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Abstract. Let M ⊂ CN be a generic real submanifold of class C4. In case M is
Levi non-degenerate in the sense Tumanov, we construct stationary discs for M . If
furthermore M satisfies an additional non-degeneracy condition, we apply the method
of stationary discs to obtain 2-jet determination of CR automorphisms of M .

Introduction

An important part of the theory of functions of several complex variables going back to
the pioneering work of Poincaré [32], is the understanding of biholomorphic equivalence
of domains. In dimension N = 1, the Riemann mapping theorem asserts that domains
have only topological invariants. A similar statement fails in higher dimension, which
is connected with the fact that smooth boundaries of domains in CN , N ≥ 2, possess
infinitely many local biholomorphic invariants.

The simplest test case is the real hyperquadric Q given in CN by the equation

<ew =
N−1∑
j=1

±|zj|2, (z, w) ∈ CN−1 × C.

From the infinite-dimensional family of all local biholomorphic self-maps of CN , only a
finite-dimensional subfamily preserves Q. That family, known as the (biholomorphic)
automorphism group of Q plays a fundamental role in understanding automorphism
groups of more general real hypersurfaces satisfying a non-degeneracy condition called
Levi non-degeneracy. For a real submanifold M ⊂ CN and a point p ∈M , we denote by
Aut(M, p) the set of germs of biholomorphic maps fixing p and such that F (M) ⊂ M .
We recall here the classical statement contained in the work of Chern and Moser [16].

Theorem 0.1. [16] If a real hypersurface M ⊂ CN is real analytic Levi non-degenerate
at a point p ∈ M, then elements of Aut(M, p) are uniquely determined by their jets of
order two at p.

Let us remark that finite jet determination for holomorphic mappings between real
analytic real hypersurfaces has attracted considerable attention these past years. For a
survey, we refer for instance to the articles of Zaitsev [39] or Baouendi, Ebenfelt and
Rothschild [3]. We also point out the works of Ebenfelt [18], Ebenfelt and Lamel [19],
Kolar, Zaitsev and the third author [28] in case of C∞ real hypersurfaces. Finally the
case of finitely smooth real hypersurfaces has been studied in [8, 9, 11].

The aim of this paper is to study the finite jet determination problem for finitely
smooth real submanifolds M ⊂ CN of codimension d > 1 using the method developed
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by the first two authors in [8]. The present work is motivated in particular by the works
of Beloshapka [7] and of the second and third authors [14]. More precisely, according
to Beloshapka [7], if M ⊂ CN is real analytic generic submanifold of codimension d and
Levi non-degenerate at p ∈ M in the sense of Beloshapka then elements of Aut(M, p)
are uniquely determined by their jets of order two at p. We emphasize that various not
equivalent definitions for the generalization to real submanifolds M ⊂ CN of codimension
d > 1 of the notion of Levi non-degeneracy condition for a hypersurface have been
introduced in the literature [4], [7], [35]. See also [13] for a survey of these different
notions.

Important work on finite jet determination for holomorphic mappings between real
submanifolds of higher codimension has also been done; we refer for instance to the arti-
cles of Zaitsev [38], Baouendi, Ebenfelt and Rotschild [1], Baouendi, Mir and Rotschild
[5], Lamel and Mir [29], Juhlin [25], Juhlin and Lamel [26] for the real analytic case and
Kim and Zaitsev [27] for the C∞ case. We now state our main result.

Theorem 0.2. Let M ⊂ CN be a C4 generic real submanifold. Assume that M is fully
non-degenerate at p ∈M. Then any germ at p of CR automorphism of M of class C3 is
uniquely determined by its jet of order two at p.

We refer to Definition 1.2 for the notion of fully non-degenerate submanifold; this
notion is closely related to the non-degeneracy condition introduced by Tumanov in
[35]. Moreover, in case M ⊂ C4 the fully non-degeneracy condition is equivalent to the
non-degeneracy condition in the sense of Beloshapka, and thus we have

Corollary 0.3. Let M ⊂ C4 be a C4 generic real submanifold. Assume that M is
Levi non-degenerate at p ∈ M in the sense of Beloshapka. Then any germ at p of CR
automorphism of M of class C3 is uniquely determined by its jet of order two at p.

As a direct consequence of Theorem 0.2, we also have the following corollary.

Corollary 0.4. Let M ⊂ CN be a C4 generic real submanifold. Assume that M is fully
non-degenerate at p ∈ M. Then elements of Aut(M, p) are uniquely determined by its
jet of order two at p.

Our approach is based on the study of an important family of invariant objects at-
tached to real submanifolds, namely the stationary discs. These particular holomorphic
discs were first introduced by Lempert in [30] as extremal discs for the Kobayashi met-
ric of bounded smooth strongly convex domains in Cn. The description of such discs
and their applications were later on developed in more general settings such as strictly
pseudoconvex hypersurfaces by Huang [24] and Pang [31] or in higher codimension by
Tumanov [35]; see also the work of Sukhov and Tumanov [34] who construct stationary
discs attached to small perturbations of S3×S3 ⊂ C4, where S3 denotes the unit sphere in
C2. Recently, the method of stationary discs has been particularly adapted to the study
of jet determination problems for finitely smooth real hypersurfaces [8, 9, 11]. In order
to prove Theorem 0.2, we construct stationary discs attached to M ; the idea of attaching
such a disc to M is a boundary value problem, namely a nonlinear Riemann-Hilbert type
problem. Inspired by the work of Forstnerič [20] and of Globevnik [21, 22] on analytic
discs attached to totally real submanifolds, we analyze the existence and the structure
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of solutions of such nonlinear Riemann-Hilbert type problems (see Theorem 2.1 and its
Corollary 2.2). In order to study geometric properties of stationary discs, it is essential
for the method developed in [8] to have the description of all stationary discs attached
to the model hyperquadric. Our approach, instead, is based on the choice of a ”good”
initial stationary disc and is therefore more subtle. Finally we emphasize that the fully
non-degeneracy condition imposed on M is natural in our context since it ensures that
one can construct ”enough” stationary discs with ”good” geometric properties.

The paper is organized as follows. In section 1, we introduce and discuss the notion of
fully non-degeneracy condition for a generic real submanifold in the light of the various
conditions for non-degenerate real submanifolds introduced by Beloshapka and Tumanov.
We also introduce the spaces of functions needed for the rest of the sequel and recall the
definition and properties of stationary discs. In section 2, we first construct an initial
stationary disc for the the quadric part of the generic real submanifold that will enable
us to construct a ”big enough” family of stationary discs. In section 3, we discuss crucial
geometric properties of this family that will allow us to prove Theorem 0.2 in section 4.

