Polynomial behaviour for stable homology of congruence groups
 Abstract of a talk given at Oberwolfach meeting Topology of Arrangements and Representation Stability 14-20 January 2018, ID 1803

Aurélien DJAMENT*

An ideal in a (unital) ring is the same as a ring without unit: such a (non-unital) ring I can be seen as the two-sided ideal given by the kernel of the augmentation $\mathbb{Z} \ltimes I \rightarrow \mathbb{Z}$, where $\mathbb{Z} \ltimes I$ is the unital ring obtained by formally adding a unit to I. The framework in the preprint [Dja], on which this talk is reporting, is more general, but most of the ideas and applications are already in this classical setting.

The congruence groups associated to I are defined by

$$
\Gamma_{n}(I):=\operatorname{Ker}\left(G L_{n}(\mathbb{Z} \ltimes I) \rightarrow G L_{n}(\mathbb{Z})\right) .
$$

We look for qualitative properties of the homology of these groups. As in the case of usual linear groups, we have obvious stabilisation maps $H_{*}\left(\Gamma_{n}(I) ; \mathbb{Z}\right) \rightarrow H_{*}\left(\Gamma_{n+1}(I) ; \mathbb{Z}\right)$: we will deal only with stable properties (as in algebraic K-theory), that is, properties of the colimit of this sequence of graded abelian groups. But we have also a richer structure: $H_{*}\left(\Gamma_{n}(I) ; \mathbb{Z}\right)$ in endowed with a natural action of $G L_{n}(\mathbb{Z})$ (induced by the conjugation action) which is generally not trivial (even stably). We will later express these structures (and their compatibility properties) in a functorial setting.

Earlier known results

Suslin [Sus95] proved the following striking Theorem (which improves the rational result that he got with Wodzicki in [SW92], with a different method).

Theorem 1 (Suslin 1995). Let $d>0$ be an integer

1. The following statements are equivalent.
(a) Stably in n, the action of $G L_{n}(\mathbb{Z})$ on $H_{i}\left(\Gamma_{n}(I) ; \mathbb{Z}\right)$ is trivial for $i<d$;
(b) I is excisive for algebraic K-theory in homological degree $<d$;
(c) $\operatorname{Tor}_{i}^{\mathbb{Z} \ltimes I}(\mathbb{Z}, \mathbb{Z})=0$ for $0<i<d$.
2. There is a natural map $H_{d}\left(\Gamma_{n}(I) ; \mathbb{Z}\right) \rightarrow \mathfrak{g l}_{n}\left(\operatorname{Tor}_{d}^{\mathbb{Z} \ltimes I}(\mathbb{Z}, \mathbb{Z})\right)$ (where $\mathfrak{g l}_{n}(M)$ denotes the matrices $n \times n$ with entries in $M)$ which is $G L_{n}(\mathbb{Z})$-equivariant, compatible with stabilisation in n, and whose kernel and cokernel bear a trivial $G L_{n}(\mathbb{Z})$ action stably in n if the previous conditions are fulfiled.
(Note that $\operatorname{Tor}_{1}^{\mathbb{Z} \propto I}(\mathbb{Z}, \mathbb{Z}) \simeq I / I^{2}$, so the conditions are only seldom fulfiled for $d>1$; for $d=1$, the last statement is classical and not hard.)
[^0]Other known results give informations on $H_{*}\left(\Gamma_{n}(I)\right)$ for each homological degree, but only for particular non-unital rings I.

In [Cal15], Calegari proved the following asymptotic polynomial behaviour for homology of classical congruence groups.

Theorem 2 (Calegari 2015). Let p be a prime number and k, i be non-negative integers. Then

$$
\operatorname{dim} H_{k}\left(\Gamma_{n}\left(p^{i} \mathbb{Z}\right) ; \mathbb{F}_{p}\right)=\frac{n^{2 k}}{k!}+O\left(n^{2 k-2}\right)
$$

Another important recent result (whose methods are completely independent from the ones used to prove both previous Theorems) is due to Putman [Put15], with an input given by an older work by Charney [Cha84]. This result was quickly improved by the systematic use of functorial methods that we will remind now.

