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The aim of this talk is to give an idea of the proof of the following theorem,
which is the main result of [2].

Theorem 1 (Collinet-Djament-Griffin). For any group G which is indecompos-
able for the free product ∗ and not isomorphic to Z (for example, a finite group)
and any non-negative integers n, i such that n ≥ 2i+ 2, the canonical map

Hi

(
Aut(G∗n);Z

)
→ Hi(Aut

(
G∗n+1);Z

)
is an isomorphism.

It answers positively, in many cases, a conjecture of A. Hatcher and N.
Wahl (they conjectured that the result holds for all groups G). They proved
this for G = Z/n, n ∈ {2, 3, 4, 6} in [4] by using geometric and topological
methods. Even if Theorem 1 deals with untwisted coefficients, our main tool to
prove this is the notion of polynomial functor. This result is a special case of a
more general theorem dealing with some subgroups of automorphism groups of
arbitrary finite free products.
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1 Recollections on homological stability and func-
tor homology

Let (C, ∗, 0) be a small symmetric monoidal category whose unit 0 is an initial
object and A an object of C. So we have, for any n ∈ N and any functor
F : C → Ab, a group morphism AutC(A

∗n)→ AutC(A
∗n+1) and an equivariant

map F (A∗n) → F (A∗n+1) (both induced by the inclusion of the n first factors
of A∗n in A∗n+1) and, for any i ∈ N, an induced sequence of homology groups

· · · → Hi

(
AutC(A

∗n);F (A∗n)
)
→ Hi

(
AutC(A

∗n+1);F (A∗n+1)
)
→ . . .

(see Christine Vespa’s lectures); we can wonder whether these maps are isomor-
phism for n big enough (depending on i). Here we have no more functoriality
in n, because the inner automorphisms of a group act trivially in homology. To
use methods of polynomial functors and functor homology to study this kind
of problem could help a little, at least to make clear why it is often almost free
to get homological stability for a polynomial functor F when we can prove it
for the constant functor F = Z (the first approach of homological stability with
twisted polynomial coefficients goes back to Dwyer [3]). But the key ingredient
for homological stability proofs is the high acyclicity of appropriate complexes
with action of our groups, with stabilizers given by smaller groups (or related
groups) of the family whose homological stability we want to prove.

Nevertheless, the use of functor categories can help in a stronger way for
homological stability questions (see Tom Church’s lectures) when dealing with
congruence groups. Suppose that (D,+, 0) is another small symmetric monoidal
category and that Φ : C → D is a strict monoidal functor. For any object X of
C, we can define the congruence group

ΓΦ(X) := Ker
(
AutC(X)

Φ∗−−→ AutD(Φ(X))
)
.

If we look at the homology groups H∗(ΓΦ(X)) (we do not indicate always the
coefficients when they are equal to Z), they inherit an action of the image of
Φ∗; so X 7→ H∗(ΓΦ(X)) gives a generally highly non trivial functor from some
category (that we do not precise 1; the only important feature is that it can not
be reduced to a sequence of abelian groups as before: we have a richer structure)
obtained from C and Φ.

Usually (for example, for congruence groups in the usual sense), the con-
gruence groups defined above are much harder to study (for homology and
other questions) that the automorphism groups in which they live. But for
the situation of automorphism groups of free products as in the statement of
Theorem 1 (we will make precise further the good functoriality setting), we
get groups which are easier, so that a natural approach to study homological
stability for automorphism groups of free products is to study first the func-
torial properties of the homology of these “congruence groups” — which are
known as Fouxe-Rabinovitch groups — and going back to our groups through
the Hochschild-Serre spectral sequence giving their homology from the homology
of these groups (the quotient being easily understood from symmetric groups,
whose homology — including stability — has been studied for a long time). It
is the very general idea of the proof of Theorem 1.