1. Preliminaries

We denote by ∆ the unit disc in C, by ∂∆ its boundary, and by B ⊂ CN the unit ball
in CN .

1.1. Non-degenerate generic real submanifolds. Let M ⊂ CN be a C2 generic
real submanifold of real codimension d ≥ 1 through p. Under these hypotheses, and
after a local biholomorphic change of coordinates, we may assume that p = 0 and that
M ⊂ CN = Cn

z × Cd
w is given locally by the following system of equations

(1.1)


r1 = <ew1 − tz̄A1z +O(3) = 0

...

rd = <ewd − tz̄Adz +O(3) = 0

where A1, . . . , Ad are Hermitian matrices of size n (see [2] and Section 7.2 [15] for more
details). In the remainder O(3), z is of weight one and =mw of weight two. We set
r = (r1, . . . , rd).

We recall the following definition introduced by Beloshapka in [6, 7].

Definition 1.1. A C2 generic real submanifold M of CN of codimension d and given by
(1.1) is Levi non-degenerate at 0 in the sense of Beloshapka if the following two conditions
are both satisfied

(a) A1,...,Ad are linearly independent (equivalently on R or C)

(b)
⋂d
j=1 KerAj = {0}

The Levi non-degeneracy is a biholomorphic invariant notion (see for instance [13]).
Note that the non-degeneracy condition introduced in [38, 2] is exactly condition (b). In
our context, we need to work with a stronger notion of non-degeneracy.
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Definition 1.2. A C2 generic real submanifold M of CN of codimension d given by
Equations (1.1) is fully non-degenerate at 0 if the following two conditions are both
satisfied

(f) there exists V ∈ Cn such that spanC{A1V, . . . , AdV } is of dimension d,

(t) if there exists a real linear combination
∑d

j=1 cjAj that is invertible.

Note that (f) implies that d ≤ n and also implies (a). We point out that in case d = 2
it can be checked that (f) and (a) are equivalent, but in general they are not equivalent
as illustrated by the following example.

Example 1.3. The quadric in C8 given by
<ew1 = |z1|2 + |z2|2 + |z3|2 + |z4|2

<ew2 = |z1|2

<ew3 = |z2|2

<ew4 = |z1|2 + <e(z1z2)

is Levi non-degenerate at the origin but does not satisfy (f).

Condition (f) is tightly related to the existence of analytic discs whose centers fill an
open set (see Proposition 3.3) and determined by their 1-jet (see Proposition 3.6). Recall
that condition (t) was introduced by Tumanov [35] and is essential for the construction of
stationary disc (see Theorem 2.1); for this reason, we say that M is Levi non-degenerate
at 0 in the sense of Tumanov if it satisfies conditon (t). Condition (t) implies (b)
but not (a), except in the hypersurface case, since one can choose A1 invertible and
A2 = . . . = Ad = 0. Moreover, as pointed out in [13], the Levi non-degeneracy in
the sense of Beloshapka does not necessarily imply (t). Finally we note that in case
M ⊂ C4, the fully non-degeneracy condition and the Levi non-degeneracy in the sense
of Beloshapka coincide.

1.2. Stationary discs. We first introduce the spaces of functions we need. Let k ≥ 0 be
an integer and let 0 < α < 1. We denote by Ck,α = Ck,α(∂∆,R) the space of real-valued
functions defined on ∂∆ of class Ck,α. The space Ck,α is endowed with its usual norm

‖f‖Ck,α =
k∑
j=0

‖f (j)‖∞ + sup
ζ 6=η∈∂∆

‖f (k)(ζ)− f (k)(η)‖
|ζ − η|α

,

where ‖f (j)‖∞ = max
∂∆
‖f (j)‖. We set Ck,αC = Ck,α + iCk,α. The space Ck,αC is equipped with

the norm

‖f‖Ck,αC
= ‖<ef‖Ck,α + ‖=mf‖Ck,α

We denote by Ak,α the subspace of analytic discs in Ck,αC consisting of functions f : ∆→
C, holomorphic on ∆ with trace on ∂∆ belonging to Ck,αC .

Let M be a C2 generic real submanifold of CN of codimension d given by (1.1). An
analytic disc f ∈ (Ak,α)N is attached to M if f(∂∆) ⊂ M . Following Lempert [30] and
Tumanov [35] we define
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Definition 1.4. A holomorphic disc f : ∆→ CN continuous up to ∂∆ and attached to
M is stationary for M if there exists a holomorphic lift f = (f, f̃) of f to the cotangent
bundle T ∗CN , continuous up to ∂∆ and such that for all ζ ∈ ∂∆, f(ζ) ∈ NM(ζ) where

(1.2) NM(ζ) := {(z, w, z̃, w̃) ∈ T ∗CN | (z, w) ∈M, (z̃, w̃) ∈ ζN∗(z,w)M \ {0}},

and where

N∗(z,w)M = spanR{∂r1(z, w), . . . , ∂rd(z, w)}

is the conormal fiber at (z, w) ofM . The set of these lifts f = (f, f̃), with f non-constant,
is denoted by S(M).

Note that equivalently, an analytic disc f ∈ (Ak,α)N attached to M is stationary for M

if there exists d real valued functions c1, . . . , cd : ∂∆→ R such that
∑d

j=1 cj(ζ)∂rj(0) 6= 0
for all ζ ∈ ∂∆ and such that the map

ζ 7→ ζ
d∑
j=1

cj(ζ)∂rj(f(ζ), f(ζ))

defined on ∂∆ extends holomorphically on ∆.
The set of such small discs is invariant under CR automorphisms; recall that if F is

a CR automorphism of M and f an analytic disc attached to M then the map F ◦ f
defined on ∂∆ extends holomorphically to ∆ (see Proposition 6.2.2 in [2] or Theorem 1
p. 200 in [15]). Moreover recall the following essential result due to Webster [37] in the
hypersurface case and to Tumanov [35] for higher codimension submanifolds.

Proposition 1.5 ([35]). Let M be a C2 generic real submanifold of CN of codimension
d with local defining function of the form (1.1). Then M is Levi non-degenerate at
0 in the sense of Tumanov if and only the conormal bundle N∗M is totally real at(

0,
∑d

j=1 cj∂rj(0)
)

, where the c1, . . . , cd are such that
∑d

j=1 cjAj is invertible.

We end this section with an important remark on the smoothness of stationary discs.
Let M be a C4 generic real submanifold of CN of codimension d with local defining
function of the form (1.1). Assume that M is Levi non-degenerate at 0 in the sense

of Tumanov (t). Consider a lift of stationary disc f = (f, f̃) for M satisfying f(1) =

(0,
∑d

j=1 cj∂rj(0)) where
∑d

j=1 cjAj is invertible. It follows from Proposition 1.5 and

from Chirka (Theorem 33 in [17]) that such discs are of class C2,α for any 0 < α < 1 near
ζ = 1.

