Finiteness properties of functor categories

Aurélien DJAMENT

CNRS, Laboratoire de Mathématiques Jean Leray, Nantes

3 December 2014

Talk at Eindhoven's Discrete Math Seminar

http://www.math.sciences.univ-nantes.fr/~djament/eindhoven2014.pdf

法国际 医耳道

- Notations, first properties
- Examples of interesting source categories
- Motivations for looking at these functor categories
- Main general questions on functor categories $\mathcal{F}(\mathcal{C}; k)$

2 The noetherian property for functors

- Sam-Snowden approach (I): change the source category
- Sam-Snowden approach (II): Gröbner categories

3 Polynomial functors

- Classical setting
- A more general setting

Notation

Let C be a small category and \mathcal{E} a category. We denote by $\mathsf{Fct}(C, \mathcal{E})$ the category of functors from C to \mathcal{E} , the arrows being natural transformations.

We are especially interested with the case where \mathcal{E} is an abelian category (a module category, in general), sometimes also by the case where \mathcal{E} is the category **Set** of sets.

Notation

Let C be a small category and k a ring. We denote by $\mathcal{F}(C; k)$ the functor category $\mathbf{Fct}(C, k - \mathbf{Mod})$, where $k - \mathbf{Mod}$ is the category of left k-modules.

Proposition

For any small category C and any abelian category \mathcal{E} , $\mathsf{Fct}(C, \mathcal{E})$ is an abelian category where exactness is tested pointwise. For any ring k, $\mathcal{F}(C; k)$ is a nice abelian category (Grothendieck category).

Notation

Let C be a small category, k a ring and x an object of C. We denote by $P_x^{\mathcal{C}}$ the following object of $\mathcal{F}(C; k)$:

$$\mathcal{C} \xrightarrow{\operatorname{Hom}_{\mathcal{C}}(x,-)} \operatorname{Set} \xrightarrow{k[-]} k - \operatorname{Mod}$$

where k[-] is the k-linearisation functor.

Lemma (Linearised Yoneda lemma)

$$\operatorname{Hom}_{\mathcal{F}(\mathcal{C};k)}(P_x^{\mathcal{C}},F)\simeq F(x).$$

Corollary

The functors $P_x^{\mathcal{C}}$ are projective and finitely generated. When x runs over a skeleton of \mathcal{C} , the functors $P_x^{\mathcal{C}}$ generate the abelian category $\mathcal{F}(\mathcal{C}; k)$.

< 同 > < 三 > < 三 > -

• Notations, first properties

Examples of interesting source categories

- Motivations for looking at these functor categories
- Main general questions on functor categories $\mathcal{F}(\mathcal{C}; k)$

2 The noetherian property for functors

- Sam-Snowden approach (I): change the source category
- Sam-Snowden approach (II): Gröbner categories

3 Polynomial functors

- Classical setting
- A more general setting

프 () () () (

We begin with combinatorial examples.

Notation

- We denote by Δ the category of non-empty finite ordinals.
- We denote by Θ the category whose objects are finite sets
 n := {1,..., n} (n ∈ ℕ) and whose morphisms are *injective* functions.
- We denote by Ω the category with the same objects as Θ and *surjective* functions as morphisms.
- We denote by Γ the category with objects the finite *pointed* sets {0,..., n} (with 0 as base point) and with functions preserving the base point as morphisms.

A B > A B >

We go on with linear examples.

Notation

Let R be a ring.

- We denote by P(R) the category whose objects are the free left R-modules of finite rank Rⁿ (n ∈ N) and whose morphisms are R-linear maps.
- We denote by S(R) the category with the same objects but with split R-monomorphisms, the splitting being given in the structure, as morphisms, that is:

 $\operatorname{Hom}_{\mathbf{S}(R)}(U,V) = \{(f,g) \in \operatorname{Hom}_{\mathbf{P}(R)}(U,V) \times \operatorname{Hom}_{\mathbf{P}(R)}(V,U) | g \circ f = \operatorname{Id}_U \}.$

The following functor category is of special interest.

Notation

Let k be a finite field. We denote by $\mathcal{F}(k)$ the category $\mathcal{F}(\mathbf{P}(k), k - \mathbf{Mod})$ of functors from finite dimensional vector spaces over k to vector spaces over k.

