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In this whole lecture, k denotes a commutative ground ring and, for a small
category C, F(C;k) denotes the (abelian) category of functors from C to k−Mod
(left k-modules).

1 Change of source category: Kan extensions

1.1 Adjunction at the source
Proposition 1.1. Let ϕ : C → D and ψ : D → C be functors between small
categories. Assume that ϕ is left adjoint to ψ. Then ϕ∗ : F(D;k)→ F(C;k) is
right adjoint to ψ∗ : F(C;k)→ F(D;k): one has natural isomorphisms

HomF(C;k)(F,ϕ
∗G) ' HomF(D;k)(ψ

∗F,G)

(for F in F(C;k) and G in F(D;k)) of k-modules, which can be derived into
natural isomorphisms

Ext∗F(C;k)(F,ϕ
∗G) ' Ext∗F(D;k)(ψ

∗F,G)

of graded k-modules.
In a dual way, one has natural isomorphisms

F ⊗
D
ψ∗G ' ϕ∗F ⊗

C
G

(for F in F(Dop;k) and G in F(C;k)) of k-modules, which can be derived into
natural isomorphisms

TorD∗ (F,ψ∗G) ' TorC∗(ϕ
∗F,G)

of graded k-modules.

Proof. Use the natural isomorphism ψ∗P Cc ' PDϕ(c) (for c ∈ Ob C).

Example 1.2. For a field k, denote by Vk the category of finite-dimensional k-
vector spaces and by Ik : Vk → Ab the forgetful functor. Suppose that k → K is
a finite extension of degree d. Then the base change functor T := K⊗

k
− : Vk →

VK is adjoint on both sides to the forgetful functor F : VK → Vk. Moreover, we
have F ∗Ik = IK and T ∗IK ' K ⊗

k
Ik(' I⊕dk ). So, Proposition 1.1 gives

Ext∗F(VK)(IK , IK) = Ext∗F(VK)(IK , F
∗Ik) ' Ext∗F(Vk)(T

∗IK , Ik) ' . . .

1



K ⊗
k

Ext∗F(Vk)(Ik, Ik) ' Ext∗F(Vk)(Ik, Ik)⊕d.

Remark 1.3. Adjunctions at the target transport also to functor categories
(without changing the sides).

An important situation where it is fruitful to use Proposition 1.1 is the
following: let C be a small category having finite coproducts (resp. products),
denoted by t (resp. ×). The functor t : C × C → C (resp. × : C × C → C)
is left (resp. right) adjoint to the diagonal functor C → C × C (more generally,
this adjunction extends to iterated (co)products and diagonal, between C and
Cn, for each n ∈ N).

For example:

Corollary 1.4 (Sum/diagonal adjunction for functors). Let C be a small cat-
egory having finite coproducts. Let A, B and F be functors in F(C;k). Then
one has a natural isomorphism

Ext∗F(C;k)(A⊗B,F ) ' Ext∗F(C×C;k)(A�B,t∗F )

of graded k-modules.

We will see simple but important applications of this corollary later.

1.2 Kan extensions
Let ϕ : C → D be a functor between small categories. As the category of k-
modules has all limits and colimits, the precomposition functor ϕ∗ : F(D;k)→
F(C;k) has a left and a right adjoint, called respectively the left and the right
Kan extension along ϕ (see [3], chap. X, § 3, for example) and denoted by Lanϕ

and Ranϕ : F(C;k)→ F(D;k). We have explicit formulas:

Lanϕ(F )(d) = colim
ϕ/d

F ◦ πd

where ϕ/d is the comma category associated to the functor C(−, d) ◦ ϕ : C →
Setsop (it has as objects the pairs (c, f) where c is an object of C and f : ϕ(c)→
d a morphism in C) and πd : ϕ/d → C is the forgetful functor ((c, f) 7→ c on
objects). Dually, one has

Ranϕ(F )(d) = lim
ϕ\d

F ◦ π′d

where ϕ \ d is the comma category associated to the functor C(d,−) ◦ ϕ : C →
Sets.

In general, it is not easy to give simpler expressions for Kan extensions,
which are not usually exact functors. Nevertheless, in some good situations, Kan
extensions are exact and given by explicit formula (without limit or colimit!).
The previous paragraph gives examples of such situations (when the functor ϕ
has an adjoint), but there are others. Let us give a useful class of examples.

