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k denotes a ground commutative ring in this whole talk.

Introduction: what is stable homology?
Assume that

G0 → G1 → . . . Gn → Gn+1 → . . .

is a sequence of group morphisms. There are three main questions when looking
at the sequence induced in homology by this — note that it induced a sequence

H∗(G0;k)→ H∗(G1;k)→ · · · → H∗(Gn;k)→ H∗(Gn+1;k)→ . . . (1)

of graded k-modules, but also

H∗(G0;M0)→ H∗(G1;M1)→ · · · → H∗(Gn;Mn)→ H∗(Gn+1;Mn+1)→ . . .
(2)

if
M0 →M1 → · · · →Mn →Mn+1 → . . .

if a sequence of compatible representations of these groups (that is, Mn is a
representation of Gn and Mn → Mn+1 is Gn-equivariant with Mn+1 endowed
with the Gn-action given by restriction along the morphism Gn → Gn+1).

1. (Homological stability) Does these sequence stabilize? That is: is it true
that, for all d ∈ N, the map Hd(Gn;Mn) → Hd(Gn+1;Mn+1) is an iso-
morphism for n big enough?
One generally studies this question first for constant coefficients, and after
for suitable twisted coefficients (in general, given by polynomial functors),
but in fact the key point is usually the one of constant coefficients (the
other one is generally a consequence of the first) — see the work of Dwyer
[4] on some general linear groups and the recent work of Randal-Williams
and Wahl [8] for a very general framework.

2. (Stable homology with constant coefficients) What is the colimit of the
sequence (1), called stable homology of (Gn) with coefficients in k?

3. (Stable homology with twisted coefficients) What is the colimit of the
sequence (2), called stable homology of (Gn) with coefficients in (Mn)?
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Here, we distinguished constant and twisted coefficients because the known
methods are completely different; in fact, the work that we are going to present
in this lecture (taken from [3]) allows to answer, in some cases, to this third
question (for coefficients given by polynomial functors) assuming that we know
the answer of the second question.

From now on, we will only deal with the third question; we will first given a
general framework which covers the classical cases of symmetric, general linear,
orthogonal, symplectic or unitary groups, automorphism groups of free groups
(but not congruence groups or subgroups IA of automorphism groups of free
groups).

1 The general framework
(The framework presented here is a variation around the one of [3], § 1, which
was also a little reworked at the beginning of [2].)

Let (C, ∗, 0) be a (small) symmetric monoidal (see [5], for example) category
and X an object of C. We are interested in the groups

Gn := AutC(X
∗n)

endowed with the group morphisms

AutC(X
∗n)→ AutC(X

∗(n+1)) f 7→ f ∗ IdX

(note that we could have choosen another way of “including n factors into n+1”,
as f 7→ IdX ∗f , but that all these choices are conjugated — so, induce the same
morphisms in homology — because the monoidal structure is symmetric 1).

Example 1.1. 1. Let C be the category of finite sets (or a small skeleton; for
the moment we do not precise the arrows — there are several choices! —,
which will be important later to satisfy our axioms) endowed with the
disjoint union, X a set with one element: one has Gn = Σn (symmetric
group), with the usual inclusion Σn → Σn+1 as arrows.

2. If R is any ring, the category of left R-modules (same remark on mor-
phisms) with the direct sum, and X = R, gives Gn = GLn(R).

3. If k is a commutative ring and C the category of k-quadratic spaces with
the orthogonal sum, and X is k2 with the canonical hyperbolic form, the
Gn = On,n(k).

4. In the category of groups with the free product, X = Z (same remark on
morphisms), we get Gn = Aut(Fn).

To be able to construct compatible sequences of representations of these
groups from functors on C, we make the assumption that 0 is an initial object of

C, what implies that we have canonical arrows A→ A∗B (A ' A∗0
IdA∗(0→B)−−−−−−−→

A ∗B) and B → A ∗B for all objects A and B of C. So, we have a sequence

0 = X∗0 → X = X∗1 → X∗2 → · · · → X∗n → X∗(n+1) → . . .

