0. Without loss
of generality we assume that 	 is indeed a ball.

We consider Csp ∩ R	 as a countable family of indices and we define

 : Csp ∩ R	→ R+ , (w) = odist (Hbv0 , Hbw) .

Notation: We denote the oriented distance odist (Hbv0 , Hbw) by dw.
For each w ∈ Csp let uw be the unipotent in U0 such that r0[uw](∞) = Rv.

We consider the collection of resonant points  = {uw ; w ∈ Csp∩R	}. Finally
we consider the sequence u = (un)n∈N , un = nT , where T > 0 is large enough,

and the ubiquitous function ρ : R+ → R+, ρ(x) = κe
− x

2
√

2 , where κ is a constant
to be chosen later. The function ρ is u-regular.

Proposition 4.5.1. The pair (,) is a local ν-ubiquitous system relative to
(ρ, u).

Proof. We need to prove that for any ball B in 	 of radius at most R1, for some
R1 > 0, we have

ν



B ∩
⋃

w∈Csp∩R	, dw≤nT
B
(

uw , κe
− nT

2
√

2

)


 ≥ κ ν(B) ,

for n ≥ n0(B) and κ an absolute constant. Without loss of generality we may
suppose that B is an open ball in U0 which is entirely contained in 	. We denote
by 2B the ball with same center as B and with double radius.

According to Lemma 3.4.1, (iii), multiplying the vector v with a large positive
constant η means adding to fv a large positive constant 2

√
2 ln η. Thus Hbηv =

Hb−2
√

2 ln η
v . Suppose that v has been re-scaled so that Remark 2.5.1, (1), applies

toHbv. Let f : V → R be aC∞-function taking values in [0, 1], such that f = 1
on proj(Hbλv) for some λ > 1 and close to 1, and f = 0 outside proj(Hbv).
According to Proposition 2.6.5, for any ḡ0 ∈ SOI (L)/
,

∮

B

f ◦ π(atuḡ0) dν(u)→
∮

SOI (L)/


f ◦ π dµ as t → +∞ , (31)
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where µ is the measure on SOI (L)/
 induced by the Haar measure on SOI (L).
We take g0 = id. The convergence in (31) implies that for t ≥ t0(v, λ),

1

ν(B)

∫

B

1proj(Hbv) ◦ π(atuḡ0) dν(u) ≥ (1 − ε)c(L)V olv ,

where c(L) is the total measure of every maximal compact subgroup of SOI (L),
V olv is the volume of proj(Hbv) and ε is a small positive constant such that
limλ→1 ε = 0. We choose and fix λ such that ε = 1

4 . The inequality above is
equivalent to

ν









u ∈ B ; π0(atu) ∈

⋃

w∈Csp
Hbw








 ≥ 3

4
ν(B)c(L)V olv . (32)

In (32) it is enough to take the subset of vectorsw fromCsp∩R	with dw ≤ t .
We note that π0(atu) = r0(t)[u] for t ≥ 0. In accordance with the notation in
(23), let us denote

T rt (w) = {u ∈ U0 ; r0(t)[u] ∈ Hbw} .
We may then write




u ∈ B ; r0(t)[u] ∈

⋃

w∈Csp∩R	, dw≤t
Hbw





= B ∩

⋃

w∈Csp∩R	, dw≤t
T rt (w) .

Consider now the subset corresponding to horoballs at distance less than t− τ
for some τ > 0 to be chosen later, that is

B ∩
⋃

w∈Csp∩R	, dw<t−τ
T rt (w) . (33)

Suppose that t − τ = kT for some k ∈ N. Then we can write

⋃

w∈Csp∩R	, dw<t−τ
T rt (w) =

k⊔

j=−k0

⋃

w∈Csp∩R	, dw∈[(j−1)T ,jT )

T rt (w) .

We have that

ν



B ∩
k⊔

j=−k0

⋃

w∈Csp∩R	, dw∈[(j−1)T ,jT )

T rt (w)





≤
k∑

j=−k0

∑

w∈Csp∩R	, dw∈[(j−1)T ,jT )

ν (B ∩ T rt (w)) .
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According to Lemma 3.5.1, (1),T rt (w) ⊂ B
(

uw, κ0e
− dw

2
√

2

)
, whereκ0 depends

on v0 and on the metric dist. Hence there exists J0 = J0(B, κ0) such that for
j ≥ J0 the intersection B ∩ T rt (w) is non-empty only for w ∈ Csp with
uw ∈ 2B. To designate the property that w ∈ Csp with uw ∈ 2B we use
the notation w ∈ Csp ∩ R(2B). Thus for j ≥ J0 the sum is taken over the
w ∈ Csp ∩ R(2B), dw ∈ [(j − 1)T , jT ). Lemma 3.5.1, (2), implies that

∑

w∈Csp∩R(2B), dw∈[(j−1)T ,jT )

ν (B ∩ T rt (w))

≤ C
∑

w∈Csp∩R(2B), dw∈[(j−1)T ,jT )

e
− (j−1)T �+t−jT

2
√

2 , (34)

where C is a constant depending on v0. Corollary 2.7.2 now gives that for any
T ≥ T0(L, v0, 	), the term in (34) is smaller than