Let C be a small category, Φ : C → Sets a functor, CΦ the corresponding
category of elements and ϕ : CΦ → C the forgetful functor. Then one has
canonical isomorphisms

Lanϕ(F )(c) '
⊕

x∈Φ(c)

F (c, x).
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Kan extensions are also useful for tensor products of functors over a small
category: if ϕop : Cop → Dop (which will be sometimes denoted simply by ϕ)
denotes the functor having the same effect on objects and arrows as ϕ : C → D,
one has natural isomorphisms

(ϕop)∗F ⊗
C
G ' F ⊗

D
Lanϕ(G)

(for F in F(Dop;k) and G in F(C;k)) and

F ⊗
C
ϕ∗G ' Lanϕop(F )⊗

D
G

(for F in F(Cop;k) and G in F(D;k)).

1.3 Derived Kan extensions
In the situation of the previous paragraph, we can derive on the left (resp. right)
the left (resp. right) Kan extension of ϕ, getting functors given on objects by:

L•Lanϕ(F )(d) = H•(ϕ/d;F ◦ πd)

and
R•Ranϕ(F )(d) = H•(ϕ \ d;F ◦ π′d).

The left derived Kan extension gives rise to natural spectral sequences (of
composite functors)

Ei,j
2 = ExtiF(D;k)(LjLanϕ(F ), G)⇒ Exti+j

F(C;k)(F,ϕ
∗G)

and
E2

i,j = TorDi (F,LjLanϕ(G))⇒ TorCi+j(ϕ
∗F,G).

We will use these formal facts in the second part of this lectures’ serie,
through the following consequence:

Proposition 1.5. Let ϕ : C → D be a functor between small categories and F
a functor in F(D;k). Let us denote by Li, for all integer i ≥ 0, the functor of
F(Dop;k) defined by Li(d) = H̃i(ϕ \ d;k) (where H̃ denotes reduced homology).

Assume that TorD∗ (Li, F ) = 0 for each i. Then the canonical map

H∗(C;ϕ∗F )→ H∗(D;F )

is an isomorphism.

2 Künneth formula
Hypothesis 2.1. In this section, we assume that k is a field or the ring Z of
integers.

We begin with the case of homology, which is easier than the one of coho-
mology.

The first result is the only one which requires no assumption on functors.
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Proposition 2.2. Let C1, C2 be small categories and F1, F2, G1, G2 functors in
F(Cop1 ;k), F(Cop2 ;k), F(C1;k) and F(C2;k) respectively. Then one has a natural
isomorphism

(F1 � F2) ⊗
C1×C2

(G1 �G2) ' (F1 ⊗
C1
G1)⊗ (F2 ⊗

C2
G2).

Sketch of proof. Use the canonical isomorphism P C1c1 � P C2c2 ' P C1×C2(c1,c2) and the
fact that tensor products (over a small category, or external) commute to col-
imits in each variable.

The following result is a consequence of the previous one thanks to gen-
eral machinery of homological algebra (the usual Künneth formula, for tensor
products of complexes of k-modules).

Proposition 2.3. Let C1, C2 be small categories and F1, F2, G1, G2 functors in
F(Cop1 ;k), F(Cop2 ;k), F(C1;k) and F(C2;k) respectively. Assume that all these
functors take k-flat values. Then one has, for each integer n, a (split) exact
sequence

0→
⊕

i+j=n

TorC1i (F1, G1)⊗
k

TorC2j (F2, G2)→ TorC1×C2n (F1 � F2, G1 �G2)→ . . .

⊕
r+s=n−1

Tork1(TorC1r (F1, G1),TorC2s (F2, G2))→ 0,

so, in particular, we have a natural isomorphism

TorC1×C2• (F1 � F2, G1 �G2) ' TorC1• (F1, G1)⊗ TorC2• (F2, G2)

of graded k-modules when TorC1• (F1, G1) (or TorC2• (F2, G2)) is k-flat.

Let us go to cohomology: we need here assumptions even before deriving
Hom-functors.

