Equations différentielles linéaires

- 1. **Recollement** Trouver les solutions maximales de xy' 3y = 0.
- 2. Dérivabilité automatique

Soit $f:]-1; 1[\to \mathbb{R}$ continue telle que $\forall x \in]-1; 1[, f(x) = 1 + \int_0^x f(t)^2 dt$. Montrer que $\forall x \in]-1; 1[, f(x) \neq 0$. En déduire f.

- 3. **DSE à reconnaître** Trouver la solution générale de $(1-x^2)y''-xy'+y=0$.
- 4. **DSE à reconnaître** Trouver la solution générale de $xy'' + 3y' 4x^3y = 0$.
- 5. Système diagonalisable

Trouver la solution générale du système : $\begin{cases} x' = x + 8y + e^t \\ y' = 2x + y + e^{-3t} \end{cases}$

- 6. Convexité Soit $f: \mathbb{R}^+ \to \mathbb{R}$ de classe \mathcal{C}^2 telle que f(0) = 1 et f'(0) = 0. On suppose de plus que f vérifie l'équation différentielle y'' = -x|y|. Montrer que $f(x) \xrightarrow[x \to +\infty]{} -\infty$.
- 7. \mathbf{CN}/\mathbf{CS} -Dérivabilité automatique

Soit $E = \mathcal{C}^0([0;1], \mathbb{R})$. Pour $f \in E$, on pose $T(f)(x) = \int_0^x \left(\int_t^1 f(u) du \right) dt$. Vérifier que T est un endomorphisme de E et déterminer ses éléments propres.