1.3. Partial indices and Maslov index. The construction of stationary discs attached
to a generic real submanifold of CN (see Theorem 2.1) relies on a non-linear Riemann-
Hilbert problem whose study is related to certain geometric integers, namely the partial
indices and the Maslov index, associated to the linearized problem. In this section, we
recall the definition of these integers. We denote by GlN(C) the general linear group on
CN . Let G : ∂∆→ GlN(C) be a smooth map. We consider a Birkhoff factorization (see
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Section 3 [21] or [36]) of −G−1G on ∂∆:

−G(ζ)
−1
G(ζ) = B+(ζ)


ζκ1 (0)

ζκ2

. . .
(0) ζκN

B−(ζ),

where ζ ∈ ∂∆, B+ : ∆̄ → GlN(C) and B− : (C ∪∞) \∆ → GlN(C) are smooth maps,
holomorphic on ∆ and C \∆ respectively. The integers κ1, . . . , κN are called the partial

indices of −G−1G and their sum κ :=
∑N

j=1 κj the Maslov index of −G−1G. Recall that
the Maslov index κ is equal to the winding number of the function

ζ 7→ det
(
−G(ζ)−1G(ζ)

)
at the origin ([22], see also Lemma B.1 [12] for a proof); here det

(
−G(ζ)−1G(ζ)

)
denotes

the determinant of −G(ζ)−1G(ζ).

2. Construction of stationary discs

In this section, we construct lifts of stationary discs attached to small pertubations
of a quadric submanifold, non-degenerate in the sense of Tumanov (t). In particular we
show that the set of such lifts form a finite dimensional submanifold of the Banach space
of analytic discs.

2.1. Construction of stationary discs in the quadric case. Consider a quadric
submanifold Q ⊂ CN = Cn

z × Cd
w of real codimension d

(2.1)


ρ1 = <ew1 − tz̄A1z = 0

...

ρd = <ewd − tz̄Adz = 0

where A1, . . . , Ad are hermitian matrices of size n. We set ρ = (ρ1, . . . , ρd). We will
determine a special family of lifts of stationary discs in S(Q). We suppose the quadric
Q to be Levi non-degenerate at 0 in the sense of Tumanov (t). Note that the Levi non-
degeneracy condition (t) is not strictly needed to determine some stationary discs for Q
but will be essential later in order to construct discs attached to small perturbations of
Q (see Theorem 2.1). We have

∂ρ1 = (∂zρ1, ∂wρ1) =

(
− tz̄(A1)1, . . . ,− tz̄(A1)n,

1

2
, 0 . . . , 0

)
...

∂ρd = (∂zρd, ∂wρd) =

(
− tz̄(Ad)1, . . . ,− tz̄(Ad)n, 0 . . . , 0,

1

2

)
where (Aj)l denotes, for j = 1, . . . , d and l = 1, . . . , n, the lth column of Aj. Consider
a disc f = (h, g) ∈ (Ak,α)n+d, with h ∈ (Ak,α)n and g ∈ (Ak,α)d, and d real valued

functions c1, . . . , cd : ∂∆ → R such that
∑d

j=1 cj(ζ)∂ρj(0) 6= 0. Note that if the map
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ζ 7→ ζ
∑d

j=1 cj(ζ)∂ρj(f(ζ), f(ζ)) defined on ∂∆ extends holomorphically on ∆ then we

must have cj(ζ) = ajζ + bj + ajζ with aj ∈ C and bj ∈ R. We restrict to the case
where c = (c1, . . . , cd) is a real constant vector-valued function and chosen such that

A :=
∑d

j=1 cjAj is invertible. It follows that

ζ

d∑
j=1

cj(ζ)∂ρj(f(ζ), f(ζ)) =

(
−ζ th(ζ)A,

ζ

2
c

)
.

Consequently, h must be of the form

(2.2) h(ζ) = V + ζW,

with V ∈ Cn, W ∈ Cn \ {0} and g is thus of the form

(2.3) gj(ζ) = tV AjV + tWAjW + 2 tV AjW ζ + iyj

with yj ∈ R, j = 1, . . . , d. Note that, in such case, we have

(2.4) h̃(ζ) = −ζ th(ζ)A

and

(2.5) g̃(ζ) =
ζ

2
c.

2.2. Defining equations of the conormal bundle and Riemann-Hilbert prob-
lem. Let Q ⊂ Cn+d be a quadric submanifold of real codimension d defined by {ρ = 0}
(2.1). Denote by (z, w, z̃, w̃) the coordinates on T ∗Cn+d, with z̃ = (z̃1, . . . , z̃n) and
w̃ = (w̃1, . . . , w̃d). The 2n+ 2d real defining equations for NQ(ζ), ζ ∈ ∂∆, (see (1.2) for
its definition) are given by

ρ̃1(ζ)(z, w, z̃, w̃) =
w1 + w1

2
− tz̄A1z = 0,

...
...

...

ρ̃d(ζ)(z, w, z̃, w̃) =
wd + wd

2
− tz̄Adz = 0,

ρ̃d+1(ζ)(z, w, z̃, w̃) =
(
z̃1 + 2 tz̄

∑d
j=1 w̃j(Aj)1

)
+
(
z̃1 + 2 tz

∑d
j=1 w̃j(Aj)1

)
= 0,

...
...

...

ρ̃d+n(ζ)(z, w, z̃, w̃) =
(
z̃n + 2 tz̄

∑d
j=1 w̃j(Aj)n

)
+
(
z̃n + 2 tz

∑d
j=1 w̃j(Aj)n

)
= 0,

ρ̃d+n+1(ζ)(z, w, z̃, w̃) = i
(
z̃1 + 2 tz̄

∑d
j=1 w̃j(Aj)1

)
− i
(
z̃1 + 2 tz

∑d
j=1 w̃j(Aj)1

)
= 0,

...
...

...

ρ̃2n+d(ζ)(z, w, z̃, w̃) = i
(
z̃n + 2 tz̄

∑d
j=1 w̃j(Aj)n

)
− i
(
z̃n + 2 tz

∑d
j=1 w̃j(Aj)n

)
= 0,

ρ̃2n+d+1(ζ)(z, w, z̃, w̃) = i
w̃1

ζ
− iζw̃1 = 0,

...
...

...