1Under standard assumptions, this category is D.
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2 Recollections on automorphism groups of free
products

As we can define elementary matrices in general linear groups (or more generally,
elementary automorphisms for direct sums of objects in an additive category),
we have some “obvious” group automorphisms for any free product G = ?

i∈I
Gi

of groups:

1. permutation of isomorphic factors: for simplicity, suppose that we have
choosen an isomorphism between Gi and Gj when these groups are isomor-
phic (so that we can identify them); let us note by S the set of equivalence
classes of I for the relation i ∼ j when Gi ' Gj . Then we have a group
morphism

Σ :=
∏
A∈S

S(A)→ Aut(G)

(which is a monomorphism if the Gi are non-trivial);

2. automorphisms of individual factors: we have an obvious group monomor-
phism

aut(G) :=
∏
i∈I

Aut(Gi)→ Aut(G);

3. partial conjugations: let i 6= j be two elements of I and x an element of
Gi. The group morphism

αi,j(x) : G→ G g ∈ Gt 7→
{

g if t 6= j
xgx−1 if t = j

is an automorphism; moreover we get in this way a group morphism

αi,j : Gi → Aut(G)

(which is a monomorphism if Gj is non-trivial).

From now, we suppose that all groups Gi are non-trivial.
The way in which the automorphisms of the two first kinds interact is clear:

we get a group monomorphism

Σ n aut(G) ↪→ Aut(G)

where Σ acts on the other group by permutation of factors corresponding to
isomorphic groups. It is completely similar to the matrix situation, in which we
get a group monomorphism from the semi-direct product of diagonal matrices
by permutation matrices into the general linear group.

The subgroup of Aut(G) generated by the image of all group monomorphisms
αi,j is called Fouxe-Rabinovitch subgroup of Aut(G) and denoted by FR(G)
(where G = (Gi)i∈I), it is much harder to understand. There are nevertheless
some classical “obvious“ relations between these morphisms αi,j (analogous to
the Steinberg relations for elementary matrices), and in fact we get a presen-
tation of FR(G) with these only relations. So, the situation is easier than in
the linear one, where the Steinberg group differs from the group generated by
elementary matrices by the abelian group K2.
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Let us call symmetric automorphism of G (relative to the decomposition
G = ?

i∈I
Gi) an automorphism ϕ such that for any i ∈ I there exists j ∈ I such

that ϕ(Gi) is conjugated to Gj ; j is then unique and i 7→ j is a permutation in
Σ. The symmetric automorphisms form a subgroup ΣAut(G) of Aut(G) which
is easily seen to be isomorphic to

ΣAut(G) ' Σ n aut(G) n FR(G) (1)

(the map assigning i 7→ j to ϕ as above is a section of the inclusion Σ ↪→
ΣAut(G)).

An easy and classical consequence of Kurosh theorem is the following:

Theorem 2. Suppose that the groups Gi are indecomposable for the free product
and not isomorphic to Z. Then the inclusion

ΣAut(G) ⊂ Aut(G)

is an equality.

(When there are factors isomorphic to Z, the situation is more flexible:
beside the partial conjugations, we have left and right multiplication on a fixed
factor by a generator of another factor. Homological stability for automorphism
groups of free groups is a deep result — quite harder than the result about that I
am talking — which was established during the nineties by Hatcher, Vogtmann
and Wahl.)

Theorem 1 is a consequence of Theorem 2 and an homological stability the-
orem for symmetric automorphisms of arbitrary finite free products.

3 Functoriality of Fouxe-Rabinovitch groups and
reduction to a polynomial property

Let Γ be the category whose objects are finite sets and morphism partial func-
tions, that is: a morphism A → B in Γ is a pair (E, f) where E is a subset of
A and f : E → B a function. (This category is equivalent to the category of
finite pointed sets, the morphism being as usual the functions which send the
base-point of the source on the base-point of the target; an equivalence from this
category of pointed sets to Γ is obtained on objects by removing the base-point
and on morphisms by assigning to a pointed function f : X → Y the partial
function defined on the complement of the preimage of the base-point of Y that
it induces.) If C is any category, we define a new category Γ

∫
C as follows:

1. the objects of Γ
∫
C are pairs (A, (Ca)a∈A) where A is an object of Γ and

(Ca) a family of objects of C labelled by A;

2. the morphisms (A, (Ca)a∈A)→ (B, (Db)b∈B) in Γ
∫
C are pairs(

u = (E, f : E → B), (γa : Ca → Df(a))a∈E
)

where u is a morphism of Γ and the γa are morphisms of C;

3. the composition is obtained from the compositions of Γ and C in an obvious
way.
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If Γ′ is a subcategory of Γ, we denote by Γ′
∫
C the subcategory of Γ

∫
C

whose objects and morphisms are those whose image by the obvious projection
functor Γ

∫
C → Γ lies in Γ′.