Ke−
(j−1)T �+t−jT

2
√

2 e
jT�

2
√

2 ν(2B) = K′e
T�+jT−t

2
√

2 ν(B) ,

for every j ≥ J1, where J1 = J1(B, v, v0) and K′ = K′(L, 
, v0, 	).
Let J2 = max(J0, J1). The considerations above and Lemma 3.5.1, (2), imply

that the measure of the set in (33) is at most

K′e
T�−t
2
√

2 ν(B)

k∑

j=J2

e
jT

2
√

2 + C
J2∑

j=−k0

∑

w∈Csp∩R	,dw∈[(j−1)T ,jT )

e
− t+(�−1)(j−1)T

2
√

2 . (35)

The set of w ∈ Csp ∩ R	 with dw < J2T is finite, of cardinal N . Hence the
second term in the sum above is less than

CN

J2∑

j=−k0

e
− t+(�−1)(j−1)T

2
√

2 ≤ C ′e−
t

2
√

2 ,

where C ′ = C ′(v0, v, dist, T , B).
On the whole, for T ≥ 2

√
2 ln 2, the sum in (35) is at most

2K′e
T�−t
2
√

2 ν(B)e
kT

2
√

2 + C ′e−
t

2
√

2 ≤ 2K′e
T�−τ

2
√

2 ν(B)+ C ′e−
t

2
√

2 ,

We choose τ such that 2K′e
T�−τ

2
√

2 = 1
4V olvc(L). Note that it depends on

L,
,	, v, v0 and T . Then for t ≥ t1 the measure of the set in (33) is smaller than
1
2V olvc(L)ν(B), where t1 depends on L, v0, v, dist, T , B.

Let t2 = max(t0, t1). It follows that for t ≥ t2 the set

B ∩
⋃

w∈Csp∩R	, t−τ≤dw≤t
T rt (w)
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has measure at least 1
4V olvc(L)ν(B). By Lemma 3.5.1, (1), this set is included in

B ∩
⋃

w∈Csp∩R	, t−τ≤dw≤t
B
(

uw , κ0e
− dw

2
√

2

)

⊂ B ∩
⋃

w∈Csp∩R	, t−τ≤dw≤t
B
(

uw , κ0e
τ

2
√

2 e
− t

2
√

2

)
.

We choose the constant κ = κ0e
τ

2
√

2 and t = nT . We have obtained that

ν



B ∩
⋃

w∈Csp∩R	, dw≤nT
B
(

uw,κe
− nT

2
√

2

)


 ≥ 1

4
V olvc(L)ν(B) ,

for n ≥ n0, with n0 depending on the data of the ubiquitous system and on B.
This finishes the proof. ��

For an approximating function ψ we can define the set

S̃ψ(	) = {u ∈ 	; distU0(u,uw) ≤ ψ(dw) for infinitely many w ∈ Csp} . (36)

When ψ(x) = e−
(1+α)x

2
√

2 , with α > 0, we replace the index ψ by the index α.
Theorem 4.3.2 implies the following.

Theorem 4.5.2. Let ϕ be a dimension function dominating x�. The measure
Hϕ
(
S̃ψ (	)

)
is +∞ if and only if for some/for every T > 0 large enough

∑∞
n=1 ϕ(ψ(nT ))e

nT�

2
√

2 = ∞.

Remark 4.5.3. The significance of the alternative use of the conditions “for some/for
every” is the following: the “if” part holds under the weaker condition that the
sum is +∞ for some T > 0 large enough, while in the “only if” part we obtain
that the sum is +∞ for every T > 0 large enough.

Proof. The “if” part follows from Theorem 4.3.2. We show that if for some T > 0

large enough
∑∞
n=1 ϕ(ψ(nT ))e

nT�

2
√

2 <∞ then Hϕ
(
S̃ψ (	)

)
<∞.

The set S̃ψ(	) is covered by
⋃

w∈Csp∩RNε(	)

B (uw , ψ(dw)) .

We have
∑

w∈Csp∩RNε(	)

ϕ (ψ(dw)) =
∞∑

n=1

∑

w∈Csp∩RNε(	) , dw∈[nT ,(n+1)T )

ϕ (ψ(dw))

�
∞∑

n=1

ϕ (ψ(nT )) e
�nT

2
√

2 .

The last inequality follows from Corollary 2.7.2. ��
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Corollary 4.5.4. (1) Let s ∈ [0,�). We have Hs
(
S̃ψ(	)

) = ∞ if and only if for
some/for every T > 0 large enough

∞∑

n=1

ψ(nT )s e
nT�

2
√

2 = ∞ .

(2) If for some T > 0 large enough limn→∞ ψ(nT )e
nT

2
√

2 = 0 then

dimH S̃ψ(	) = σ� ,
where σ = lim supn→∞

−nT
2
√

2 lnψ(nT )
.

Moreover, if lim supn→∞ e
nT

2
√

2ψ(nT )σ > 0 then Hσ�
(
S̃ψ(	)

) = ∞.