ρ̃2n+2d(ζ)(z, w, z̃, w̃) = i
w̃d
ζ
− iζw̃d = 0,
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where (Aj)l denotes, for j = 1, . . . , d and l = 1, . . . , n, the lth column of Aj. We set
ρ̃ := (ρ̃1, . . . , ρ̃2n+2d). For a general quadric M = {r = 0} with r = (r1, . . . , rd) of the
form (1.1), we denote by r̃ the corresponding defining functions of NM(ζ). This allows
to consider lifts of stationary discs as solutions of a nonlinear Riemann-Hilbert type

problem. Indeed, an analytic disc f ∈
(
Ak,α

)2n+2d
is the lift of a stationary disc for

M = {r = 0} if and only if

(2.6) r̃(f) = 0 on ∂∆.

The next section is devoted to the study of this problem.

2.3. Construction of stationary discs. We recall that the set of lifts of non-constant
stationary discs attached to a generic real submanifold M ⊂ CN is denoted by S(M).
We have the following theorem which is crucial in our approach of the jet determination
problem.

Theorem 2.1. Let Q ⊂ Cn+d be a quadric submanifold of real codimension d defined
by {ρ = 0} (2.1). Assume that Q is Levi non-degenerate at 0 in the sense of Tumanov

(t). Consider an initial lift of a stationary disc, f0 = (h0, g0, h̃0, g̃0) of the form (2.2),

(2.3), (2.4), (2.5) where c1, . . . , cd are chosen such that the matrix A :=
∑d

j=1 cjAj is

invertible. Then there exist open neighborhoods U of ρ in (C4(B))d and V of 0 in R4n+4d,
a real number ε > 0 and a map

F : U × V →
(
A1,α

)2n+2d

of class C1 such that:

i. F(ρ, 0) = f0,
ii. for all r ∈ U , the map

F(r, ·) : V → {f ∈ S({r = 0}) | ‖f − f0‖1,α < ε}

is one-to-one and onto.

As a direct corollary, we obtain

Corollary 2.2. Under the assumptions of Theorem 2.1, there exist open neighborhoods
U of ρ in (C4(B))d and a real number ε > 0 such that

{f ∈ S({r = 0}) | ‖f − f0‖1,α < ε}

forms a C1 real submanifold of dimension 4n+ 4d of the Banach space of analytic discs.

Remark 2.3. Working with the Banach spaces C4(B) and A1,α is crucial for our approach,
which is based on the implicit function theorem. The required smoothness is indeed
necessary for the below map F (see (2.7)) to be C1.

Remark 2.4. In [34], Sukhov and Tumanov prove Theorem 2.1 in the special case the
model quadric is S3 × S3 ⊂ C4, where S3 denotes the unit sphere in C2 (see Corollary
3.2 and Theorem 3.4 [34]). Their approach also relies on the study of the corresponding
Riemann-Hilbert problem using the methods developed by [20, 21, 22]. See also [35, 33].
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Proof of Theorem 2.1. In a neighborhood of (ρ,f0) in (C4(B))d × (A1,α)
2n+2d

, we define
the following map between Banach spaces

F : (C4(B))d ×
(
A1,α

)2n+2d → (C1,α)2n+2d

by

(2.7) F (r,f) := r̃(f).

Here we use the notation

r̃(f)(ζ) = r̃(ζ)(f(ζ)), ζ ∈ ∂∆.

The map F is of class C1 (see Lemma 5.1 in [23] and Lemma 6.1 and Lemma 11.2 in [21]

which generalizes to C1,α). Recall that an analytic disc f ∈ (A1,α)
2n+2d

is the lift of a
stationary disc for {r = 0} if and only if it solves the nonlinear Riemann-Hilbert problem
(2.6). In other words, for any fixed r ∈ (C4(B))d, the zero set of F (r, ·) coincides with
S({r = 0}). In order to prove Theorem 2.1, we apply the implicit function theorem to

the map F . We need to consider the partial derivative of F with respect to (A1,α)
2n+2d

at (ρ,f0)

(2.8) ∂2F (ρ,f0)f = 2<e
[
G(ζ)f

]
where G(ζ) is the following complex valued square matrix of size 2n+ 2d

G(ζ) := (ρ̃z(f0), ρ̃w(f0), ρ̃z̃(f0), ρ̃w̃(f0)) .

Recall that the non-degeneracy in the sense of Tumanov is equivalent to the fact that
the conormal bundle is totally real (see Proposition 1.5); with respect to the choice of
the initial disc, this ensures that the matrix G(ζ) in invertible for all ζ ∈ ∂∆. For sake
of clarity, this fact will be proved again below. We need to show that (see p. 39 [22])

i. the map ∂2F (ρ,f0) is onto, and
ii. the real dimension of the kernel of ∂2F (ρ,f0) is 4n+ 4d.

2.3.1. Surjectivity of ∂2F (ρ,f0). It is more convenient to reorder coordinates and con-

sider (w, z, z̃, w̃) instead of (z, w, z̃, w̃). Accordingly, discs f are of the form (g, h, h̃, g̃).
We still denote by G(ζ) the corresponding reordered matrix, namely

G(ζ) := (ρ̃w(f0), ρ̃z(f0), ρ̃z̃(f0), ρ̃w̃(f0)) .

The matrix G(ζ) is square of size 2n+ 2d, upper block triangular and given by

(2.9) G(ζ) =

 1
2
Id (∗)

G2(ζ)
(0) −iζId

 ,
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where Id denotes the identity matrix of size d and G2(ζ) is the following square matrix
of size 2n

(2.10) G2 =



2
∑d

j=1 g̃j(Aj)11 . . . 2
∑d

j=1 g̃j(Aj)n1 1 0
...

...
...

. . .

2
∑d

j=1 g̃j(Aj)1n . . . 2
∑d

j=1 g̃j(Aj)nn 0 1

2i
∑d

j=1 g̃j(Aj)11 . . . 2i
∑d

j=1 g̃j(Aj)n1 −i 0
...

...
...

. . .

2i
∑d

j=1 g̃j(Aj)1n . . . 2
∑d

j=1 g̃j(Aj)nn 0 −i


.

where g̃j = cj/2ζ and (Aj)kl, k = 1, . . . , n, l = 1, . . . , n, denotes the kl coefficient of

Aj. Recall that the real constants c1, . . . , cd are chosen such that A :=
∑d

j=1 cjAj is
invertible. It follows that

G2(ζ) =

(
ζ tA In
iζ tA −iIn

)
is invertible on ∂∆, and that, accordingly, so is G(ζ). Due to the expression of G(ζ), in
order to show its sujectivity, it is enough to show that the map

L1 :
(
A1,α

)2n → (C1,α)2n

defined by L1 = 2<e
[
G2(ζ) ·

]
is surjective. For this purpose, we will show that the

partial indices k1, . . . , k2n of −G−1
2 G2 are nonnegative (see [21] or Section 4 in [22]).