We are particularly interested by the following subcategories 2 of Γ, having
the same objects as Γ: the subcategory Θ̃ of partial injections, the subcategory Θ
of injections (everywhere defined) and the category Σ of bijections (everywhere
defined).
Observation: if (C, ∗, 0) is a symmetric monoidal category whose unit 0 is a zero
object 3 (example: groups with the free product), we have a canonical functor

Θ̃

∫
C → C (A, (Ca)a∈A) 7→ ?

a∈A
Ca

which is defined on morphisms by inclusions of ”factors“ (for ∗) and deleting

factors which do not lie in the defining set of the underlying morphism of Θ̃
(to include factors, we need 0 to be an initial object — the prototype of these
morphisms is C ' C ∗ 0 → C ∗ D — and to delete factors we need 0 to be a
terminal object — the prototype of these morphisms is C ∗D → C ∗ 0 ' C).

To assign to a group G its automorphism group does not define a functor on
the category Gr of groups (the only clear functoriality is on the subcategory of
groups with group isomorphisms). But for any n ∈ N, we get a functor

FRn : Grn → Gr (G1, . . . , Gn) 7→ FR(G1, . . . , Gn).

Moreover, these functors assemble when n changes to give a functor

FR : Θ̃

∫
Gr→ Gr.

The effect of this functor on a generating element αi,j(x) of FR(G) is given
as follows: if

(
u = (E, f : E → B), (γa : Ca → Df(a))a∈E

)
is a morphism

of Θ̃
∫

Gr, this element is killed if i or j does not lie in E, and is sent on
αf(i),f(j)(γi(x)) else. To prove that this construction is well-defined is easy with
the standard presentation of FR(G).

Let us look back to the isomorphism (1): Σ n aut(G) is exactly the auto-

morphism group of G in the category Θ̃
∫

Gr, and its action on FR(G) that is
used to build the semi-direct product is just the action by functoriality.

Cross effect and polynomial functors

Let Σ be the subcategory of isomorphisms in Γ. For any category C, there is an
exact functor

cr : Fct(Θ̃

∫
C,Ab)→ Fct(Σ

∫
C,Ab)

called cross effect (this notion goes back to Eilenberg and Mac Lane in the
fifties) such that there exists a functorial isomorphism

F (C) '
⊕
A⊂E

cr(F )(C|A)

2Warning: these notations are not exactly the same as in the article [2].
3If 0 is only an initial object, we get similarly a functor Θ

∫
C → C.
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where F : Θ̃
∫
C → Ab is a functor and C = (Ce)e∈E an object of Θ̃

∫
C; we

have denoted by C|A the object (Ce)e∈A of Σ
∫
C. (There are several ways to

define the functor cr, for example by using nice commuting idempotents coming
from the elementary combinatorics of subsets of a given finite set, but it is not
very important here.)

For any integer d, we say that the functor F : Θ̃
∫
C → Ab is polynomial

with degree at most d if cr(F )(C) = 0 when C = (Ce)e∈E with Card(E) > d.
In the last part of this talk, we will give a few words about the proof of the

following theorem:

Theorem 3. For any i ∈ N, the functor

Θ̃

∫
Gr

FR−−→ Gr
Hi−−→ Ab

is polynomial with degree at most 2i.

Now let us explain how to deduce Theorem 1 from this result.

Homological stability for symmetric groups with twisted coefficients

The homology of symmetric groups was computed by Nakaoka in the early
sixties; in particular we have the following stability result (that one can get also
without computing this homology):

Theorem 4. For any abelian group M and any integers i and n, the canonical
map

Hi(Sn;M)→ Hi(Sn+1;M)

(where the symmetric groups act trivially on M) is an isomorphism if n ≥ 2i+1.

As observed by Betley (see [1], section 4), it implies easily a twisted homology
stability result:

Corollary 1. If F : Θ̃→ Ab is a polynomial functor of degree d, the canonical
map

Hi(Sn;F (n))→ Hi(Sn+1;F (n + 1))

is an isomorphism for n > 2i+ d.

(Here n := {1, . . . , n}.)