Statements in terms of polynomial functors

Let $(\mathcal{C},+, 0)$ be a small symmetric monoidal category whose unit 0 is an initial object. For convenience we will assume that the objects of \mathcal{C} are the natural integers and that + is the usual sum on objects. The precomposition by -+1 is an exact endofunctor, denoted by τ, of the category \mathcal{C}-Mod of functors from \mathcal{C} to abelian groups; with Vespa we studied in [DV] the quotient category $\mathbf{S t}(\mathcal{C}$-Mod) of \mathcal{C}-Mod obtained by killing the functors which are stably zero, that is, by quotienting out the localising subcategory of \mathcal{C}-Mod generated by functors F such that the canonical map $F \rightarrow \tau(F)$ is zero (equivalently, a functor F is stably zero if and only if $\operatorname{colim}_{n \in \mathbb{N}} F(n)=0$).

We introduced two notions of polynomial functor of degree d : a strong one, which captures also unstable phenomena, and a weak one, which depends only of the isomorphism class of the functor in $\mathbf{S t}(\mathcal{C}$-Mod). For example, a functor in \mathcal{C}-Mod is weakly polynomial of degree ≤ 0 if and only if it is isomorphic in $\mathbf{S t}(\mathcal{C}$-Mod) to a constant functor. For the definition of strongly and weakly polynomial functors and properties, we refer to [DV] or to the talk by Vespa in this meeting. Weakly polynomial functors of (weak) degree $\leq d$ (or more precisely, their images in $\mathbf{S t}(\mathcal{C}$-Mod)) form a localising subcategory of $\mathbf{S t}\left(\mathcal{C}\right.$-Mod) denoted by \mathcal{P} ol ${ }_{d}(\mathcal{C}$-Mod $)$. For example, $\mathfrak{g l} \mathbf{l}_{\mathbf{e}}(M)$ is a strongly polynomial functor of degree 2 in $\mathbf{S}(\mathbb{Z})$-Mod (where $\mathbf{S}(\mathbb{Z})$ is defined just below), for any abelian group M.

We are interested here in the following monoidal categories \mathcal{C} with the previous properties: the category FI for which $\mathbf{F I}(n, m)$ is the set of injections from $\mathbf{n}:=$ $\{1, \ldots, n\}$ to \mathbf{m} (the monoidal structure being given by disjoint union) and the category $\mathbf{S}(R)$, where R is a unital ring, for which

$$
\mathbf{S}(R)(n, m):=\left\{(f, g) \in \operatorname{Hom}_{R}\left(R^{n}, R^{m}\right) \times \operatorname{Hom}_{R}\left(R^{m}, R^{n}\right) \mid g \circ f=\mathrm{Id}\right\}
$$

(the monoidal structure being given by direct sum). These categories are also homogeneous categories in the sense of Randal-Williams and Wahl [RWW] (a very general framework which is related to the one used at the beginning of [DV10]).

For any unital ring $R, n \mapsto G L_{n}(R)$ defines a functor $G L_{\bullet}(R)$ from $\mathbf{S}(R)$ to the category of groups. If I is a non-unital ring, $n \mapsto \Gamma_{n}(I)$ is a subfunctor of $G L_{\bullet}(\mathbb{Z} \ltimes I)$. By taking the homology, we get a functor $H_{d}\left(\Gamma_{\bullet}(I)\right)$ in $\mathbf{S t}(\mathbf{S}(\mathbb{Z} \ltimes I)$-Mod) for each d, which lives indeed in $\mathbf{S}(\mathbb{Z})$-Mod (because inner automorphisms act trivially in homology). By restricting it along the canonical monoidal functor $\mathbf{F I} \rightarrow \mathbf{S}(\mathbb{Z})$, several authors, improving Putman [Put15], showed that $H_{d}\left(\Gamma_{\bullet}(I)\right)$ is strongly polynomial for each d if the ring I is nice enough - see Church-Ellenberg-Farb-Nagpal [CEFN14] of Church-Ellenberg [CE17]. Recently, Church-Miller-Nagpal-Reinhold [CMNR] got the following result, always by using FI-modules.