1braided (or even prebraided — see [8]) would be enough.
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of arrows of C (using X∗n → X∗n ∗X = X∗(n+1)): for any functor F in F(C;k),

F (0)→ F (X)→ F (X∗2)→ · · · → F (X∗n)→ F (X∗(n+1))→ . . .

is a compatible sequence of representations of our groups.
We are interested in the stable homology of (Gn) with coefficients into F :

H∗(G∞;F∞) = colim
n∈N

H∗(Gn;F (X∗n))

(group homology commutes with filtered colimits; G∞ is the colimit of our se-
quence of groups and F∞ the one of the previous sequence of representations).

We also met the functor homology H∗(C;F ). It is related to the stable
homology in the following way. For each n ∈ N, the group Gn, seen as a
category with one object, has a canonical faithful embedding into C, which
induces a natural map H∗(Gn;F (X∗n))→ H∗(C;F ). Moreover, the diagram

H∗(Gn;F (X∗n)) //

��

H∗(C;F )

H∗(Gn+1;F (X∗(n+1)))

66lllllllllllll

commutes thanks to the natural transformation between the functors Gn → C
(functors given by the canonical inclusion functor and the composition of the
group morphism Gn → Gn+1 and the canonical inclusion functor Gn+1 → C),
natural transformation which is given by the canonical map X∗n → X∗(n+1)

(used in the previous sequence of objects of C). So, our morphisms assemble to
give a natural morphism

H∗(G∞;F∞)→ H∗(C;F ). (3)

In order to study this morphism, we need several other assumptions on the
monoidal category (C, ∗, 0).

Definition 1.2. Let (C, ∗, 0) be a small symmetric monoidal category whose
unit 0 is an initial object and X an object of C. We introduce the following
hypotheses.

1. (Transitivity axiom)

• (strong form) C(x, t) is a transitive AutC(t)-set for all objects x and
t in C, or more generally

• (weak form) for each f ∈ C(a, b), there is α ∈ AutC(a ∗ b) such the
diagram

a
f //

''PP
PPP

PPP
PPP

PP b // a ∗ b

α

��
a ∗ b

commutes (where the arrows without label are the canonical ones).
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2. (Stabilizers axiom) for all objects a and b of C, the canonical group mor-
phism AutC(b)→ AutC(a ∗ b) is an injection whose image is the subgroup
of automorphisms ϕ such that the diagram

a //

!!C
CC

CC
CC

C a ∗ b
ϕ

��
a ∗ b

commutes.

3. (Axiom of generation by X)

• (Strong form) all object of C is isomorphic to X∗n for some n ∈ N,
or more generally

• (Weak form) for all object t of C, there are an object a of C and an
integer n ∈ N such that t ∗ a ' X∗n.

Remark 1.3. In [8], Randal-Williams and Wahl introduce the notion of homo-
geneous categories, with very similar axioms. A category satisfying the strong
form of the axioms is homogeneous, but their notion of homogeneous category
is more general, because they do not require the monoidal category to be sym-
metric (there is a weaker condition that they call prebraided).

Example 1.4. (This is the continuation of Example 1.1)

1. (A skeleton of) the category of finite sets, endowed with the disjoint union
andX a set with one element, does not satisfy the axioms of Definition 1.2:
the axioms of transitivity and of stabilizers fail. But the subcategory of
injections (sometimes denoted by FI) satisfies all the axioms, in the strong
forms.

2. (A skeleton of) the category of finitely generated free (or projective) left R-
modules (where R is a given ring), withX = R and direct sum as monoidal
structure, does not satisfies the axioms. Even if we replace this category
by its subcategory of monomorphisms, or of split monomorphisms (but
with no splitting given in the structure), the axiom of stabilizers fails. But
the category S(R) with the same objects and monoidal structure and with
morphism split monomorphisms, with a given splitting, that is:

S(R)(M,N) = {(u, v) ∈ HomR(M,N)×HomR(N,M) | v ◦ u = IdM}

satisfies all the axioms, in the weak version. The strong transitivity axiom
is even satisfied if R is nice enough (for example, a skew field, a PID, a
local ring...).

