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An ideal in a (unital) ring is the same as a ring without unit: such a (non-unital)
ring I can be seen as the two-sided ideal given by the kernel of the augmentation
Z n I � Z, where Z n I is the unital ring obtained by formally adding a unit to I.
The framework in the preprint [Dja], on which this talk is reporting, is more general,
but most of the ideas and applications are already in this classical setting.

The congruence groups associated to I are defined by

Γn(I) := Ker (GLn(Z n I) � GLn(Z)).

We look for qualitative properties of the homology of these groups. As in the case of
usual linear groups, we have obvious stabilisation mapsH∗(Γn(I);Z)→ H∗(Γn+1(I);Z):
we will deal only with stable properties (as in algebraic K-theory), that is, properties
of the colimit of this sequence of graded abelian groups. But we have also a richer
structure: H∗(Γn(I);Z) in endowed with a natural action of GLn(Z) (induced by the
conjugation action) which is generally not trivial (even stably). We will later express
these structures (and their compatibility properties) in a functorial setting.

Earlier known results
Suslin [Sus95] proved the following striking Theorem (which improves the rational
result that he got with Wodzicki in [SW92], with a different method).

Theorem 1 (Suslin 1995). Let d > 0 be an integer

1. The following statements are equivalent.

(a) Stably in n, the action of GLn(Z) on Hi(Γn(I);Z) is trivial for i < d;

(b) I is excisive for algebraic K-theory in homological degree < d;

(c) TorZnI
i (Z,Z) = 0 for 0 < i < d.

2. There is a natural map Hd(Γn(I);Z) → gln
(
TorZnI

d (Z,Z)
)
(where gln(M) de-

notes the matrices n×n with entries inM) which is GLn(Z)-equivariant, compat-
ible with stabilisation in n, and whose kernel and cokernel bear a trivial GLn(Z)-
action stably in n if the previous conditions are fulfiled.

(Note that TorZnI
1 (Z,Z) ' I/I2, so the conditions are only seldom fulfiled for

d > 1; for d = 1, the last statement is classical and not hard.)
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Other known results give informations on H∗(Γn(I)) for each homological degree,
but only for particular non-unital rings I.

In [Cal15], Calegari proved the following asymptotic polynomial behaviour for ho-
mology of classical congruence groups.

Theorem 2 (Calegari 2015). Let p be a prime number and k, i be non-negative inte-
gers. Then

dimHk(Γn(piZ);Fp) =
n2k

k!
+O(n2k−2)

Another important recent result (whose methods are completely independent from
the ones used to prove both previous Theorems) is due to Putman [Put15], with an
input given by an older work by Charney [Cha84]. This result was quickly improved
by the systematic use of functorial methods that we will remind now.

Statements in terms of polynomial functors
Let (C,+, 0) be a small symmetric monoidal category whose unit 0 is an initial object.
For convenience we will assume that the objects of C are the natural integers and that
+ is the usual sum on objects. The precomposition by −+ 1 is an exact endofunctor,
denoted by τ , of the category C-Mod of functors from C to abelian groups; with Vespa
we studied in [DV] the quotient category St(C-Mod) of C-Mod obtained by killing the
functors which are stably zero, that is, by quotienting out the localising subcategory
of C-Mod generated by functors F such that the canonical map F → τ(F ) is zero
(equivalently, a functor F is stably zero if and only if colim

n∈N
F (n) = 0).

We introduced two notions of polynomial functor of degree d: a strong one, which
captures also unstable phenomena, and a weak one, which depends only of the iso-
morphism class of the functor in St(C-Mod). For example, a functor in C-Mod is
weakly polynomial of degree ≤ 0 if and only if it is isomorphic in St(C-Mod) to a
constant functor. For the definition of strongly and weakly polynomial functors and
properties, we refer to [DV] or to the talk by Vespa in this meeting. Weakly polynomial
functors of (weak) degree ≤ d (or more precisely, their images in St(C-Mod)) form a
localising subcategory of St(C-Mod) denoted by Pold(C-Mod). For example, gl•(M)
is a strongly polynomial functor of degree 2 in S(Z)-Mod (where S(Z) is defined just
below), for any abelian group M .