Proposition 2.4. Let C1, C2 be small categories and Fi, Gi functors in F(Ci;k)
(i = 1, 2). Assume that:

1. all these functors take k-flat values;

2. F1 and F2 are finitely presented;

3. HomF(C1;k)(F1, G1) is k-flat.

Then the natural map

HomF(C1;k)(F1, G1)⊗HomF(C2;k)(F2, G2)→ HomF(C1×C2;k)(F1 � F2, G1 �G2)

(sending f1 ⊗ f2 on f1 � f2) is an isomorphism.

Sketch of proof. Use again the canonical isomorphism P C1c1 �P C2c2 ' P
C1×C2
(c1,c2) , then

take finite presentations of F1 and F2 and the flatness assumptions.

Here again, the following proposition follows from general homological alge-
bra.
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Proposition 2.5. Let C1, C2 be small categories and Fi, Gi functors in F(Ci;k)
(i = 1, 2). Assume that:

1. all these functors take k-flat values;

2. F1 and F2 have resolutions by finitely generated projectives;

3. Ext∗F(C1;k)(F1, G1) is k-flat.

Then we have a natural isomorphism

Ext∗F(C1;k)(F1, G1)⊗ Ext∗F(C2;k)(F2, G2)→ Ext∗F(C1×C2;k)(F1 � F2, G1 �G2)

of graded k-modules.

Remark 2.6. The statements given in this section are not optimal (in particular,
one needs less flatness assumptions than stated): we prefered to avoid too tech-
nical statements to concentrate on particularly useful special forms of Künneth
formula in functor (co)homology.

3 Applications to polynomial functors

3.1 Pirashvili’s lemma
The following classical result is easy but extremely useful. It has a lot of varia-
tions (with torsion groups instead of extension groups, for example).

Proposition 3.1 (Pirashvili). Let C be a small category with finite coproducts
(resp. products) and a null object and d ≥ 0 an integer. Let A0, . . . , Ad and F
be functors in F(C;k). Assume that the Ai are reduced (that is, Ai(0) = 0) and
F is polynomial of degree ≤ d. Then

Ext∗F(C;k)(A0 ⊗ · · · ⊗Ad, F ) = 0 (resp. Ext∗F(C;k)(F,A0 ⊗ · · · ⊗Ad) = 0).

Proof. One proves for example the result when C has finite coproducts.
Thanks to Corollary 1.4,

Ext∗F(C;k)(A0 ⊗ · · · ⊗Ad, F ) ' Ext∗F(Cd+1;k)(A0 � · · ·�Ad, s
∗F )

where s : Cd+1 → C is the iterated coproduct. Now, as F is polynomial of degree
≤ d, s∗F splits into a direct sum of functors factorizing through a projection
functor π : Cd+1 → Cd forgetting one of the factors, let us say (a0, . . . , ad) 7→
(a1, . . . , ad) for example. This functor is adjoint (on both sides) to the functor
(a1, . . . , ad) 7→ (0, a1, . . . , ad), as 0 is a zero object of C. Now, Proposition 1.1
implies

Ext∗F(Cd+1;k)(T, π
∗U) ' Ext∗F(Cd;k)(T (0,−), U)

so that Ext∗F(Cd+1;k)(T, π
∗U) is zero if the multifunctor T is multireduced, that

is zero as soon as one of its entries is zero. This gives the conclusion.
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3.2 Graded exponential functors
Graded exponential functors are particularly manageable in functor (co)homology.
An example of very useful statement is the following.

Proposition 3.2. Let C be a small category with finite coproducts and a null
object, E• a graded exponential functor in F(Cop;k) and F1, . . . , Fn functors in
F(C;k).

If k is a field, then we have a natural isomorphism

TorC∗(E
•, F1 ⊗ · · · ⊗ Fn) ' TorC∗(E

•, F1)⊗ · · · ⊗ TorC∗(E
•, Fn)

of bigraded k-modules.
The same statement is true for k = Z if we assume moreover that all

the functors Ei and Fj take torsion-free values and that the abelian groups
TorCr (Es, Ft) are also all torsion-free.

Sketch of proof. First use the version of Corollary 1.4 for Tor-groups (or apply
directly Proposition 1.1). After apply the exponential property and Proposi-
tion 2.3.