Proof. Statement (1) follows from Theorem 4.5.2 applied to ϕ(x) = xs .
(2) The definition of σ implies that for any ε > 0 the following holds.

(a) For n large enough, ψ(nT ) ≤ e−
nT

2
√

2(σ+ε) ;

(b) For infinitely many n, ψ(nT ) ≥ e−
nT

2
√

2(σ−ε) .

According to (a), for every s > �(σ + ε),
∑∞
n=1 ψ(nT )

se
nT�

2
√

2 �
∑∞
n=1 e

nT

2
√

2 (�− s
σ+ε ) < +∞ . Statement (1) implies that Hs

(
S̃ψ(	)

)
<∞.

Property (b) implies that ψ(nT )e
nT

2
√

2(σ−ε) ≥ 1 for infinitely many n. Statement
(1) implies that H�(σ−ε) (S̃ψ(	)

) = ∞.
We thus obtain that �(σ − ε) ≤ dimH S̃ψ(	) ≤ �(σ + ε), for any ε > 0,

which implies that dimH S̃ψ(	) = �σ .
The last statement in (2) follows from (1) applied to s = σ�. ��

Corollary 4.5.5. (i) The set S̃α(	) has Hausdorff dimension d = dimU0
1+α for every

α > 0, and Hd(S̃α(	)) = ∞.
(ii) Both statements hold also for ES̃α(	) = S̃α(	) \

⋃
β>α S̃β(	).

Proof. (i) is a consequence of Corollary 4.5.4, (2).
(ii) We can write ES̃α(	) = S̃α(	)\

⋃
n∈N

S̃α+ 1
n
(	). According to (i) we

have, for d = dimU0
1+α , that Hd(S̃α(	)) = ∞ and Hd

(
S̃α+ 1

n
(	)
)

= 0. Hence

Hd(ES̃α(	)) = ∞. ��
Remark 4.5.6 (possible generalizations). One might work in the general setting,
that is when instead of Ps(L) and SOI (L) there is a general symmetric space of
non-compact type X and the connected component of the identity of its group
of isometries G, and when 
 is an irreducible lattice in G. One can consider a
maximal singular cusp ray r̄ in X/
, a lift r in X, Csp = r(∞)
 and for every
ξ ∈ Csp the horoball Hbξ of basepoint ξ projecting onto Hb(r̄).
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For an arbitrary ray ρ in the orbit rG and U+ = U+(ρ), the set ρ(∞)U+
is open and Zariski dense in r(∞)G and contains infinitely many ξ ∈ Csp to
which therefore one can associate unipotents uξ ∈ U+. A set S̃ψ can be defined
as before, that is as the set

S̃ψ = {u ∈ U+ ; distU+(u,uξ )

≤ ψ
(
odist (Hb0, Hbξ )

)
for infinitely many ξ ∈ Csp} ,

where Hb0 is the horoball determined by the ray opposite to ρ.
Let (at )t∈R be the maximal singular torus such that ρ(t) = ρ(0)at and suppose

that u �→ atua−t is a homothety of U+ of factor eλt , λ > 0. In order to prove that

d = dimH S̃ψ = dimU+ σ and Hd(S̃ψ) = ∞ , for σ = lim sup
n→∞

−λnT
lnψ(nT )

,

the following conditions are sufficient:

• the equidistribution results given in Propositions 2.6.5 and 2.6.6 and the count-
ing result Corollary 2.7.2; these hold in general;

• for T rD+τ as defined in (23), a formula of the measure of the form

ν(T rD+τ ) = e−Dλ dimU+−f (τ) with lim
τ→∞ f (τ) = ∞ ;

• the inclusion T rD+τ ⊂ B(uξ , Ce−λD), with C an absolute constant.

A consequence of Theorem 4.5.2 is the following.

Theorem 4.5.7. Let q : R
m → R be a non-degenerate quadratic form with

rational coefficients, let Qq be the quadric defined by q = 1 and let ψ be an
approximating function such that limx→∞ xψ(x) = 0. Let ϕ be a dimension
function dominating xm−1. Then Hϕ(Sψ(Qq)) = ∞ if and only if for some/for

every T > 0 large enough
∑∞
n=1 ϕ

(
ψ(enT )

enT

)
enT (m−1) = ∞.

Corollaries 4.5.4 and 4.5.5 applied in this setting yield Theorem 1.1.

Remark 4.5.8. The results in Corollary 4.5.5 and in Theorem 1.1 concerning the
sets ESα of vectors for which the exact order of approximation is known, can
be formulated in the more general context of approximating functions. See for
example [BDV2, §8.8] and [BDV3] for such results. For the sake of simplicity we
have not done it here.

5. Sets of geodesic rays moving away into the cusp

5.1. The case of Ps(L) and of the geodesic rays of type ℘

We consider L, 
, V , proj, r̄i , ri and vi , i ∈ {1, 2, . . . , k}, with the same signifi-
cance as in the beginning of Section 4.5, with the only difference that the condition
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min(a, b) ≥ 2 is replaced by min(a, b) ≥ 1. Without loss of generality we may
suppose that the vector vi is such that fri = fvi . Let � be an arbitrary geodesic
ray of type ℘ in Ps(L) and let U0 = U+(�). We denote dimU0 by �.