Theorem 3 (Church-Miller-Nagpal-Reinhold, preprint 2017). If I is an ideal in a unital ring R satisfying Bass condition $\left(S R_{r+2}\right)$, then for each non-negative integer d, $H_{d}\left(\Gamma_{\bullet}(I) ; \mathbb{Z}\right)$ is a weakly polynomial functor of (weak) degree $\leq 2 d+r$.

In $[\mathrm{Dja}]$, the following stronger result is proven.
Theorem 4. Let I be a ring without unit and e >0 an integer such that $\operatorname{Tor}_{i}^{\mathbb{Z} \ltimes I}(\mathbb{Z}, \mathbb{Z})=$ 0 for $0<i<e$ (for example, $e=1$).

1. For each integers $r, d \geq 0$ and each object F in $\mathcal{P o l}_{r}(\mathbf{S}(\mathbb{Z} \ltimes I)$-Mod $)$, the functor $H_{d}\left(\Gamma_{\bullet}(I) ; F\right)$ belongs to $\mathcal{P o l}_{2[d / e]+r}(\mathbf{S}(\mathbb{Z})$-Mod) (where the brackets denote the floor function).
2. If e is odd (respectively even), then for each integer $n \geq 0, H_{n e}\left(\Gamma_{\bullet}(I) ; F\right)$ is isomorphic in the quotient category $\mathcal{P o l}_{2 n}(\mathbf{S}(\mathbb{Z})$-Mod $) / \mathcal{P}{ }^{2}{ }_{2 n-2}(\mathbf{S}(\mathbb{Z})$-Mod) to $\Lambda^{n}\left(\mathfrak{g l} \cdot\left(\operatorname{Tor}_{e}^{\mathbb{Z} \ltimes I}(\mathbb{Z}, \mathbb{Z})\right)\right)\left(\right.$ resp. $S^{n}\left(\mathfrak{g l} .\left(\operatorname{Tor}_{e}^{\mathbb{Z} \propto I}(\mathbb{Z}, \mathbb{Z})\right)\right)$), where $\Lambda^{n}\left(\right.$ resp. $\left.S^{n}\right) d e$ notes the n-th exterior (resp. symmetric) power (over the integers).

For $n=1$, the second part of this theorem is equivalent to Suslin's Theorem 1.

Ingredients of the proof

The input of the proof of Theorem 4 is a version in degree 0 with twisted coefficients: one has an (easy) stable natural isomorphism $H_{0}\left(\Gamma_{\bullet}(I) ; F\right) \simeq \Phi_{*}(F)$ in $\mathbf{S t}(\mathbf{S}(\mathbb{Z})$-Mod) for any functor F in $\mathbf{S}(\mathbb{Z} \ltimes I)$-Mod, where $\Phi: \mathbf{S}(\mathbb{Z} \ltimes I) \rightarrow \mathbf{S}(\mathbb{Z})$ denotes the reduction modulo the ideal I and Φ_{*} the left Kan extension along Φ.

One can then derive this isomorphism (even in a quite more general framework) to get a stable spectral sequence

$$
E_{i, j}^{2}=\mathbf{L}_{i}\left(\left(-\underset{\oplus}{\otimes} H_{j}\left(\Gamma_{\bullet}(I) ; \mathbb{Z}\right)\right) \circ \Phi_{*}\right)(F) \Rightarrow H_{i+j}\left(\Gamma_{\bullet}(I) ; F\right)
$$

where $\underset{\oplus}{\otimes}:(\mathbf{S}(\mathbb{Z})$-Mod $) \times(\mathbf{S}(\mathbb{Z})$-Mod $) \rightarrow \mathbf{S}(\mathbb{Z})$-Mod is the composition of the external tensor product with the left Kan extension along the direct sum functor $\mathbf{S}(\mathbb{Z}) \times \mathbf{S}(\mathbb{Z}) \rightarrow$ $\mathbf{S}(\mathbb{Z})$.