Right multiplication by the constant matrix

(
tA−1 0

0 In

)
does not change the partial

indices, and gives us the matrix (
ζIn In
iζIn −iIn

)
After permuting rows and columns, which also does not change the partial indices, we
obtain

(2.11) G[
2 =

R 0
. . .

0 R

 , with R(ζ) =

(
ζ 1
iζ −i

)
.

By a direct computation we have

−(G[
2)−1G[

2 =

P 0
. . .

0 P

 with P (ζ) = −
(

0 ζ
ζ 0

)
,

which, for instance, decomposes as which decomposes as

(2.12) P (ζ) =

(
0 −1
−1 0

)(
ζ 0
0 ζ

)(
1 0
0 1

)
.

It follows that the partial indices of −(G[
2)−1G[

2 are all equal to one and that, therefore,
the map ∂2F (ρ,f0) is onto.
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2.3.2. Kernel of ∂2F (ρ,f0). Recall (see [21] or Section 5 in [22]) that the real dimen-
sion of the kernel of ∂2F (ρ,f0) is given by κ + 2n + 2d, where κ is the Maslov index of

−G(ζ)−1G(ζ) and is equal to the winding number of the function ζ 7→ det
(
−G(ζ)−1G(ζ)

)
at the origin. A direct computation - using the form of G(ζ) and in particular G2(ζ) -
shows that κ = 2n+ 2d.

�

3. Geometric properties of stationary discs

In [8], the first two authors describe geometric properties of stationary discs attached
to small deformations of a given Levi non-degenerate hyperquadric; it is important for
that approach to have an explicit description of all stationary discs attached to the
model hypersurface. In our case, however, it does not seem possible to obtain an explicit
description of all stationary discs attached to the model quadric in general, and therefore,
it is more subtle to obtain that centers of stationary discs fill an open set (Proposition
3.3) and that their lifts are determined by their 1-jet at 1 (Proposition 3.6).

3.1. Discs with pointwise constraints. In Section 3.2, we wish to show that centers
of stationary discs fill an open set. This will be achieved by showing that the map f 7→
f(0) ∈ Cn+d restricted to a smaller family of discs is a diffeomorphism onto its image.
For dimensional reasons, it is essential to impose pointwise constraints on stationary
discs in order to obtain a 2n+ 2d real dimensional family (see Theorem 3.1).

We consider a quadric submanifold Q ⊂ Cn+d of real codimension d given by {ρ = 0}
(2.1), Levi non-degenerate at 0 in the sense of Tumanov (t) and an initial lift of a

stationary disc f0 = (h0, g0, h̃0, g̃0) of the form (2.2), (2.3), (2.4), (2.5) where c1, . . . , cd
are chosen such that the matrix A :=

∑d
j=1 cjAj is invertible. We wish to show that for

r close enough to ρ and for some positive ε, the set{
f ∈ S({r = 0}), ‖f − f0‖1,α < ε, f(1) = 0, g̃(1) =

(c1

2
, . . . ,

cd
2

)}
is a real submanifold of dimension 2n + 2d of the Banach space of analytic discs. To
this end we introduce spaces of analytic discs with prescribed pointwise constraints. We
denote by A1,α

0 the subspace of C1,α
C of functions of the form (1− ζ)f , with f ∈ A1,α. We

equip A1,α
0 with the following norm

(3.1) ‖(1− ζ)f‖A1,α
0

= ‖f‖C1,αC

which makes it a Banach space and isomorphic to A1,α. We also denote by C1,α
0 the

subspace of C1,α of functions of the form (1 − ζ)v with v ∈ C1,α
C . The space C1,α

0 is
equipped with the norm

‖(1− ζ)f‖C1,α0
= ‖f‖C1,αC

.

Note that Ck,α0 is a Banach space.

Recall that the initial lift of stationary disc f0 = (h0, g0, h̃0, g̃0) that we are considering
is of the form (2.2), (2.3), (2.4), (2.5) where c = (c1, . . . , cd) is chosen such that the matrix
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j=1 cjAj is invertible. Assume furthermore that W = −V ; more explicitly

(3.2) f0 =

(
(1− ζ)V, 2(1− ζ) tV A1V, . . . , 2(1− ζ) tV AdV, (1− ζ) tV A,

ζ

2
c

)
.

We define the affine space A to be the subset of (A1,α)2n+2d of discs of the form(
(1− ζ)h, (1− ζ)g, (1− ζ)h̃, (1− ζ)g̃ +

ζ

2
c

)
,

and we set

S0({r = 0}) = S({r = 0}) ∩ A.
Notice that f0 ∈ S0({r = 0}). We have

Theorem 3.1. Let Q ⊂ Cn+d be a quadric submanifold of real codimension d given by
(2.1), Levi non-degenerate at 0 in the sense of Tumanov (t). Let f0 = (h0, g0, h̃0, g̃0) a
lift of a stationary disc for Q of the form (3.2). Then there exist open neighborhoods U
of ρ in (C4(B))d and V of 0 in R2n+2d, a real number ε > 0 and a map

F0 : U × V → A

of class C1 such that:

i. F0(ρ, 0) = f0,
ii. for all r ∈ U the map

F0(r, ·) : V → {f ∈ S0({r = 0}) | ‖f − f0‖A1,α
0
< ε}

is one-to-one and onto.

We will need the following theorem from [10].

Theorem 3.2 (Theorem 2.4 [10]). Let G : ∂∆→ GLN(C) be a smooth map of the form

G(ζ) =


G1(ζ) (∗)

G2(ζ)
. . .

(0) Gr(ζ)

 ,

where Gj(ζ) ∈ GLNj(C) for all j = 1, . . . , r, for all ζ ∈ ∂∆. Let 0 < α < 1. Consider
the following operator

L :
(
A1,α

0

)N → (
C1,α

0

)N
defined by

L(f) = 2<e
[
Gf
]
.

For j = 1, . . . , r we denote by κjl , l = 1, . . . , Nj, the partial indices of −Gj
−1
Gj and by

κ the Maslov index of −G−1
G. We have

(i) If κjl ≥ 0 for all l = 1, . . . , Nj and j = 1, . . . , r then the map L is onto.
(ii) Assume that L is onto. Then the kernel of L has real dimension κ.
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Proof of Theorem 3.1. The proof is basically a repetition of the one of Theorem 2.1. We
consider the corresponding map between Banach spaces

F0 : (C4(B))d × (A1,α
0 )2n+2d → (C1,α

0 )2n+2d

defined by

(3.3) F0(r,f) := r̃

(
h, g, h̃, g̃ +

ζ

2
c

)
,

where f = (h, g, h̃, g̃). Its differential ∂2F0(ρ,f ∗0) is still of the form (2.8) where G is
given by (2.9); here f ∗0 denotes the disc

(3.4) f ∗0 =
(
(1− ζ)V, 2(1− ζ) tV A1V, . . . , 2(1− ζ) tV AdV, (1− ζ) tV A, 0

)
.