- Notations, first properties
- Examples of interesting source categories
- Motivations for looking at these functor categories
- Main general questions on functor categories $\mathcal{F}(\mathcal{C}; k)$

2 The noetherian property for functors

- Sam-Snowden approach (I): change the source category
- Sam-Snowden approach (II): Gröbner categories

3 Polynomial functors

- Classical setting
- A more general setting

프 () () () (

- Algebraic topology (I): Fct(Δ^{op}, Set) category of simplicial sets is a standard model for homotopy theory of spaces, F(Δ^{op}; k) gives rise to the Dold-Kan correspondence...
- Algebraic topology (II): if p is any prime number, since the 1980's deep relations between unstable modules over the Steenrod algebra mod. p and the category $\mathcal{F}(\mathbb{F}_p)$ have been proven and used. See [Henn-Lannes-Schwartz, The categories of unstable modules and unstable algebras over the Steenrod algebra modulo nilpotent objects, *Amer. J. Math.* 1993].
- Various areas of mathematics (especially topology and representation theory): a lot of mathematical objects carry naturally a structure of functor on the category Θ. See [Church-Ellenberg-Farb, Fl-modules and stability for representations of symmetric groups, arXiv:1204.4533, to appear in *Duke*]. (Fl-module=object of *F*(Θ; k) for some ground ring k.)

・ 同 ト ・ ヨ ト ・ 日 ト …

For functors from Γ or Ω: they can give models for stable homotopy theory, see [Segal, Categories and cohomology theories, *Topology* 1974] (here, the target category can be Set of simplicial sets). Pirashvili proved an equivalence of categories "à la Dold-Kan" *F*(Γ; k) ≃ *F*(Ω; k) and used these categories to recover in a conceptual way Hodge decomposition for Hochschild homology of commutative algebras and define and study higher Hochschild homology — see his paper [Hodge decomposition for higher order Hochschild homology, *Ann. Sci. École Norm. Sup.* 2000].

A B > A B >

-

For functors from S(R) and P(R) (R being a ring): stable homology of linear groups
 One has a functor "linear group"

 $GL: \mathbf{S}(R) \to \mathbf{Groups} \qquad R^n \mapsto GL_n(R)$

 $(f,g) \in \operatorname{Hom}_{S(R)}(U,V) \mapsto (\xi \in GL(U) \mapsto f\xi g + 1 - fg \in GL(V)).$ For $F \in \mathcal{F}(S(R); \mathbb{Z})$, we can form the sequence of graded abelian groups

 $\cdots \rightarrow H_*(GL_n(R); F(R^n)) \rightarrow H_*(GL_{n+1}(R); F(R^{n+1})) \rightarrow \ldots$

where the arrows are induced by the obvious maps $\mathbb{R}^n \to \mathbb{R}^{n+1}$ of $\mathbf{S}(R)$; call its colimit *stable homology* of general linear groups with coefficients into F and denote it by $H^{st}(GL(R); F)$.

Proposition

 $H^{st}(GL(R); F)$ is naturally isomorphic to the functor homology $H_*(\mathbf{S}(R) \times GL_{\infty}(R); F)$, where the group $GL_{\infty}(R)$ acts trivially.

Problem: the computation of $H_*(\mathbf{S}(R); F)$ is almost always out of direct reach!

When F "comes from a polynomial bifunctor on $\mathbf{P}(R)$ ": one can see that this homology group is naturally isomorphic to some Hochschild homology group on the category $\mathbf{P}(R)$ (deep theorem of Scorichenko, 2000, unpublished). It makes computable several extremely hard groups of stable homology of general linear groups on finite fields or on the ring \mathbb{Z} of integers.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- Notations, first properties
- Examples of interesting source categories
- Motivations for looking at these functor categories
- Main general questions on functor categories $\mathcal{F}(\mathcal{C}; k)$

2 The noetherian property for functors

- Sam-Snowden approach (I): change the source category
- Sam-Snowden approach (II): Gröbner categories

3 Polynomial functors

- Classical setting
- A more general setting

프 () () () (

• Related to representation theory: describe simple, indecomposable projective or injective functors.

Example

Let k be a finite prime field. One has classical explicit bijections

$$\bigsqcup_{n\in\mathbb{N}} \{ ext{iso. classes of simple } k[GL_n(k)] - ext{modules} \} \simeq$$

{iso. classes of simple objects of
$$\mathcal{F}(k)$$
} \simeq

$$\bigsqcup_{n \in \mathbb{N}} \{ \text{iso. classes of simple } k[\mathfrak{S}_n] - \text{modules} \}.$$

But there are huge indecomposable injective functors in $\mathcal{F}(k)$, whose study can not be brought back to classical representation theory, and that are very mysterious.