We are interested here in the following monoidal categories C with the previous
properties: the category FI for which FI(n,m) is the set of injections from n :=
{1, . . . , n} tom (the monoidal structure being given by disjoint union) and the category
S(R), where R is a unital ring, for which

S(R)(n,m) := {(f, g) ∈ HomR(Rn, Rm)×HomR(Rm, Rn) | g ◦ f = Id}

(the monoidal structure being given by direct sum). These categories are also homo-
geneous categories in the sense of Randal-Williams and Wahl [RWW] (a very general
framework which is related to the one used at the beginning of [DV10]).

For any unital ring R, n 7→ GLn(R) defines a functor GL•(R) from S(R) to the
category of groups. If I is a non-unital ring, n 7→ Γn(I) is a subfunctor of GL•(Zn I).
By taking the homology, we get a functor Hd(Γ•(I)) in St(S(Z n I)-Mod) for each
d, which lives indeed in S(Z)-Mod (because inner automorphisms act trivially in
homology). By restricting it along the canonical monoidal functor FI→ S(Z), several
authors, improving Putman [Put15], showed that Hd(Γ•(I)) is strongly polynomial for
each d if the ring I is nice enough — see Church-Ellenberg-Farb-Nagpal [CEFN14] of
Church-Ellenberg [CE17]. Recently, Church-Miller-Nagpal-Reinhold [CMNR] got the
following result, always by using FI-modules.
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Theorem 3 (Church-Miller-Nagpal-Reinhold, preprint 2017). If I is an ideal in a
unital ring R satisfying Bass condition (SRr+2), then for each non-negative integer d,
Hd(Γ•(I);Z) is a weakly polynomial functor of (weak) degree ≤ 2d+ r.

In [Dja], the following stronger result is proven.

Theorem 4. Let I be a ring without unit and e > 0 an integer such that TorZnI
i (Z,Z) =

0 for 0 < i < e (for example, e = 1).

1. For each integers r, d ≥ 0 and each object F in Polr(S(ZnI)-Mod), the functor
Hd(Γ•(I);F ) belongs to Pol2[d/e]+r(S(Z)-Mod) (where the brackets denote the
floor function).

2. If e is odd (respectively even), then for each integer n ≥ 0, Hne(Γ•(I);F ) is
isomorphic in the quotient category Pol2n(S(Z)-Mod)/Pol2n−2(S(Z)-Mod) to
Λn(gl•(TorZnI

e (Z,Z))) (resp. Sn(gl•(TorZnI
e (Z,Z)))), where Λn (resp. Sn) de-

notes the n-th exterior (resp. symmetric) power (over the integers).

For n = 1, the second part of this theorem is equivalent to Suslin’s Theorem 1.

Ingredients of the proof
The input of the proof of Theorem 4 is a version in degree 0 with twisted coefficients:
one has an (easy) stable natural isomorphism H0(Γ•(I);F ) ' Φ∗(F ) in St(S(Z)-Mod)
for any functor F in S(Zn I)-Mod, where Φ : S(Zn I)→ S(Z) denotes the reduction
modulo the ideal I and Φ∗ the left Kan extension along Φ.

One can then derive this isomorphism (even in a quite more general framework) to
get a stable spectral sequence

E2
i,j = Li

(
(−⊗
⊕
Hj(Γ•(I);Z)) ◦ Φ∗

)
(F )⇒ Hi+j(Γ•(I);F )

where ⊗
⊕

: (S(Z)-Mod)×(S(Z)-Mod)→ S(Z)-Mod is the composition of the external

tensor product with the left Kan extension along the direct sum functor S(Z)×S(Z)→
S(Z).

When F factorises through Φ : S(Z n I) → S(Z), the abutment H∗(Γ•(I);F ) of
the spectral sequence can be expressed simply from F and H∗(Γ•(I);Z), thanks to
the universal coefficients exact sequence for group homology. So the spectral sequence
gives informations on H∗(Γ•(I);Z). One needs several steps to show the wished result
with this program, especially:

• a comparison theorem of stable (in the sense of categories St introduced above!)
derived categories of S(Z)-Mod and F(Z)-Mod, where F(Z) denotes Quillen’s
category of factorizations of free abelian groups of finite rank, on (weakly) poly-
nomial functors. This is inspired by Scorichenko’s thesis [Sco00].

• A study of the left derived functors of Φ∗ on polynomial functors (using the first
step);

• a study of the tensor product ⊗
⊕

and its left derivatives on polynomial functors

(also using the first step);

• a concrete argument of triangular groups inspired by Suslin-Wodzicki [SW92];

• some functorialities of the above spectral sequence.
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