The surjectivity and real dimension of its kernel are now insured by Theorem 3.2; more
precisely, strictly following the notations of Theorem 3.2, we have r = 3, G1(ζ) = 1

2
Id

with d indices all equal to zero, G2(ζ) given by (2.10) with 2n indices all equal to 1 and
G3(ζ) = −iζId with d indices all equal to two. Therefore the differential ∂2F0(ρ,f ∗0) is
surjective and the real dimension of its kernel is κ = 2n+ 2d. �

3.2. Filling an open set. We now prove that in case the quadric Q is fully non-
degenerate at 0, the family of stationary discs covers an open set of Cn+d. We point out
that the fact that Q satisfies condition (f), namely that there exists V ∈ Cn such that
spanC{A1V, . . . , AdV } is of dimension d, is essential here.

Proposition 3.3. Let Q ⊂ Cn+d be a quadric submanifold of real codimension d given
by (2.1), fully non-degenerate at 0. Consider an initial disc f0 of the form

f0 =

(
(1− ζ)V, 2(1− ζ) tV A1V, . . . , 2(1− ζ) tV AdV, (1− ζ) tV A,

ζ

2
c

)
where V is given by (f) and c = (c1, . . . , cd) is chosen such that the matrix

∑d
j=1 cjAj is

invertible. Then there exist an open neighborhood U of ρ in (C4(B))d and a positive ε
such that for all r ∈ U the set

{f(0) | f ∈ S0({r = 0}), ‖f − f0‖A1,α
0
< ε}

contains an open set of Cn+d.

We will prove that there exist an open neighborhood U of ρ in (C4(B))d and a positive
ε such that for all r ∈ U the map

Ψr : {f ∈ S0({r = 0}), ‖f − f0‖A1,α
0
< ε} → Cn+d

defined by
Ψr(f) = f(0)

is a diffeomorphism onto its image. We consider the corresponding differential

df0Ψρ : Tf0S0(Q)→ Cn+d

with df0Ψρ(f) = f(0). Recall that according to Theorem 3.1, the tangent space Tf0S0(Q)

is the kernel of the differential ∂2F0(ρ,f ∗0) = 2<e
[
G(ζ) ·

]
where F0, f ∗0 and G are



14 FLORIAN BERTRAND, LÉA BLANC-CENTI AND FRANCINE MEYLAN

respectively defined in (3.3), (3.4) and (2.9), and is of dimension 2n + 2d. Proposition
3.3 is then a consequence of the following lemma.

Lemma 3.4. The linear map df0Ψρ : Tf0S0(Q)→ Cn+d is injective.

Proof. We follow strictly the notations introduced in the proof of Theorem 2.1. Let
f = (1−ζ)(h, g, h̃, g̃) be an element of Tf0S0(Q) in the kernel of df0Ψρ, that is, satisfying
f(0) = 0. Since the tangent space Tf0S0(Q) is the kernel of the differential ∂2F0(ρ,f ∗0) =

2<e
[
G(ζ) ·

]
, we have

(3.5) G(ζ)f +G(ζ)f = 0,

where G is of the form (2.9); more explicitly G is of the form

(3.6) G(ζ) =

 1
2
Id B(ζ) 0
0 G2(ζ) C(ζ)
0 0 −iζId

 , ζ ∈ ∂∆,

where Id denotes the identity matrix of size d, B(ζ) is the following matrix of size d×2n

(3.7) B =

−(A1)1h0(ζ) . . . −(A1)nh0(ζ) 0 . . . 0
...

...
...

...
−(Ad)

1h0(ζ) . . . −(Ad)
nh0(ζ) 0 . . . 0

 = (1− ζ)B1,

and C(ζ) is the following matrix of size 2n× d

C =



2 th0(A1)1 . . . 2 th0(Ad)1
...

...

2 th0(A1)n . . . 2 th0(Ad)n
−2i th0(A1)1 . . . −2i th0(Ad)1

...
...

−2i th0(A1)n . . . −2i th0(Ad)n


where we recall that (Aj)l denotes, for j = 1, . . . , d and l = 1, . . . , n, the lth column of
Aj. The last d rows of Equation (3.5) are of the form

iζ(1− ζ)g̃j(ζ)− iζ(1− ζ)g̃j(ζ) = 0, j = 1, . . . , n,

from which it follows that
g̃j = aj − ajζ, aj ∈ C.

Solving the system backward, the previous 2n rows of Equation (3.5) are of the form

G2(ζ)

(
(1− ζ)h

(1− ζ)h̃

)
+G2(ζ)

(
(1− ζ)h

(1− ζ)h̃

)
+ C(ζ)(1− ζ)g̃ + C(ζ)(1− ζ)g̃ = 0.

Following the operations that lead to consider G[
2 (see Equation (2.11)), we obtain n

systems

R(ζ)

(
(1− ζ)hk
(1− ζ)h̃k

)
+R(ζ)

(
(1− ζ)hk

(1− ζ)h̃k

)
+ Ck(ζ)(1− ζ)g̃ + Ck(ζ)(1− ζ)g̃ = 0
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with the abuse of notation h = tAh and where

Ck =

(
2 th0(A1)k . . . 2 th0(Ad)k
−2i th0(A1)k . . . −2i th0(Ad)k

)
.

Equivalently, we have(
(1− ζ)hk
(1− ζ)h̃k

)
= −R(ζ)−1R(ζ)

(
(1− ζ)hk

(1− ζ)h̃k

)
−R(ζ)−1

(
Ck(ζ)(1− ζ)g̃ + Ck(ζ)(1− ζ)g̃

)

= −
(

0 ζ
ζ 0

)(
(1− ζ)hk

(1− ζ)h̃k

)
−R(ζ)−1

(
Ck(ζ)(1− ζ)g̃ + Ck(ζ)(1− ζ)g̃

)
.

Recall that

−
(

0 ζ
ζ 0

)
= Θ−1

(
ζ 0
0 ζ

)
Θ

with

Θ =

(
1 −1
i i

)
.