• Homological algebra: compute Ext-groups, Tor-groups or related objects in $\mathcal{F}(\mathcal{C}; k)$.

This question has been very much studied in $\mathcal{F}(k)$, where k is a finite field [Franjou, Friedlander, Lannes, Schwartz, Scorichenko, Suslin...], also a little in $\mathcal{F}(\mathbf{P}(\mathbb{Z});\mathbb{Z})$ [Franjou-Pirashvili] or in $\mathcal{F}(\Gamma;\mathbb{Q})$ [Pirashvili].

The setup of functor categories gives a lot of nice specific tools (play with different source categories, use adjunctions...) which are not available for group (co)homology, for example.

(Group (co)homology is a particular case of functor (co)homology, because $\mathcal{F}(\underline{G}; k)$, where \underline{G} is the category with one object associated to a group G, is nothing but the category of representations of G with coefficients in k.)

(周) (三) (三) (三)

• Global structure and finiteness properties:

Proposition

Let C be a small category and k a left-noetherian ring. The following conditions are equivalent.

- The abelian category $\mathcal{F}(\mathcal{C}; k)$ is locally noetherian.
- Seach subfunctor of a finitely generated functor of F(C; k) is finitely generated.
- Each finitely generated functor of F(C; k) has a resolution by finitely generated projective functors.
- So For all object x of C, the functor P_x^C of $\mathcal{F}(C; k)$ is noetherian.

Definition

Let C be a small category. We say that C has the property of finiteness for functors ((*FF*) for short) if the previous conditions hold for all left-noetherian ring k.

・ 同 ト ・ ヨ ト ・ ヨ ト

An other important question is to understand the quotients of the Krull filtration. Remember the definition, following Gabriel:

Definition

Let \mathcal{A} a nice abelian (Grothendieck) category. We define an increasing sequence of localising (that is: thick and stable under colimits) subcategories $(\mathcal{K}_n(\mathcal{A}))_{n\in\mathbb{Z}}$ of \mathcal{A} by:

- $\mathcal{K}_n(\mathcal{A})$ is reduced to null objects for n < 0;
- for n ≥ 0, K_n(A)/K_{n-1}(A) is the localising subcategory of A/K_{n-1}(A) generated by simple objects.

An object of \mathcal{A} is said of *Krull dimension* $\leq n$ if it belongs to $\mathcal{K}_n(\mathcal{A})$. It is said to be *noetherian of type n* if is noetherian and of Krull dimension n.

伺 と く き と く き と

A basic example is the category of abelian groups, which has Krull dimension 1: $\mathcal{K}_0(\mathbf{Ab})$ consists of torsion abelian groups (denote this category by \mathbf{Ab}_{tor}), and $\mathbf{Ab} = \mathcal{K}_1(\mathbf{Ab})$, the quotient category $\mathbf{Ab}/\mathbf{Ab}_{tor}$ being equivalent to \mathbb{Q} -vector spaces through the rationalisation functor.

Another (too) simple example is the following: for any abelian category \mathcal{A} , if \mathcal{A} is locally noetherian, then $\mathbf{Fct}(\Delta^{op}, \mathcal{A})$ is also locally noetherian; moreover this functor category has the same Krull dimension as \mathcal{A} . It follows from Dold-Kan correspondence.

法国际 化苯基苯乙

- Notations, first properties
- Examples of interesting source categories
- Motivations for looking at these functor categories
- Main general questions on functor categories $\mathcal{F}(\mathcal{C}; k)$

2 The noetherian property for functors

- Sam-Snowden approach (I): change the source category
- Sam-Snowden approach (II): Gröbner categories

3 Polynomial functors

- Classical setting
- A more general setting

프 () () () (

Conjecture (Jean Lannes and Lionel Schwartz, late eighties)

Let k be a finite field. Then $\mathcal{F}(k)$ is a locally noetherian category.

Remark

It is easy to see that it is wrong for any infinite field.

Theorem (Sam-Snowden, 2014)

The previous conjecture holds. More generally, for any finite ring R, the category $\mathbf{P}(R)$ has the property (FF).

Theorem (Putman-Sam, 2014)

The previous conjecture holds. Moreover, for any finite commutative ring R, the category S(R) has the property (FF).

・ 同 ト ・ ヨ ト ・ ヨ ト

The conjecture is equivalent to the following statement: for any $n \in \mathbb{N}$, the functor

$$\mathsf{P}_n := \mathsf{P}_{k^n}^{\mathbf{P}(k)} : \mathsf{V} \mapsto k[\mathsf{V}^n]$$

is noetherian.

