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This is a report on joint work with Christine
Vespa, which is available on the web at

http://hal.archives-ouvertes.fr/hal-00315573 /fr/

Aim : to compute homology groups of the
following form :

H;(Onn(Fq); F(FZ™)) for n big enough

where F' is a suitable functor between [Fg-
vector spaces.

(Here g is a power of an odd prime.)



Stable homology of orthogonal groups

Let k£ be a field. We say that an endofunc-
tor F' of the category of finite-dimensional
k-vector spaces is polynomial if the function
n — dim F'(k™) is polynomial. (Standard ex-
amples : tensor, extorior, divided or symmet-
ric powers.)

Theorem (Charney). Let F be such a poly-
nomial functor. For each integer:, the canon-
ical map

Hi(Onn(k); F(k*") — H;i(Opq1n41(k); F(k2712))
is an isomorphism for n big enough.

These groups are called stable homology of
orthogonal groups with coefficients in F' and
denoted by

H;(Oo(k); Fxo)

(because they are isomorphic to
H;(colim On,n(k); colim F(k2™)).



Case of untwisted coefficients
(for a finite field)

Before our work, the only known result seemed
to be the case of constant coefficients :

Theorem (Fiedorowicz-Priddy). Suppose that
k is a finite field. Then H;,(Oso(k); k) = 0O for
all integer ¢ > 0.



An example : divided powers

Even the degree 0-case (computation of coin-
variants) is not completely trivial. Let us de-
note by Mt = (T%)%d (invariants of the d-th
tensor power under the action of the sym-
metric group).

Suppose that g is an odd prime power. The
following proposition is an exercise, which
does not require any powerful tool but is not
totally obvious.

Proposition. Hy(Ox(F,); %) can be en-
dowed with a graded Hopf algebra structure
isomorphic to I"'(Vy), where the graded vec-
tor space Vy has dimension 1 in degree q°+ 1
(for all integer s > 0), 0 elsewhere.



With our method, you can show the following
theorem :

Theorem (Djament-Vespa). H«(Oxc(Fq); T2)
can be endowed with a bigraded Hopf alge-

bra structure isomorphic to ' (E;), where the

bigraded vector space Eq has dimension 1 in

bidegree (2¢°m,q°* + 1) (for all integers s > 0

and m > 0 ; the first degree is the homolog-

ical one), 0 elsewhere.

(Dually, it says that the stable cohomology of
orthogonal groups of F, with coefficients in a
polynomial algebra is an explicit polynomial
algebra.)



An inspiring precedent : the stable
homology of general linear groups

Let k be a finite field. We denote by F(k) be
the category of functors from finite-dimensional
k-vector spaces to k-vector spaces.

Theorem (Betley). Let F € F(k) be a poly-
nomial functor. Then H;,(GLoo(k); Fo) is nat-
urally isomorphic to F(0) fori= 0 and is O
for + > 0.

The following result is a (dual) generalisation
of Betley’'s theorem. It was extended in a
suitable form to any ring by Scorichenko.

Theorem (Betley, Suslin). Let F and G
be polynomial functors in F(k). Then the
canonical map

IS an isomorphism.



Our main result

We suppose always that k is a finite field
(possibly of characteristic 2.)

Theorem (Djament-Vespa). Let F € F(k)
be a polynomial functor. There is a natural
(graded) isomorphism

H.(Oo(k); Fso) = Torf B (v — k[S2(V)], F).

Notations used in the theorem : V* de-
notes the dual of V, S2(V*) the second sy-
metric power on V* (that is the vector space
of quadratic forms on V ). If E is a set, we
denote by k[E] the k-vector space with basis
E.

£ (k) is the (essentially) small category of
finite-dimensional k-vector spaces. So if you
don't want to speak of torsion groups on
small categories, dualize the assertion : the
dual of the torsion group of the theorem iden-

tifies naturally with Ext}(k)(F, V- k[S2(V)]Y).
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Why are these torsion groups
computable (for F' a nice polynomial
functor and char(k) #2) 7

Suppose that E® is a graded exponential func-
tor in F(k), what means that E! preserves
finite-dimensional vector spaces for all ¢ and
there exists a graded natural isomorphism

E*(UeV)~E*(U)® E*(V).