Consider a function φ : [a,+∞) → [b,+∞) , a, b ∈ R, and define the set
of unipotents

Ri
φ = {u ∈ U0 ; −fr̄i (proj (�(t)u))

≥ t − φ(t) infinitely many times as t → ∞} . (37)

Remark 5.1.1. The maximal possible depth for proj (�(t)u), measured with respect
to the ray r̄i , is t+c, where c is a constant. Such a depth can occur infinitely many
times if and only if the ray proj (�(t)u) is asymptotic to r̄i (see Corollary 5.1.5,
(c)). Therefore, it makes sense to put t − φ(t) with φ a function bounded below
near +∞, in the definition of Ri

φ .

In the particular case when t − φ(t) = βt , with β ∈ [0, 1], we replace in our
notation in (37) the index φ by the index β.

Theorem 5.1.2. Suppose that φ and id − φ are increasing functions, and that φ
is a bijection.

(1) Let s ∈ [0,�). Hs(Ri
φ) = ∞ if and only if for some/for every T > 0 large

enough,

∞∑

n=1

e
�nT−sφ−1(nT )

2
√

2 = ∞ .

(2) If for some T > 0 large enough, limn→∞[nT − φ−1(nT )] = −∞ then

d = dimH Ri
φ = σ ·�, where σ = lim sup

n→∞
nT

φ−1(nT )
.

If moreover lim supn→∞[nT − σφ−1(nT )] > −∞ then Hd(Ri
φ) = ∞.

Proof. We denote byCsp the set vi
. We may restrict our study to a set Ri
φ(	) =

Ri
φ ∩	, where	 is an open relatively compact subset of U0. Let d0 be the line in

ConL which appears as point at infinity of the geodesic ray �op opposite to �. We
choose the vector v0 on d0 so that f�op = fv0 . For every vector v ∈ ConL such
that bL(v, v0) �= 0, we denote by uv the element in U0 such that the geodesic ray
�uv has as point at infinity the line Rv.
I. We show that Ri

φ(	) ⊂ S̃�1(	), where S̃�1(	) is defined as in (30) for the

approximating function�1(x) = κ0e
− φ−1(x)

2
√

2 . Here κ0 is the constant appearing in
the inclusion (24).

Let u ∈ Ri
φ(	). It follows that the inequality

fw (�(t)u) ≤ −(t − φ(t)) (38)
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has infinitely many solutionsw ∈ Csp and t ∈ (0,+∞). Letw and t be two such
solutions. Then, with the notation dw = odist (Hbv0 , Hbw), we have

dw ≤ t − |fw(�(t)u)| ≤ φ(t) ⇒ φ−1(dw) ≤ t . (39)

The fact that �(t)u ∈ Hb−(t−φ(t))
w implies by Lemma 3.5.1 that

distU0(u , uw) ≤ κ0e
− 1

2
√

2
(dw+t−φ(t))

.

The last term of the inequality is by (39) smaller than κ0e
− φ−1(dw)

2
√

2 . We conclude
that Ri

φ(	) ⊂ S̃�1(	).

II. We show that Ri
φ(	) contains S̃�2(	), where �2(x) = ce

− φ−1(x+1)
2
√

2 for an

appropriate constant c. Let u ∈ S̃�2(	). Letw ∈ Csp be such that distU0(u , uw) ≤
ce

− φ−1(dw+1)
2
√

2 . We consider t = φ−1(dw + 1). We have that

|fw (�(t)u)− fw (�(t)uw)| ≤ dist (�(t)u , �(t)uw)

≤ e t

2
√

2 dist (�(0)u , �(0)uw) ≤ 1 ,

if we choose the constant c properly, depending on �(0) and on the metric chosen
onU0. Since fw (�(t)uw) = dw− t = φ(t)−1− t , this implies that fw (�(t)u) ≤
φ(t)− t . We conclude that

−fr̄i (proj(�(t)u)) ≥ t − φ(t) infinitely many times as t → ∞ .

We have obtained that

S̃�2(	) ⊂ Ri
φ(	) ⊂ S̃�1(	) ,

where �1(x) = κ0e
− φ−1(x)

2
√

2 and �2(x) = ce
− φ−1(x+1)

2
√

2 . We apply Corollary 4.5.4
and we obtain the desired conclusion. ��
Remark 5.1.3. When defining the set Ri

φ , one can replace φ by φc = φ−c, where
c is a constant, and Theorem 5.1.2 still holds. In order to see this it suffices to
show, using the monotonicity of φ, that all the conditions in Theorem 5.1.2 are
satisfied by φ if and only if they are satisfied by φc. We leave this as an exercise
to the reader. See also Remark 5.2.2 where a similar statement is proved in full
detail.