Therefore

Θ

(
(1− ζ)hk
(1− ζ)h̃k

)
=

(
ζ 0
0 ζ

)
Θ

(
(1− ζ)hk
(1− ζ)h̃k

)
−ΘR(ζ)−1

(
Ck(ζ)(1− ζ)g̃ + Ck(ζ)(1− ζ)g̃

)
.

Note that

ΘR(ζ)−1 =
1

2

(
−(1− ζ) i(1 + ζ)
i(1 + ζ) 1− ζ

)
.

Setting

(
uk
ũk

)
= Θ

(
hk
h̃k

)
, we have(

(1− ζ)uk
(1− ζ)ũk

)
=

(
ζ 0
0 ζ

)(
(1− ζ)uk
(1− ζ)ũk

)
−ΘR(ζ)−1

(
Ck(ζ)(1− ζ)g̃ + Ck(ζ)(1− ζ)g̃

)
.

and therefore, dividing by 1− ζ,(
uk
ũk

)
= −

(
uk
ũk

)
−ΘR(ζ)−1

(
Ck(ζ)g̃ − Ck(ζ)ζg̃

)
,

that is (
uk + uk
ũk + ũk

)
= −ΘR(ζ)−1

(
Ck(ζ)g̃ − Ck(ζ)ζg̃

)
.

A direct computation shows that

Ck(ζ)g̃ − Ck(ζ)ζg̃ =

(
vk(ζ)− ζvk(ζ)

i(vk(ζ) + ζvk(ζ))

)
where

vk(ζ) = 2
d∑
j=1

th0(Aj)kg̃j = 2
d∑
j=1

tV (Aj)k(1− ζ)(aj − ajζ),
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and

−ΘR(ζ)−1
(
Ck(ζ)g̃ − Ck(ζ)ζg̃

)
=

(
vk(ζ) + vk(ζ)

−i
(
vk(ζ)− vk(ζ)

)) .
Therefore {

uk + uk = vk(ζ) + vk(ζ)

ũk + ũk = −i
(
vk(ζ)− vk(ζ)

)
from which it follows that{

uk = 4
∑d

j=1<e( tV (Aj)k)<e(aj) + iyk − 4
∑d

j=1<e( tV (Aj)k)ajζ

ũk = 4
∑d

j=1=m( tV (Aj)k)<e(aj) + iỹk − 4
∑d

j=1=m( tV (Aj)k)ajζ

where yk, ỹk ∈ R, and thus, since hk = 1/2(uk − iũk),

(3.8) hk(ζ) = 2
d∑
j=1

tV (Aj)k<e(aj) +
ỹk
2

+ i
yk
2
− 2

d∑
j=1

tV (Aj)kajζ.

We write h = X + Y ζ. Now, the first d rows of Equation (3.5) give rise to

1

2
((1− ζ)g + (1− ζ)g) = −B(ζ)(1− ζ)h−B(ζ)(1− ζ)h

and so
1

2
(g − ζg) = −B(ζ)h+B(ζ)ζh

= −(1− ζ)(B1h+B1h).

Recall that B and B1 are defined in (3.7); we use the inconsequential abuse of notation
B = (B, 0) since B just acts on the h component of the discs. This implies directly that

(3.9) g(ζ) = −4<e
(
B1X

)
+ 2B1Y − 2B1Y ζ.

Now since h(0) = 0 and g(0) = 0 we have from (3.8) and (3.9){
X = 0

B1Y = 0.

We will prove using the second set of equations, namely B1Y = 0, that a1 = . . . = ad = 0.
We have

B1Y = 2

(A1)1V . . . (A1)nV
...

...

(Ad)1V . . . (Ad)nV



∑d

j=1
tV (Aj)1aj

...∑d
j=1

tV (Aj)naj


= 2

(A1)1V . . . (A1)nV
...

...

(Ad)1V . . . (Ad)nV


︸ ︷︷ ︸

D1

 tV (A1)1 . . . tV (Ad)1
...

...
tV (A1)n . . . tV (Ad)n


︸ ︷︷ ︸

D2

a1
...
ad

 .
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Recall that we have assumed Q to satisfy conditon (f) and thus d ≤ n; in case d > n, D1

and D2 have rank less than d−1 and thus the d×d matrix D1D2 cannot be invertible. In
such case, the linear map dfΨρ : Tf0S0(Q)→ Cn+d is not injective; note also that this will
also be the case if A1, . . . , Ad are not linearly independent. Note that D1 = tD2. Since
V is given by condition (f), it follows that D1 is of rank d and therefore D1D2 = tD2D2

is positive definite. It follows that a1 = . . . = ad = 0. Since X = 0, we also have
y1 = . . . = yd = ỹ1 = . . . = ỹd = 0. This proves that dfΨρ : Tf0S0(Q) → Cn+d is
injective. �

Remark 3.5. Proposition 3.3 provides an open set O ⊂ Cn+d such that

O ⊂ {f(0) | f ∈ S0({rt = 0}), ‖f − f0‖A1,α
0
< ε}.

It follows directly from the proof that for any point q ∈ O, there exists an unique lift of
stationary disc f such that f(0) = q.

3.3. Injectivity of the jet map. Consider the linear jet map

j1 :
(
A1,α

)2n+2d → C2(2n+2d)

mapping f to its 1-jet at ζ = 1, namely

j1(f) =

(
f(1),

∂f

∂ζ
(1)

)
∈ C2(2n+2d).

Proposition 3.6. Let Q ⊂ Cn+d be a quadric submanifold of real codimension d given
by (2.1), fully non-degenerate at 0. Consider an initial disc f0 of the form

f0 =

(
(1− ζ)V, 2(1− ζ) tV A1V, . . . , 2(1− ζ) tV AdV, (1− ζ) tV A,

ζ

2
c

)
where V is given by (f) and c = (c1, . . . , cd) is chosen such that the matrix

∑d
j=1 cjAj is

invertible. Then there exist an open neighborhood U of ρ in (C4(B))d and a positive ε
such that for all r ∈ U the map j1 is injective on {f ∈ S0({r = 0}) | ‖f − f0‖1,α < ε};
in other words, such discs are determined by their 1-jet at 1.

Note that by the implicit function theorem, it is enough to prove that the restriction
of j1 to the tangent space Tf0S0(Q) of S0(Q) at the point f0 is injective. Moreover, the

tangent space Tf0S0(Q) is the kernel of the differential ∂2F0(ρ,f ∗0) = 2<e
[
G(ζ) ·

]
where

F0, f ∗0 and G are respectively defined in (3.3), (3.4) and (2.9). Proposition 3.6 is then a
consequence of the following lemma.

Lemma 3.7. The restriction of j1 to the kernel of 2<e
[
G(ζ) ·

]
is injective.