The first works on the conjecture led to make the following stronger conjecture.

Conjecture

For any finite field k and integer $n \ge 0$, the functor P_n is noetherian of type n.

글 > : < 글 >

- n = 0: $P_0 = k$ constant functor is simple, so noetherian of type 0.
- n = 1: the strong conjecture is not very hard to prove, in fact one can completely describe the lattice of subfunctors of P₁. Let us say this for the simplest case, k = F₂. Then P₁ decomposes has F₂ ⊕ P
 P, where P
 associates to a finite F₂-vector space the augmentation ideal of its F₂-group algebra. The functor P
 is uniserial (that is: its lattice of subbijects is totally ordered); more precisely, its non-zero subfunctors are the various powers of the augmentation ideal (the subquotients being the exterior powers, which are simple functors). So, P
 is not of finite lenght, but each strict quotient is of finite lenght, proving that it is noetherian of type 1.

医下颌 医下颌

- For n = 2 and k = 𝔽₂: Geoffrey Powell [JPAA, 1998] proved that P₂ is noetherian of type 2. It is a deep result requiring the introduction of several specific tools in the categories 𝓕(k). One can not describe completely the lattice of subfunctors of P₂.
- For n = 3 and $k = \mathbb{F}_2$: I proved [Ann. Institut Fourier, 2009] that P_3 is noetherian of type 3, by improving Powell's methods and introducing grassmannian functors [Mém. SMF, 2007], which permit to give a stronger conjecture describing the quotients of the Krull filtration of the category $\mathcal{F}(k)$.
- For $n \ge 4$, the strong form of the finiteness conjecture of $\mathcal{F}(k)$ remains fully open, even after Putman-Sam-Snowden work.

-

- Notations, first properties
- Examples of interesting source categories
- Motivations for looking at these functor categories
- Main general questions on functor categories $\mathcal{F}(\mathcal{C}; k)$

2 The noetherian property for functors

- Sam-Snowden approach (I): change the source category
- Sam-Snowden approach (II): Gröbner categories

3 Polynomial functors

- Classical setting
- A more general setting

프 () () () (

Theorem (Sam-Snowden)

The categories Ω^{op} and Γ^{op} have the property (FF).

This theorem, which implies the property (FF) for $\mathbf{P}(R)$ (for a finite ring R), was inspired by the following (quite easier) result.

Proposition (Church-Ellenberg-Farb-Nagpal, 2012)

The category Θ has the property (FF).

Definition

A category ${\mathcal C}$ is directed if

$$\forall x \in \operatorname{Ob} \mathcal{C}$$
 $\operatorname{End}_{\mathcal{C}}(x) = {\operatorname{Id}_x}.$

Notation

For any surjection $f \in \operatorname{Hom}_{\Omega}(\mathbf{i}, \mathbf{j})$, denote by $f^! : \mathbf{j} \to \mathbf{i}$ the injective map given by

 $f^{!}(r) := \min f^{-1}(\{r\}).$

Observe that $(f \circ g)^! = g^! \circ f^!$ when $g^!$ is increasing, what allows to make the following definition.

米間 と 米 ヨ と 米 ヨ と 二 ヨ

Notation

The category Ω_{sh} is the (directed) subcategory of Ω of arrows f such that $f^!$ is increasing.

Proposition

Let $\iota:\Omega_{sh}\to\Omega$ be the inclusion functor. For any $n\in\mathbb{N},$ there is an isomorphism

$$\Omega(-,\mathbf{n})\circ\iota\simeq\Omega_{sh}(-,\mathbf{n}) imes\mathfrak{S}_n$$

of functors $\Omega_{sh}^{op} \to \mathbf{Set}$.

Corollary

The property (FF) for Ω_{sh}^{op} implies the property (FF) for Ω^{op} .

▲圖▶ ▲理▶ ▲理▶

- Notations, first properties
- Examples of interesting source categories
- Motivations for looking at these functor categories
- Main general questions on functor categories $\mathcal{F}(\mathcal{C}; k)$

2 The noetherian property for functors

- Sam-Snowden approach (I): change the source category
- Sam-Snowden approach (II): Gröbner categories

3 Polynomial functors

- Classical setting
- A more general setting

() <) <)
 () <)
 () <)
</p>

Hypothesis

Here \mathcal{C} is a small skeletal directed category.