Remark 5.1.4. The set P(�)U0 is open Zariski dense in G, hence the projection
of U0 is open Zariski dense in P(�)\G. We note that P(�)\G is the stratum ℘,
in the terminology of the Introduction. We also note that if a geodesic ray has
a projection on V moving away into the cusp infinitely many times with depth
measured by the function id − φ with respect to the ray r̄i , then any geodesic ray
asymptotic to it has the same property, up to a bounded perturbation of the depth.
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The previous Theorem therefore gives the formula of the Hausdorff dimension
of the set of points of type ℘ in the boundary at infinity corresponding to rays
moving away into the cusp at depth at least id − φ with respect to r̄i , infinitely
many times.

Corollary 5.1.5. Consider the set

Ri
β = {u ∈ U0 ; −fr̄i (proj (�(t)u)) ≥ βt infinitely many times as t → ∞} .

(40)

(a) For any β ∈ (0, 1) the set Ri
β has Hausdorff dimension d = �(1 − β) and

Hd
(
Ri
β

)
= ∞.

(b) Both statements in (a) also hold for the set

ERi
β = Ri

β \
⋃

β ′>β

Ri
β ′ =

{
u ∈ Ri

β ; lim sup
t→+∞

−fr̄i (proj (�(t)u))
t

= β
}
.

(c) The set Ri
0 coincides with U0 and the set Ri

1 is contained in {uw ; w ∈ Csp}.

Proof. (a) follows from Theorem 5.1.2, (2), and (b) immediately follows from
(a).

(c) For β = 0 it is a consequence of the logarithm law [KM1]. Suppose that
β = 1. Let u ∈ Ri

1. Then for infinitely many w ∈ Csp and t ∈ (0,+∞) the
following inequality holds:

fw (�(t)u) ≤ −t .

As in (39) we obtain that for every such w we have dw ≤ 0. The inclusion
�(t)u ∈ Hb−t

w implies by Lemma 3.5.1 that

distU0(u , uw) ≤ κ0e
− 1

2
√

2
(dw+t)

. (41)

Thus for t large enough we may suppose that the correspondingw ∈ Csp satisfies
uw ∈ B(u, 1). On the other hand, the number of w ∈ Csp with uw ∈ B(u, 1)
and dw ≤ 0 is finite. Hence, by eventually taking a subsequence we may sup-
pose that w is fixed. By letting t → ∞ in (41) we obtain that u = uw. Thus
Ri

1 ⊂ {uw ; w ∈ Csp}. ��

Remark 5.1.6. Both Theorem 5.1.2 and Corollary 5.1.5 follow from Corollary
4.5.4 and inclusion (24). Consequently the conditions in Remark 4.5.6 are suffi-
cient also for the generalization of these two results.
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5.2. The symmetric space Pn+1 and the rays of slope ri(∞), i = 1, n

Consider the symmetric space Pn+1 , with group of isometries SL(n+ 1,R), and
the lattice SL(n + 1,Z). Let Tn+1 = Pn+1/SL(n + 1,Z) and let proj be the
projection of Pn+1 onto Tn+1 .

Let r1 and rn be the geodesic rays in Pn+1 defined as in (19). The ray ri, i =
1, n, projects onto a maximal singular cusp ray in Tn+1, which we denote by r̄i .
The point at infinity r1(∞) is the projective point 〈en+1〉. The point at infinity
rn(∞) is the hyperplane in P

n
R defined by x1 = 0. We denote it by e∗1.

The set Sψ(Rn) can be related to sets of geodesic rays similar to Ri
φ from (37).

The formula (1) will then imply a result similar to Theorem 5.1.2. More precisely,
define

R1
φ = {u ∈ U+(r1) ; −fr̄1 (proj (r1(t)u))

≥ t − φ(t) infinitely many times as t → ∞} . (42)

One can define a similar set for the ray rn, that is

Rn
φ = {u ∈ U+(rn) ; −fr̄n (proj (rn(t)u))

≥ t − φ(t) infinitely many times as t → ∞} . (43)

A remark similar to Remark 5.1.1 justifies the way Ri
φ, i = 1, n, are defined.

In the case when t − φ(t) = βt we replace in (42) and in (43) the index φ by β.

To simplify the formulas, we use the notation ηn for the constant
√
n+1
n

.

Theorem 5.2.1. Let φ : [a,+∞)→ [b,+∞) be a bijective function such that φ
and η2

n id − φ are increasing functions. Then for i = 1, n,

Hs
(
Ri
φ

) =
{

0 , if
∑∞
k=1 k

ne−
sηn

2 φ
−1(2ηn ln k) <∞ ,

∞ , if
∑∞
k=1 k

ne−
sηn

2 φ
−1(2ηn ln k) = ∞ .

(44)

Proof. Consider Seψ(Rn) the set defined as Sψ(Rn), but with the max-norm
replaced by the Euclidean norm. We have that S 1√

n
ψ(R

n) ⊂ Seψ(Rn) ⊂ Sψ(Rn).
This easily implies that (1) holds with Sψ(Rn) replaced by Seψ(Rn).

Step 1. We first consider the set R1
φ . We recall that according to (20),

U+(r1) =
{

ux̄ =
(
Idn x̄

0 1

)
; x̄ ∈ R

n

}
.