Proof. We follow strictly the notations introduced in the proofs of Theorem 2.1 and

Lemma 3.4. The main step of the proof is to describe the kernel of 2<e
[
G(ζ) ·

]
; this

was exactly done in Lemma 3.4. Let f = (1− ζ)(h, g, h̃, g̃) be an element of the kernel
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of 2<e
[
G(ζ) ·

]
with trivial 1-jet at 1. We have

g̃j = aj − ajζ, aj ∈ C
h = X + Y ζ

g(ζ) = −4<e
(
B1X

)
+ 2B1Y − 2B1Y ζ.

Since f has a trivial 1-jet at 1, we must have
aj ∈ R
X = −Y
<e
(
B1X

)
= 0.

It follows that

B1X = −B1Y = − tD2D2

a1
...
ad

 ∈ R

and since tD2D2 is positive definite, we must have a1 = . . . = ad = 0. This implies
directly that g = g̃ = 0 and h = 0. Equation (3.8) implies that yk = ỹk = 0 and thus

uk = ũk = 0 which finally leads to h̃ = 0. �

4. Jet determination of CR automorphisms

Let k be a positive integer. Let M ⊂ CN be a C4 generic real submanifold and let
p ∈ M . We denote by Autk(M, p) the set of germs at p of CR automorphisms F of M
of class Ck; in particular we have F (p) = p and F (M) ⊂M .

Theorem 4.1. Let M ⊂ CN be a C4 generic real submanifold. Assume that M is fully
non-degenerate at p ∈M . Then elements of Aut3(M, p) are uniquely determined by their
2-jet at p.

In order to prove Theorem 4.1, we need a technical lemma. Let M ⊂ CN be a C4

generic real submanifold given by {r = 0} (1.1), and let Q be its associated quadric part
defined by {ρ = 0} (2.1). We recall the following anisotropic dilation Λt : Cn+d → Cn+d

given by

Λt(z, w) = (tz, t2w).

We set Mt = Λ−1
t (M), rt = 1

t2
r ◦ Λt and Ft = Λ−1

t ◦ F ◦ Λt, where F ∈ Aut3(M, p). We

also recall that for an analytic disc f = (f, f̃) ∈ (A1,α)
2n+2d

where 0 < α < 1, we have

(Ft)∗f(ζ) =
(
Ft ◦ f(ζ), f̃(ζ)(df(ζ)Ft)

−1
)

for ζ ∈ ∆, and Ft ◦ f(ζ) is well defined thanks to Proposition 6.2.2 [2]. The following
lemma follows from the same arguments used in Section 5.1 [8] or Section 5.1 [9].

Lemma 4.2. We have the following:

i. Let U be a neighborhood of ρ in C4 topology. Then for t small enough, rt ∈ U .
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ii. Let F ∈ Aut3(M, p) with a trivial 2-jet. There exists a positive constant K such that

for all f = ((1− ζ)h, (1− ζ)g, (1− ζ)h̃, (1− ζ)g̃ + cζ) ∈ A we have (Ft)∗f ∈ A and

‖(Ft)∗f − f‖A1,α
0
< tK

(
max{‖h‖1,α, ‖g‖1,α, ‖h̃‖1,α, ‖g̃‖1,α}

)3

.

Proof of Theorem 4.1. LetM ⊂ CN be a C4 generic real submanifold, fully non-degenerate
at at p ∈ M . We may assume that p = 0 and that M is locally given by {r = 0}
(1.1). Denote by Q the associated quadric part of M defined by {ρ = 0} (2.1). Let
F ∈ Aut3(M, 0) with a trivial 2-jet at 0. We wish to show that F is the identity.

Since M satisfies (f) at 0, there exists V ∈ Cn such that spanC{A1V, . . . , AdV } is of
dimension d. Consider an initial lift of stationary disc f0 of the form

f0 =

(
(1− ζ)V, 2(1− ζ) tV A1V, . . . , 2(1− ζ) tV AdV, (1− ζ) tV A,

ζ

2
c

)
where c1, . . . , cd are chosen such that

∑d
j=1 cjAj is invertible. Denote by U the neigh-

borhood of ρ in C4 topology obtained in Theorem 3.1. According to Lemma 4.2, for t

small enough, the defining functions rt =
1

t2
r ◦ Λt ∈ U . Reducing U , and therefore t, if

necessary, Proposition 3.3 provides an open set O ⊂ Cn+d such that

O ⊂ {f(0) | f ∈ S0({rt = 0}), ‖f − f0‖A1,α
0
< ε/2}.

We will show that Ft = Λ−1
t ◦F ◦Λ is equal to the identity on the open set O. Let q ∈ O

and let f be the (unique) lift of stationary disc in S0({rt = 0}) with ‖f − f0‖A1,α
0

<

ε/2 and such that f(0) = q. By invariance and since Ft has a trivial 2-jet, we have
(Ft)∗f ∈ S0({rt = 0}) and by Lemma 4.2 we have ‖(Ft)∗f − f0‖A1,α

0
< ε for t small

enough. Moreover, the discs (Ft)∗f and f have the same 1-jet. By Proposition 3.6 we
have (Ft)∗f = f and therefore Ft ◦ f(0) = f(0), that is Ft(q) = q. This achieves the
proof of Theorem 4.1. �
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[32] H. Poincaré, Les fonctions analytique de deux variables et la représentation conforme, Rend.

Circ. Mat. Palermo 23 (1907), 185-220.



STATIONARY DISCS AND FINITE JET DETERMINATION 21

[33] A. Scalari, A. Tumanov, Extremal discs and analytic continuation of product CR maps, Michigan
Math. J. 55 (2007), 25-33.

[34] A. Sukhov, A. Tumanov, Stationary discs and geometry of CR manifolds of codimension two,
Internat. J. Math. 12 (2001), 877-890.

[35] A. Tumanov, Extremal discs and the regularity of CR mappings in higher codimension, Amer.
J. Math. 123 (2001), 445-473.

[36] N.P. Vekua, Systems of singular integral equations, Noordhoff, Groningen (1967) 216 pp.
[37] S. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc. 71

(1978), 26-28.
[38] D. Zaitsev, Germs of local automorphisms of real analytic CR structures and analytic dependence

on the k-jets, Math. Res. Lett. 4 (1997), 1-20.
[39] D. Zaitsev, Unique determination of local CR-maps by their jets: a survey, Rend. Mat. Acc.

Lincei 13 (2002), 135-145.

Florian Bertrand
Department of Mathematics, Fellow at the Center for Advanced Mathematical Sciences (CAMS)
American University of Beirut, Beirut, Lebanon
E-mail address: fb31@aub.edu.lb
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