Proof. The natural decomposition

F (E) '
⊕
A⊂E

cr(F )(A)

and the fact that cr(F )(A) = 0 for Card(A) > d give an isomorphism

F (n) '
⊕
l≤d

IndSn

Sl×Sn−l

(
cr(F )(l)

)
of representations of Sn, where Sl acts by functoriality on cr(F )(l) and Sn−l
trivially. So, using Shapiro lemma and Künneth formula, we get an isomorphism

Hi(Sn;F (n)) '
⊕
l≤d

Hi

(
Sl×Sn−l; cr(F )(l)

)
'
⊕
l≤d

r+s=i

Hr

(
Sn−l;Hs(Sl; cr(F )(l))

)
so that Theorem 4 implies the result.
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As a consequence, admitting Theorem 3, we get:

Theorem 5. For any group G, the canonical map

Hi(ΣAutn(G))→ Hi(ΣAutn+1(G))

is an isomorphism for n ≥ 2i+ 2.

(We have noted here ΣAutn(G) for ΣAut(G, . . . , G) withG repeated n times.
In fact, we get in [2] a more general statement, with different groups allowed in
ΣAut(G1, . . . , Gn), following exactly the same principle, but we restrict for this
talk to a single group to avoid technicalities.)

Proof. It is divided into two steps.

1. We prove that for q ∈ N the functor

Θ̃→ Ab E 7→ Hq

(
(Aut(G))E n FRE(G)

)
is polynomial with degree ≤ 2q.

By using the Hochschild-Serre spectral sequence and the fact that poly-
nomial functors of degree ≤ d form, for each d, a thick subcategory, we
see that it is enough to prove that

E 7→ Hi

(
(Aut(G))E ;Hj(FRE(G))

)
is polynomial with degree ≤ 2q when i+ j = q. But this property follows
from Theorem 3, the decomposition

Hj(FRE(G)) '
⊕
A⊂E

cr(Hj(FR))A(G)

being equivariant with respect to the natural action of Aut(G)E (the ac-
tion on the factor corresponding to A being given through the projection
Aut(G)E � Aut(G)A which kills the factors out of A).

2. Now, apply Corollary 1 to get that the stabilization map

E2
p,q(n)→ E2

p,q(n+ 1),

where
E2

p,q(n) := Hp

(
Sn;Hq

(
(Aut(G))n n FRn(G)

))
,

is an isomorphism for n > 2(p + q). As this map is the restriction to
second pages of the map of Hochschild-Serre spectral sequences induced
by the stabilization group morphism, we can finish the proof by formal
arguments about spectral sequences (see [2] for the details).
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4 Overview of the proof of the required polyno-
mial property of H∗(FR)

Let G = (Gi)i∈E , where E is a finite set, be a family of groups. We have a
generalized diagonal functor

DG : (ΓE)op → Gr (Ai)i∈E 7→
∏
i∈E

GAi
i .

There exist a poset JE of trees labelled by E and a functor FE : JE → (ΓE)op

such that the group FR(G) is isomorphic to colim
JE

DG ◦ FE and there exist a

spectral sequence

E2
p,q = Hp(JE ,Hq(DG ◦ FE ;Z))⇒ Hp+q(FR(G);Z); (2)

moreover all these data are functorial in the object G of Θ̃
∫

Gr. Here Hq(T ;Z),
for any functor T from a category C to Gr, means the composition of T with
the functor Hq(−;Z) : Gr→ Ab.

We will give no details on the precise signification of JE , FE and the proof of
this result. It comes from a (variation around a) theorem due to Chen-Glover-
Jensen about the contractibility of some complex with a nice action of FR(G),
the diagonal subgroups DG(FE(A)) appearing as vertex stabilizers.

To deduce Theorem 3 from the spectral sequence (2), we use still the notion
of cross effect, rephrasing in a functorial way some constructions of J. Griffin’s
Ph.D.: we prove (by using some basic tools of functor homology) that for any
functor T : (ΓE)op → Ab, there is a natural decomposition

H0(JE ;T ◦ FE) '
⊕

A∈FE

cr(T )(FE(A))

where FE is some explicit subset of JE , whereas

Hn(JE ;T ◦ FE) = 0 for n > 0.

AsHq◦DG is described from the homology of the groupsGi by Künneth formula,
we can conclude by an easy direct combinatorical argument.
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