We may therefore identify R
n withU+(r1) and thus identify Seψ(Rn) to a subset

of U+(r1), which we denote by S̃ψ .
I. We prove that

R1
φ ⊂ S̃ψ1, where ψ1(x) = xe− ηn

2 φ
−1(2ηn ln x) . (45)
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Let ux̄ ∈ R1
φ . Infinitely many times as t → ∞ we have that

−fr̄1 (proj (r1(t)ux̄ )) ≥ t − φ(t) . (46)

By the discussion in the beginning of Section 3.6, this is equivalent to the state-
ment that for infinitely many t as t → ∞ and infinitely many (p̄, q) ∈ PZ

n+1,

f(p̄,q)(r1(t)ux̄ ) ≤ φ(t)− t .
The last inequality is equivalent to r1(t) ◦ ux̄ (p̄, q) ≤ e φ(t)−tηn , which in its turn

writes as

e
t√

n(n+1) ‖p̄ + qx̄‖2
e + e− nt√

n(n+1) q2 ≤ e φ(t)−tηn .

The inequality e
− nt√

n(n+1) q2 ≤ e φ(t)−tηn is equivalent by monotonicity of φ with

t ≥ φ−1(2ηn ln q) . (47)

The inequality e
t√

n(n+1) ‖p̄ + qx̄‖2
e ≤ e

φ(t)−t
ηn then implies that ‖p̄ + qx̄‖2

e ≤
e
φ(t)
ηn

−ηnt . This, inequality (47) and the fact that the function η2
nid−φ is increasing,

imply that

‖p̄ + qx̄‖e ≤ ψ1(q) .

II. We prove that

S̃ψ2 ⊂ R1
φ, where ψ2(x) = xe− ηn

2 φ
−1(2ηn ln(

√
2x)) . (48)

Let ux̄ ∈ S̃ψ2 . Then for infinitely many (p̄, q) ∈ PZ
n+1,

‖p̄ + qx̄‖e ≤ ψ2(q) .

We take t = φ−1(2ηn ln(
√

2q)) and consider

e
t√

n(n+1) ‖p̄ + qx̄‖2
e + e− nt√

n(n+1) q2 .

By the choice of t , the second term of the sum is equal to 1
2e

φ(t)−t
ηn . The first

term is at most

e
t√

n(n+1) ψ2(q)
2 = e t√

n(n+1) q2e−ηnt = 1

2
e
φ(t)−t
ηn .

We conclude that

e
t√

n(n+1) ‖p̄ + qx̄‖2
e + e− nt√

n(n+1) q2 ≤ e φ(t)−tηn

This implies inequality (46) for the chosen t = t (q). Hence inequality (46) is
satisfied infinitely many times as t → ∞, consequently ux̄ ∈ Rφ .

The double inclusion S̃ψ2 ⊂ R1
φ ⊂ S̃ψ1 and (1) with Sψ(Rn) replaced by

Seψ(Rn) imply the conclusion. Note that in the divergence part, what appears is

the sum in (1) for the functionψ2. The functionψ2 differs fromψ1 by a factor
√

2
in front of the variable, in the argument of ln. Nevertheless, it is easy to eliminate
this factor from the sum with an argument as in the proof of Remark 5.2.2.
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Step 2. We now consider the set Rn
φ . By (20),

U+(rn) =
{

ux̄ =
(

1 x̄T

0 Idn

)
; x̄ ∈ R

n

}
.

We identify R
n withU+(rn) and thereby Seψ(Rn) to a subset ofU+(rn), denoted

by Sψ .
The pre-image of Hba(r̄n) is

⋃
v∈PZn+1 Hb

a
v∗ . Also, for every v = (q, p̄) ∈

PZ
n+1,

f ∗
v (rn(t)ux̄ ) = ηn ln

[
(rn(t)ux̄ )∗ (q, p̄)

]

= ηn ln
(
e
− nt√

n(n+1) q2 + e t√
n(n+1) ‖p̄ − qx̄‖2

e

)
.

An argument almost identical to the one of Step 1 gives that

Sψ2 ⊂ Rn
φ ⊂ Sψ1 .

This together with (1) implies the conclusion. ��
Remark 5.2.2. In the definition of the set Ri

φ , one can replace φ by φc = φ − c,
where c is a constant, and the conclusion of Theorem 5.2.1 still holds.

Proof. Without loss of generality we may assume that c > 0 (the case c <
0 is obtained by intertwining φ with φc). Theorem 5.2.1 applied to the func-
tion φc gives (44) with φc instead of φ. The sum appearing in (44) is %c =
∑∞
k=1 k

ne−
sηnφ

−1(2ηn ln k+c)
2 ≤%0 =∑∞

k=1 k
ne−

sηnφ
−1(2ηn ln k)

2 . If %0<∞ then %c<∞.