3. For any commutative ring k, (a skeleton of) the category of finitely gen-
erated free (or projective) k-modules equipped with a non-degenerate
quadratic form satisfies the axioms (for the orthogonal sum and X the
usual hyperbolic k-module k2).

4. (A skeleton of) the category of finitely generated free groups with the free
product and X = Z does not satisfies the axiom of stabilizers, even if we
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replace morphisms by split monomorphisms (even if the splitting is given
in the structure). The right category G (with same objects, monoidal
structure and X) has the following morphisms: an arrow from G to H is a
pair (u, T ) where u : G→ H is a group monomorphism and T a subgroup
of H such that H is the internal free product of T and of the image of u.
This category satisfies the axioms in the strong form.

2 First comparison of functor homology and twisted
stable group homology

The dream, to use functor homology to study stable homology of groups, would
be that the natural morphism (3) would be an isomorphism. Unfortunately,
there is an obvious obstruction to this, for very simple coefficients: the con-
stant ones (F = k)! Indeed, as C has an initial object, its reduced (untwisted)
homology is zero, but H̃∗(G∞;k) has no reason to be zero...

Nevertheless, there is a way to change a little the natural morphism (3) to
“include by force” the value of stable homology with constant coefficients. Let
us consider the group G∞ as a category with a single object and denote by
Π : G∞ × C → C the projection functor. Then we can form, for a functor F in
F(C;k), a natural morphism

H∗(G∞;F∞)→ H∗(G∞ × C; Π∗F ) (4)

by assembling, as in the previous section, the morphisms H∗(Gn;F (X∗n)) →
H∗(G∞ × C; Π∗F ) given by restriction along the functor Gn → G∞ × C whose
component Gn → G∞ is the canonical group morphism and Gn → C is the same
as before.

Theorem 2.1 ([3]). Under the assumptions of Definition 1.2, the natural mor-
phism (4) of graded k-modules is an isomorphism for all functor F of F(C;k).

Sketch of proof. We are going to show the result only when the strong assump-
tions of Definition 1.2 are satisfied (the general case is not very different, but
technically a little harder).

By standard facts of homological algebra, as the morphism (4) is a morphism
of δ-functors commuting to filtered colimits, is it enough to show that is an
isomorphism when F is a projective functor P CX∗i for an i ∈ N. For n ≥ i, the
transitivity and stabilizers axioms give an isomorphism

C(X∗i, X∗n) ' AutC(X
∗n)/AutC(X

∗(n−i)) = Gn/Gn−i

of Gn-sets. Thus
H∗(Gn;P CX∗i(X∗n)) ' H∗(Gn−i;k)

thanks to Shapiro Lemma. One checks easily that, after taking colimit on m, it
allows to identify the map (4) as

colim
n∈N

H∗(Gn−i;k)→ colim
n∈N

H∗(Gn;k) = H∗(G∞;k) ' H∗(G∞ × C;P CX∗i)

induced by the group monomorphisms Gn−i → Gn, what gives the conclusion.
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Relations between H∗(G∞;F∞), H∗(C;F ) and H∗(G∞;k) The (classical)
Künneth formula gives the following corollaries of Theorem 2.1.

Corollary 2.2. If k is a field, then, under the assumptions of Definition 1.2,
we have a natural isomorphism

H∗(G∞;F∞) ' H∗(G∞;k)⊗
k
H∗(C;F )

of graded k-vector spaces.

Corollary 2.3. If k is the ring of integers Z, then, under the assumptions of
Definition 1.2, we have a natural short exact sequence of abelian groups

0→
⊕
i+j=n

Hi(G∞;Z)⊗Hj(C;k)→ Hn(G∞;F∞)→
⊕

i+j=n−1

TorZ1 (Hi(G∞;Z), Hj(C;F ))→ 0

for all n ∈ N.