(The divided — or symmetric, or exterior —
powers satisfy this property.)

Then it is easy to see that the extension
group

EXth () (B, V = K[T2(V)])
IS isomorphic to
Eth;_—(k)(E.y DE.)7

where D is the duality functor of F(k) given
by D(F)(V) = F(V*)*. (D exchanges divided
and symmetric powers.)



The extension groups Ext:’,}(k)(ri, S7) have been
computed (with all their structure) by Franjou-
Friedlander-Scorichenko-Suslin (Annals of math.
1999). So

EXU 4y (T V = K[T2(V)]¥)

IS known.

Now, if you suppose that £ has odd charac-
teristic, the second tensor power T2 splits as
S2 @ A2. In particular, k[S2(V*)]* is an ex-
plicit functorial direct factor of k[T2(V*)]*.
This allows to compute

Exth (M V = k[SZ(V)]F)

and so the stable homology of orthogonal
groups with coefficients in divided powers.



Ingredients of the proof of the main
theorem (I)

Let us introduce first some auxiliary (essen-
tially) small categories.

e &/ is the subcategory of £f(k) with the

m)
same objects and injections as morphisms.

o £J° is the category finite-dimensional k-
quadratic spaces (possibly degenerate) with
linear injections preserving quadratic struc-
tures as morphisms.

o &, is the full subcategory of £ of non-

degenerate quadratic spaces.
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Ingredients of the proof of the main
theorem (II) : the three steps

1. There is a natural isomorphism

Hy«(Ooso(k); Fo) ~ H«(Eq; F).

It is not too difficult (rather formal form
Witt's theorem).

2. The inclusion of categories & — Ef]ieg in-
duces an isomorphism

Hi(Eq; F) ~ Ho(EX9; F)

if F'is polynomial. This is the hardest
part of the proof (see next slides).

3. We have natural isomorphisms

sl
Hi(£3°9; F) =~ Tor,™ (V — k[S?(VH)], F)

(easy adjunction argument)

~ Torf (V — k[S2(V*)], F)
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(this is a corollary of a key step of Suslin’'s
proof of his result on stable homology of
general linear groups).



Ingredients of the proof of the main
theorem (III) : overview of the second
step

For formal reasons, there is a convergent
spectral sequence

gdeg
Ef, = Tory?! (Lg, F) = Hyy (¢ F)

where Lq is the value on the constant functor
k of the g-th derived functor of an adjoint to
the precomposition by the inclusion functor
€ deg

q — 8(1 .

The second step is showed by proving that

deg
Torgq (Lg, F') = 0 for ¢ > 0 and F' polynomial.
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To make this, we use the two following ob-
servations :

1. Ly(0) =0 for ¢ > 0 ;

2. Lg sends any inclusion V. — V L H, where
H is non-degenerate, on an isomorphism.

Proposition. The fraction category obtained
from &?eg by inverting the arrows of the previ-
ous sort is equivalent to the category Sp(g,;’;j)
; an equivalence is given by the radical.

Définition (Bénabou). The category Sp(C)
of spans on a category C with fibered prod-
ucts is the category with the same objects
as C, where a morphism from X to Y is an
equivalence class of diagram of C

X —A—>Y]= A—Y

|

X
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(the equivalence relation identifying two dia-
grams [X «— A — Y] and [X «— A" — Y] when
there is an isomorphism from A to A’ making
the obvious diagram to commute) ; the com-
position of [X «— A—Y] and [Y «— B — Z] is

[X — Ax B — Z].
Y

(So a (non-linear) Mackey functor from C is
an ordinary functor from Sp(C).)

After this, we conclude by using the following
decomposition result, which translates well-
known facts on the structure of Mackey func-
tors :

Proposition. If the field k is finite, the cat-
egory of functors from Sp(Efnj) to k-vector
spaces is equivalent (in an explicit way) to
the product of the categories of k|G Ly(k)]-
modules for all integers n > 0.