For any object x of C, let

$$\mathcal{C}(x) := \bigsqcup_{t \in \operatorname{Ob} \mathcal{C}} \operatorname{Hom}_{\mathcal{C}}(x, t)$$

endowed by the partial order relation \leq_x defined by: $f \leq_x g$ if one can factorise g out of f:

-

Definition

A partial order relation \leq on a set E is a *well partial order* if for any infinite sequence $(x_n)_{n \in \mathbb{N}}$ of E, there exist integers i < j with $x_i \leq x_j$.

(So a well order is an order which is together a total order and a well partial order.)

Proposition

The functor $\operatorname{Hom}_{\mathcal{C}}(x, -) : \mathcal{C} \to \operatorname{Set}$ is noetherian if and only if \leq_x is a well partial order on $\mathcal{C}(x)$.

A B M A B M

Definition (Sam-Snowden)

The category C is a *Gröbner* category if for any $x \in Ob C$:

- \leq_x is a well partial order on C(x);
- **2** there is an order \leq_x on $\mathcal{C}(x)$ such that:
 - \leq_x is a well order (in particuler, a total order);
 - for any maps f, f': x → t and g: t → u of C, the condition f ≺_x f' implies g ∘ f ≺_x g ∘ f'.

Theorem (Sam-Snowden)

Any Gröbner category has the property (FF).

Theorem (Sam-Snowden)

The directed category Ω_{sh}^{op} is a Gröbner category.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Notations, first properties
- Examples of interesting source categories
- Motivations for looking at these functor categories
- Main general questions on functor categories $\mathcal{F}(\mathcal{C}; k)$

2 The noetherian property for functors

- Sam-Snowden approach (I): change the source category
- Sam-Snowden approach (II): Gröbner categories

3 Polynomial functors

- Classical setting
- A more general setting

프 () () () (

Definition (Eilenberg-MacLane, early fifties)

Let \mathcal{A} be an additive category, \mathcal{E} an abelian category, $F : \mathcal{A} \to \mathcal{E}$ a functor and $d \in \mathbb{N}$.

• The *d*-th cross-effect of *F* is the functor $cr_d(F) : \mathcal{A}^d \to \mathcal{E}$ defined by

$$cr_d(F)(A_1,\ldots,A_d) = Ker\left(F\left(\bigoplus_{i=1}^d A_i\right) \to \bigoplus_{i=1}^d F\left(\bigoplus_{j\neq i} A_j\right)\right).$$

• Let us say that F is polynomial of degree $\leq d$ if $cr_{d+1}(F) = 0$.

One has a natural decomposition

$$F\left(\bigoplus_{i=1}^{d}A_{i}\right)\simeq \bigoplus_{1\leq i_{1}<\cdots< i_{k}\leq d}cr_{k}(F)(A_{i_{1}},\ldots,A_{i_{k}}).$$

Let k be a field. We denote by $\mathcal{F}_d(k)$ the full subcategory of $\mathcal{F}(k)$ of polynomial functors of degree $\leq d$. It is a bilocalizing subcategory of $\mathcal{F}(k)$ — that is, it is thick and stable under limits and colimits. If $F \in \operatorname{Ob} \mathcal{F}(k)$ takes finite-dimensional values, then F belongs to $\mathcal{F}_d(k)$ if and only if the function

$$\mathbb{N} \to \mathbb{N}$$
 $n \mapsto \dim F(k^n)$

is polynomial. The *d*-th tensor (or exterior, symmetric) power is a typical example of functor in $\mathcal{F}_d(k)$.

Proposition

Let k be a field, d a non-negative integer and $F \in Ob \mathcal{F}_d(k)$. The following conditions are equivalent.

- F is of finite lenght ;
- F is noetherian ;
- F is finitely generated ;
- F takes finite-dimensional values.

If moreover k is finite, then these conditions are equivalent to the existence of a resolution of F by finitely-generated projective functors (in $\mathcal{F}(k)$), and all functors of finite lenght of $\mathcal{F}(k)$ are polynomial.

高 と く ヨ と く ヨ と

- Notations, first properties
- Examples of interesting source categories
- Motivations for looking at these functor categories
- Main general questions on functor categories $\mathcal{F}(\mathcal{C}; k)$

2 The noetherian property for functors

- Sam-Snowden approach (I): change the source category
- Sam-Snowden approach (II): Gröbner categories

3 Polynomial functors

- Classical setting
- A more general setting

프 () () () (

Reference: A. Djament and C. Vespa, *De la structure des foncteurs polynomiaux sur les espaces hermitiens*, arXiv 1308.4106.