A variation of the same argument gives:

Proposition 3.3. Let C be a small category with finite coproducts and a null
object and A an additive functor in F(Cop) taking torsion-free values. Assume
that F1, . . . , Fn are functors in F(C;k) such that their values and the abelian
groups TorCi (A⊗m, Fj) are all torsion-free. Then we have for all integer d ≥ 0 a
natural graded isomorphism

TorC∗(A
⊗d, F1⊗· · ·⊗Fn) '

⊕
i1+···+in=d

TorC∗(A
⊗i1 , F1)⊗· · ·⊗TorC∗(A

⊗in , Fn) ↑Σd

Σi1
×···×Σin

which is Σd-equivariant.

Applying this statement to the category gr of finitely generated free groups
and to the covariant functor a (abelianization) and its dual a∨ (which lies in
F(grop)), we get the computation of Torgr∗ ((a∨)⊗d, a⊗n) (and so, of Ext∗F(gr)(a

⊗n, a⊗d)

by duality) from Torgr∗ ((a∨)⊗i, a), which can be computed by the explicit projec-
tive resolution of a given by the bar resolution on a free group (see the previous
talk).

4 Use of explicit complexes

4.1 Hyper(co)homology spectral sequences
Let us remind the following classical fact of homological algebra: if

C0 → C1 → · · · → Cn → . . .

is a cochain complex in an abelian categoryA with enough projective or injective
objects, and T is an object of A, then we have two functorial (converging)
cohomological spectral sequences with first pages

Ii,j1 = ExtjA(T,Ci)
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and
IIi,j2 = ExtiA(T,Hj(C∗))

and with the same abutment, which is called the hypercohomology of the complex
C∗ with coefficient in T . (All our cohomological spectral sequences E•,•∗ are
graded in such a way that the differential dr : Er → Er has bidegree (r, 1− r).)

This applies in particular in the functor categories F(C;k). We have also, in
these, “dual” hyperhomology spectral sequences.

4.2 Koszul, de Rham and bar complexes
In this paragraph, we give some classical complexes which are often useful in
functor categories (these complexes have a lot of small variations).

If V is a (left) k-module and i and integer, let us define Si(V ) (resp. Λi(V ))
be the i-th symmetric (resp. exterior) power or V (by convention, it is zero
if i < 0). So, S• and Λ• are quotients of the graded endofunctor T • (tensor
algebra) of k-modules. Moreover, S• and Λ• are graded exponential functors 1.
For all integers i and j, one can define natural transformations

κ : Si ⊗ Λj → Si+1 ⊗ Λj−1

and
d : Si ⊗ Λj → Si−1 ⊗ Λj+1

as the composites

κ : Si ⊗ Λj → Si ⊗ (Λ1 ⊗ Λj−1) ' (Si ⊗ S1)⊗ Λj−1 → Si+1 ⊗ Λj−1

using the coproduct on Λ• and the product on S• and

d : Si ⊗ Λj → (Si−1 ⊗ S1)⊗ Λj ' Si−1 ⊗ (Λ1 ⊗ Λj)→ Si−1 ⊗ Λj+1

using the coproduct on S• and the product on Λ•.
It is an easy exercice to check that d ◦ d and κ ◦ κ are zero. So, d and κ

define on S∗ ⊗ Λ• to structures of complexes, which are called respectively de
Rham and Koszul complexes.

The following result is classical.

Proposition 4.1. The Koszul complex has zero cohomology, except in total
degree 0, on projective k-modules.

If k is a field of characteristic 0, then the de Rham complex has zero coho-
mology, except in total degree 0.

Sketch of proof. As all functors in these complexes commute to filtered colimits,
it is enough to prove the result on finitely generated k-modules. It is even enough
to restrict to finitely generated free k-modules. The key point is that Koszul
and de Rham differentials are compatible, in a suitable sense, with the bigraded
exponential structure on S∗⊗Λ•. So, the (usual) Künneth formula (which applies
easily because, on projective modules, our functors take projective values) shows
that is indeed enough to prove that our complexes are acyclic when evaluated
on k, what is a very simple computation.

1The source category (k-modules) is not equivalent to a small one, but it does not matter.
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If k is a field of positive characteristic, the de Rham complex is no longer
acyclic, but its cohomology can be computed (see [2], § 3).