Suppose that %0 = ∞. Let p > 0 such that e
c

2ηn ≤ 2p. There exists r ∈
{0, 1, . . . , 2p − 1} such that %0(r) = ∑k∈2pZ+r k

ne−
sηnφ

−1(2ηn ln k)
2 = ∞. On the

other hand

%c ≥
∞∑

k=1

kne−
sηnφ

−1(2ηn ln(2pk+r))
2 ,

and the latter sum is +∞ because %0(r) = +∞. ��
Corollary 5.2.3. (i) For any β ∈ (0, 1), the set Ri

β , i = 1, n, has Hausdorff
dimension d = n(1 − β) and Hd(Ri

β) = ∞.
(ii) Both statements remain true for the set

ERi
β = Ri

β \
⋃

β ′>β

Ri
β ′ =

{
u ∈ Ri

β ; lim sup
t→∞

−fr̄i (proj (ri(t)u))
t

= β
}
.

(iii) The set Ri
0 coincides with U+(ri). The set R1

1 is contained in {u ∈ U+(r1);
r1u(∞) ∈ PZ

n+1} and the set Rn
1 is contained in {u ∈ U+(rn) ; rnu(∞) ∈

(PZ
n+1)∗}.

Proof. (i) follows from Theorem 5.2.1, (ii) follows from (i), (iii) is obtained as
Corollary 5.1.5, (c). ��
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5.3. Case when the ray measuring the depth has a different slope

We now try to relate the setLψ(Rn) to sets of geodesic rays similar toRi
φ, i = 1, n,

from (42) and (43), and to reformulate (4) in terms of their Hausdorff measure. It
turns out that the sets Rφ to be considered in this case are a bit different from all
the sets considered before. More precisely, what has to be considered is either the
set of rays of slope r1(∞) and their divergence measured with respect to r̄n or the
set of rays of slope rn(∞) and their divergence measured with respect to r̄1. Before
defining them, we remark that the maximal possible depth of proj (ri(t)u) mea-
sured with respect to r̄j , when {i, j} = {1, n}, is 1

n
t+c, where c is a constant. Such

a depth occurs infinitely many times if and only if the ray proj (riu) is contained
in the projection of a Weyl chamber with a 1-dimensional face asymptotic to r̄j
(see Corollary 5.3.4, (iii)). Hence in this case in the definitions of the sets of rays
moving away in the cusp one must put 1

n
t − φ(t) with φ : [a,+∞)→ [b,+∞).

Thus we define

R1n
φ =

{
u ∈ U+(r1) ; −fr̄n (proj (r1(t)u))

≥ 1

n
t − φ(t) infinitely many times as t → ∞

}
.

Similarly we define

Rn1
φ =

{
u ∈ U+(rn) ; −fr̄1 (proj (rn(t)u))

≥ 1

n
t − φ(t) infinitely many times as t → ∞

}
.

Let Leψ(Rn) be the set defined as Lψ(Rn) but with the max-norm replaced by
the Euclidean norm. We need to replace in (4) Lψ(Rn) by Leψ(Rn).

Lemma 5.3.1. Let ψ be an approximating function such that ψ1(x) = ψ(x)

x
is a

decreasing function. Then (4) holds with Lψ(Rn) replaced by Leψ(Rn).

Proof. The hypothesis on ψ implies that

L 1√
n
ψ(

√
n · )(R

n) ⊂ Leψ(Rn) ⊂ L√
nψ(R

n) .

This and (4) yield

Hs(Leψ(Rn)) =
{

0 , if
∑∞
k=1 k

nψ1(k)
s−(n−1) <∞ ,

∞ , if
∑∞
k=1 k

nψ1(
√
nk)s−(n−1) = ∞ .

(49)

Let p ∈ N be such that 2p ≥ √
n. The hypothesis

∑∞
k=1 k

nψ1(k)
s−(n−1) = ∞

implies that there exists r ∈ {0, 1, . . . , 2p−1} such that
∑
k∈2pZ+r k

nψ1(k)
s−(n−1)
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= ∞. We have that
∑∞
k=1 k

nψ1(
√
nk)s−(n−1) ≥ ∑∞

k=1 k
nψ1(2pk + r)s−(n−1),

which implies that

∞∑

k=1

knψ1(
√
nk)s−(n−1) = ∞ .

Hence (49) can be re-written such that the sum
∑∞
k=1 k

nψ1(k)
s−(n−1) also

appears on the second line. ��
Theorem 5.3.2. Let φ : [a,+∞)→ [b,+∞) be a bijective function such that φ
and η2

n id − φ are increasing functions. Then for {i, j} = {1, n},

Hs
(
Rij

φ

)
=
{

0 , if
∑∞
k=1 k

ne−(s−n+1) ηn2 φ
−1(2ηn ln k) <∞ ,

∞ , if
∑∞
k=1 k

ne−(s−n+1) ηn2 φ
−1(2ηn ln k) = ∞ .