Let $(\mathcal{C}, +, 0)$ be a small symmetric monoidal category whose unit 0 is an initial object and k a ring. For $x \in Ob \mathcal{C}$, let τ_x be the endofunctor of precomposition by x + -, in $\mathcal{F}(\mathcal{C}; k)$. Let δ_x be the cokernel of the natural transformation $\mathrm{Id} = \tau_0 \to \tau_x$ (δ_x is the *difference functor* associated to x).

Definition

One says that $F \in Ob \mathcal{F}(\mathcal{C}; k)$ is *strongly polynomial* of (strong) degree $\leq d$ if for any objects x_0, x_1, \ldots, x_d in \mathcal{C} , one has

$$\delta_{x_0}\delta_{x_1}\ldots\delta_{x_d}(F)=0.$$

(This definition is equivalent to the classical one if ${\cal C}$ is an additive category endowed with the categorical sum.)

(日本) (日本) (日本)

Problem: this notion is not stable under subfunctor.

A solution: change the definition by working in the following quotient category instead of $\mathcal{F}(\mathcal{C}; k)$.

Denote by *SN* the localising subcategory of $\mathcal{F}(\mathcal{C}; k)$ of functors *F* which are the union over the objects *x* of \mathcal{C} of the kernel of the canonical maps $F \to \tau_x(F)$ and by $\mathbf{St}(\mathcal{C}; k)$ the quotient category. The endofunctors δ_x of $\mathcal{F}(\mathcal{C}; k)$ induce *exact* endofunctors of $\mathbf{St}(\mathcal{C}; k)$.

Definition

One says that $X \in Ob \operatorname{St}(\mathcal{C}; k)$ is *polynomial* of degree $\leq d$ if for any objects x_0, x_1, \ldots, x_d in \mathcal{C} , one has

$$\delta_{x_0}\delta_{x_1}\ldots\delta_{x_d}(X)=0.$$

One says that an object of $\mathcal{F}(\mathcal{C}; k)$ is *weakly polynomial* of (weak) degree $\leq d$ if its image in $\mathbf{St}(\mathcal{C}; k)$ is polynomial of degree $\leq d$.

Here we get a well-behaved notion: the full subcategory of weakly polynomial functors of degree $\leq d$ is bilocalising.

From now, our source category will be $S(\mathbb{Z})$, with the monoidal structure induced by the direct sum of abelian groups.

In my preprint *Des propriétés de finitude des foncteurs polynomiaux* (arXiv 1308.4698), the following is proven.

Theorem

Let $F : \mathbf{S}(\mathbb{Z}) \to \mathbf{Ab}$ be a finitely generated weakly polynomial functor. There exists an integer $n \ge 0$ such that the restriction of F to the full subcategory $\mathbf{S}(\mathbb{Z})_{\ge n}$ of $\mathbf{S}(\mathbb{Z})$ of abelian groups whose rank is $\ge n$ is noetherian.

(*F* can be *not* noetherian, because the group ring $\mathbb{Z}[GL_n(\mathbb{Z})]$ is not noetherian for $n \geq 2$.)

・ 同 ト ・ ヨ ト ・ ヨ ト

One reason of interest for the category $\mathcal{F}(\mathbf{S}(\mathbb{Z});\mathbb{Z})$ is the following. Let *I* be a ring *without unit* and, for $n \in \mathbb{N}$, $GL_n(I)$ be the associated "linear" group (which is in fact a congruence group), that is:

$$GL_n(I) := Ker(GL_n(\tilde{I}) \twoheadrightarrow GL_n(\mathbb{Z})),$$

 $\tilde{l} \ (= \mathbb{Z} \oplus l \text{ as an abelian group})$ being the ring obtained by formally adding a unit to l. One shows easily that $\tilde{l}^t \mapsto GL_t(l)$ defines a functor $\mathbf{S}(\tilde{l}) \to \mathbf{Grp}$ and that it induces a functor $H_n(GL(l)) : \mathbf{S}(\mathbb{Z}) \to \mathbf{Ab}$ for each integer n.

Conjecture

For any ring without unit I and any integer $n \in \mathbb{N}$, the functor $H_n(GL(I))$ of $\mathcal{F}(\mathbf{S}(\mathbb{Z});\mathbb{Z})$ is weakly polynomial of degree $\leq 2n$.

Suslin proved a particular case of this statement in his work on excision in integer algebraic *K*-theory [*Trudy Mat. Inst. Steklov*, 1995].

・ 同 ト ・ ヨ ト ・ ヨ ト