When F factorises through $\Phi: \mathbf{S}(\mathbb{Z} \ltimes I) \rightarrow \mathbf{S}(\mathbb{Z})$, the abutment $H_{*}\left(\Gamma_{\bullet}(I) ; F\right)$ of the spectral sequence can be expressed simply from F and $H_{*}\left(\Gamma_{\bullet}(I) ; \mathbb{Z}\right)$, thanks to the universal coefficients exact sequence for group homology. So the spectral sequence gives informations on $H_{*}\left(\Gamma_{\bullet}(I) ; \mathbb{Z}\right)$. One needs several steps to show the wished result with this program, especially:

- a comparison theorem of stable (in the sense of categories $\mathbf{S t}$ introduced above!) derived categories of $\mathbf{S}(\mathbb{Z})$-Mod and $\mathbf{F}(\mathbb{Z})$-Mod, where $\mathbf{F}(\mathbb{Z})$ denotes Quillen's category of factorizations of free abelian groups of finite rank, on (weakly) polynomial functors. This is inspired by Scorichenko's thesis [Sco00].
- A study of the left derived functors of Φ_{*} on polynomial functors (using the first step);
- a study of the tensor product $\otimes \underset{\oplus}{\otimes}$ and its left derivatives on polynomial functors (also using the first step);
- a concrete argument of triangular groups inspired by Suslin-Wodzicki [SW92];
- some functorialities of the above spectral sequence.

References

[Cal15] Frank Calegari. The stable homology of congruence subgroups. Geom. Topol., 19(6):3149-3191, 2015.
[CE17] Thomas Church and Jordan S. Ellenberg. Homology of FI-modules. Geom. Topol., 21(4):2373-2418, 2017.
[CEFN14] Thomas Church, Jordan S. Ellenberg, Benson Farb, and Rohit Nagpal. FI-modules over Noetherian rings. Geom. Topol., 18(5):2951-2984, 2014.
[Cha84] Ruth Charney. On the problem of homology stability for congruence subgroups. Comm. Algebra, 12(17-18):2081-2123, 1984.
[CMNR] Thomas Church, Jeremy Miller, Rohit Nagpal, and Jens Reinhold. Linear and quadratic ranges in representation stability. Preprint arXiv:1706.03845.
[Dja] Aurélien Djament. De l'homologie stable des groupes de congruence. Preprint available on https://hal.archives-ouvertes.fr/hal-01565891.
[DV] Aurélien Djament and Christine Vespa. Foncteurs faiblement polynomiaux. To appear in IMRN, available online.
[DV10] Aurélien Djament and Christine Vespa. Sur l'homologie des groupes orthogonaux et symplectiques à coefficients tordus. Ann. Sci. Éc. Norm. Supér. (4), 43(3):395-459, 2010.
[Put15] Andrew Putman. Stability in the homology of congruence subgroups. Invent. Math., 202(3):987-1027, 2015.
[RWW] Oscar Randal-Williams and Nathalie Wahl. Homological stability for automorphism groups. Prépublication arXiv:1409.3541.
[Sco00] Alexander Scorichenko. Stable K-theory and functor homology over a ring. PhD thesis, Evanston, 2000.
[Sus95] A. A. Suslin. Excision in integer algebraic K-theory. Trudy Mat. Inst. Steklov., 208(Teor. Chisel, Algebra i Algebr. Geom.):290-317, 1995. Dedicated to Academician Igor ${ }^{\prime}$ Rostislavovich Shafarevich on the occasion of his seventieth birthday (Russian).
[SW92] Andrei A. Suslin and Mariusz Wodzicki. Excision in algebraic K-theory. Ann. of Math. (2), 136(1):51-122, 1992.

[^0]: * CNRS, laboratoire de mathématiques Jean Leray (UMR 6629), Nantes, France.