Proof. We give a proof only for i = 1, j = n, the argument in the other case is
similar. As in Step 1 of the proof of Theorem 5.2.1, we can identify R

n to U+(r1)
and thus identify Leψ(Rn) to a subset ofU+(r1), which we denote by L̃ψ . We prove
that

L̃ψ2 ⊂ R1n
φ ⊂ L̃ψ1 , (50)

where ψ1 and ψ2 are the functions defined in (45) and (48), respectively.
I. We prove the second inclusion in (50). Let ux̄ ∈ R1n

φ . Then for infinitely many
t > 0 and v = (p̄, q) ∈ PZ

n+1 we have that

f ∗
v (r1(t)ux̄ ) ≤ φ(t)− 1

n
t ⇔ ηn ln

[
(r1(t)ux̄ )∗ (p̄, q)

] ≤ φ(t)− 1

n
t .

The inequality above is equivalent to

e
− t√

n(n+1) ‖p̄‖2
e + e nt√

n(n+1) (p̄ · x̄ − q)2 ≤ e
φ(t)
ηn

− t√
n(n+1) .

The inequality e
− t√

n(n+1) ‖p̄‖2
e ≤ e

φ(t)
ηn

− t√
n(n+1) is equivalent to

t ≥ φ−1 (2ηn ln ‖p̄‖e) . (51)

The inequality e
nt√
n(n+1) (p̄ · x̄ − q)2 ≤ e

φ(t)
ηn

− t√
n(n+1) implies that

(p̄ · x̄ − q)2 ≤ e φ(t)ηn −ηnt . (52)

The hypothesis that η2
n id−φ is an increasing function, together with (51) and

(52) imply that |p̄ · x̄ − q| ≤ ψ1(‖p̄‖e).
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II. We prove the first inclusion in (50). Let ux̄ ∈ L̃ψ2 . It follows that for infi-
nitely many (p̄, q) ∈ PZ

n+1, we have |p̄ · x̄ − q| ≤ ψ2(‖p̄‖e). Consider t =
φ−1
(

2ηn ln(
√

2‖p̄‖e)
)

and the expression

e
− t√

n(n+1) ‖p̄‖2
e + e nt√

n(n+1) (p̄ · x̄ − q)2 . (53)

The choice of t implies that e
− t√

n(n+1) ‖p̄‖2
e = 1

2e
φ(t)
ηn

− t√
n(n+1) . We also have

e
nt√
n(n+1) (p̄ · x̄ − q)2 ≤ e nt√

n(n+1) ψ2(‖p̄‖e)2 = 1

2
e
φ(t)
ηn

− t√
n(n+1) .

Thus the expression in (53) is at most e
φ(t)
ηn

− t√
n(n+1) , which implies that

f ∗
(p̄,q) (r1(t)ux̄ ) ≤ φ(t)− 1

n
t .

Since this holds for infinitely many (p̄, q) ∈ PZ
n+1, we obtain that ux̄ ∈ R1n

φ .
The double inclusion (50) and Lemma 5.3.1 yield the conclusion. ��

Remark 5.3.3. In the definition of the sets Rij

φ , the function φ can be replaced by
φc = φ − c, where c is a constant, and Theorem 5.3.2 still holds.

Proof. Similar to the one of Remark 5.2.2. ��
Corollary 5.3.4. (i) For any β ∈ (0, 1

n

)
, the set Rij

β , {i, j} = {1, n}, has Haus-

dorff dimension d = n(1 − β) and Hd(Rij

β ) = ∞.
(ii) Both statements remain true for the set

ERij

β = Rij

β \
⋃

β ′>β

Rij

β ′ =
{

u ∈ Rij

β ; lim sup
t→∞

−fr̄j (proj (ri(t)u))

t
= β
}
.

(iii) The set Rij

0 coincides with U+(ri).
The set R1n

1
n

is a subset of the set of u ∈ U+(r1) such that the projective point

r1u(∞) is contained in one of the hyperplanes of equation xi = q, where
q ∈ Z and i ∈ {1, 2, . . . , n}.
The set Rn1

1
n

is a subset of the set of u ∈ U+(rn) such that the hyperplane

rnu(∞) contains one of the vectors ei + qen+1, where q ∈ Z and i ∈
{1, 2, . . . , n}.

Proof. (i) follows from Theorem 5.3.2 and (ii) follows from (i).
The first statement in (iii) is again a consequence of the logarithm law [KM1].
We prove the second statement. The proof of the third is similar.
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Let ux̄ ∈ R1n
1
n

. As in the proof of Theorem 5.3.2, I, we deduce that there exist

infinitely many (p̄, q) ∈ PZ
n+1 and t > 0 such that

e
− t√

n(n+1) ‖p̄‖2
e + e nt√

n(n+1) (p̄ · x̄ − q)2 ≤ e− t√
n(n+1) .

It follows that ‖p̄‖2
e ≤ 1 and that (p̄ · x̄ − q)2 ≤ e−ηnt . The first inequality

implies that p̄ = ei ∈ R
n for some i ∈ {1, 2, . . . , n}. We may suppose that for infi-

nitely many t > 0 it is the same i. The second inequality gives (xi − q)2 ≤ e−ηnt ,
for infinitely many t , as t → ∞. There are finitely many possibilities for q, so
again we may suppose that in the previous sequence of inequalities q is fixed.
Then as t → ∞, this gives xi = q. ��
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