The reduced (or normalized) bar complex, truncated and shifted, on a group
V gives a functorial complex

· · · → k̄[V ]⊗n → k̄[V ]⊗(n−1) → · · · → k̄[V ],

where k̄[V ] denotes the augmentation ideal of the k-algebra of the group V ,
whose differential is given by a usual (simplicial) alternated sum and whose
homology is naturally isomorphic (in non-negative degree) to the group homol-
ogy H∗+1(V ;k). The previous lecture gave applications of this when V is a
free group. It is also very useful when V is an abelian group. In the follow-
ing paragraph, we will deal with k = Q: we have then a natural isomorphism
H∗(V ;Q) ' Λ∗(V ⊗Q). (Note that V 7→ H∗(V ;Z) is not well understood as a
graded endofunctor of abelian groups.)

4.3 An example of application
Proposition 4.2. Let A be a small additive category, a an object of A and A
an additive functor in F(A;Q). Then we have ExtiF(A;Q)(A(a,−) ⊗ Q, A) = 0
for i > 0.

Proof. Let us precompose the previous version of the bar complex (for k = Q)
with A(a,−): we get a complex

· · · → (P̄Aa )⊗n → (P̄Aa )⊗(n−1) → · · · → P̄Aa

of functors of F(A;Q) whose homology in degree n is Λn+1(A(a,−)⊗Q). Apply-
ing Ext∗(−, A) to this complex, we get two hypercohomology spectral sequences
with the same abutment and with first pages:

• Ii,j1 = Extj((P̄Aa )⊗(i+1), A), which is zero except for i = j = 0, because
(P̄Aa )⊗(i+1) is projective and Hom((P̄Aa )⊗(i+1), F ) ' cri+1(F )(a, . . . , a);

• IIi,j2 = Exti(Λj+1(A(a,−) ⊗ Q), A). This term is zero for j > 0, be-
cause Λj+1 is rationally a direct summand of T j+1, and Exti((A(a,−) ⊗
Q)⊗(j+1), A) vanishes thanks to Proposition 3.1.

So, the second spectral sequence collapses at the second page. As it has the
same abutment as the first spectral sequence, which 0 except in degree 0, we
deduce that IIi,02 = 0 for i > 0, what is the wished conclusion.

Remark 4.3. 1. The situation is completely different if Q is replaced by a
finite field F. In this case, Franjou, Lannes and Schwartz proved in
[2] that, in the category F(VF;F), the dimension of the F-vector space
ExtnF(VF;F)(Id, Id) is 0 when n is odd and 1 when n is even. The ingredi-
ents of the proof include hypercohomology spectral sequences associated
to de Rham and Koszul complexes, Pirashvili’s cancellation result (Propo-
sition 3.1) but also another specific lemma, due to Kuhn; moreover, the
proof is quite more long and tricky (nevertheless, when F has character-
istic 2, one can reach quicker the result — see § 2 of [2]). Note that the
result of [2] was obtained earlier by Breen in the very long paper [1], with
a completely different point of view (there is no functor category in this
work!).
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2. By using Proposition 4.2, one can see that, for all integer d, the inclusion
of the abelian subcategory Fd(A;Q) of polynomial functors of degree ≤ d
into F(A;Q) induces isomorphism between extension groups. For d = 1,
it is an easy exercise from the proposition; the general case requires more
work but is also reachable with the tools introduced in this lecture.

References
[1] Lawrence Breen. Extensions du groupe additif. Inst. Hautes Études Sci.

Publ. Math., (48):39–125, 1978.

[2] Vincent Franjou, Jean Lannes, and Lionel Schwartz. Autour de la coho-
mologie de Mac Lane des corps finis. Invent. Math., 115(3):513–538, 1994.

[3] Saunders Mac Lane. Categories for the working mathematician, volume 5 of
Graduate Texts in Mathematics. Springer-Verlag, New York, second edition,
1998.

9


	Change of source category: Kan extensions
	Adjunction at the source
	Kan extensions
	Derived Kan extensions

	Künneth formula
	Applications to polynomial functors
	Pirashvili's lemma
	Graded exponential functors

	Use of explicit complexes
	Hyper(co)homology spectral sequences
	Koszul, de Rham and bar complexes
	An example of application