Case of symmetric groups ([1], revisited) Remind that Γ is the skeleton
of the category of finite pointed sets whose objets are [i] := {0, . . . , i} with 0 as
base-point (for i ∈ N). Si F is an object of F(Γ;k), we define the cross-effect

cri(F ) := Ker (F ([i])→ F ([i− 1])⊕i)

where the arrows are induced by the morphisms rj : [i]→ [i−1] (for j = 1, . . . , i)
sending t on t for t < j, j on 0 and t on t−1 for j < t ≤ i. The k-module cri(F )
is endowed with a natural Σi-action (see [7] for details about these cross-effects).

Theorem 2.4 (Betley). Let F be a functor in F(Γ;k). There is a natural
isomorphism

H∗(Σ∞;F∞) '
⊕
i∈N

H∗(Σ∞ × Σi; cri(F ))

where Σ∞ acts trivially on cri(F ).

Sketch of proof. Let Ω (resp. Θ(= FI)) the categories having as objects the
finite sets n := {1, . . . , n} for n ∈ N and as morphisms the surjective (resp.
injective) functions. We have a canonical faithful functor α : Θ→ Γ which adds
an extra base-point on objects (n 7→ [n]) and has the obvious effect on arrows.

As Θ satisfies the assumptions of Definition 1.2, Theorem 2.1 implies that it
is enough to exhibit a natural isomorphism

H∗(Θ;α∗F ) '
⊕
i∈N

H∗(Σi; cri(F )).

The left Kan extension Lanαop is an exact functor given by

Lanαop(F )(E) =
⊕

A∈Q(E)

F (A \ {∗A})

where Q(E) denotes the set of quotients of the pointed set E and ∗A the base-
point of A.

So, we get a natural isomorphism

H∗(Θ;α∗F ) ' TorΓ
∗ (Lanαop(k), F ) ' TorΓ

∗ (k[Q], F ).

6



We can then use Pirashvili’s theorem “à la Dold-Kan” (see [6] or [7]) to get

H∗(Θ;α∗F ) ' TorΩ
∗ (cr k[Q], crF )

where cr is an explicit equivalence F(Γ;k)→ F(Ω;k) (or F(Γop;k)→ F(Ωop;k)),
which satisfies crF (i) ' cri(F ) as Σi-module and crk[Q] ' k[Q] where Q(E),
for a finite set E, is the set of its quotients. As we have an isomorphism

Q '
⊔
i∈N

Ω(−, i)/Σi

of functors Ωop → Set and Σi acts freely on the sets Ω(n, i), we get

TorΩ
∗ (k[Q], T ) '

⊕
i∈N

H∗(Σi;T (i))

what gives the conclusion.

3 Strategy for other comparison results
The previous case of homology of symmetric groups with coefficients into Γ-
modules is exceptionnally easy because:

• we get a general result for twisted stable homology, without any polyno-
mial assumption (indeed, this assumption is almost free: all Γ-module is
analytic, that is, colimit of polynomial functors);

• the proof is not hard from the general Theorem 2.1: one has only to play
with Kan extensions which are exact and explicit.

In other interesting examples, the situation is harder: Theorem 2.1 gives an
interpretation of twisted stable group homology in terms of functor homology
groups whose computation is out of direct reach (in particular because the
tools in functor homology studied in previous talks do not apply to categories
satisfying the assumptions of Definition 1.2).

The strategy is then to compare the result directly given by Theorem 2.1
with functor homology given by more managable categories (for which some
computations are available) through spectral sequences associated to derived
Kan extensions. This requires a polynomial hypothesis: we can not get good
comparison results without this. In each particular situation, we need differ-
ent “concrete” arguments to do this, but Scorichenko’s work [9] (which applies
directly for general linear group) is a general source of inspiration.
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