Getaltheorie in het Vlakke land

Arithmétique en plat pays

APP 2011


Lundi 12 décembre 2011


Journée automnale
à

Lille.



Degeyter_1888

Lieu : LPP, Salle de Réunion



Programme

Saraswati

  • 11h-12h Leila Schneps (Paris)

  • Résultats récents dans la théorie des multizêtas formels et motiviques

    Je parlerai des differentes conjectures au sujet de l'algèbre de Lie "de double mélange" associée aux valeurs multizêtas, conjectures portant sur sa structure et sur ses relations avec d'autres algèbres de Lie. Je donnerai les résultats récents de H. Furusho, F. Brown et moi-même sur ce sujet.


    12h-14h

  • 14h-15h Olof Sisask (Londres)

  • A geometric approach to the Bourgain-Green theorem on arithmetic progressions in sumsets

    If a set A contains a positive proportion of the first N natural numbers, then the sumset A+A must contain a very long arithmetic progression. This elegant result was proved first by Bourgain in 1990, followed by a substantial improvement to the bound by Green in 2002. We shall describe a new proof of Green's bound that uses some simple tools from geometry, probability and analysis. Based on joint work with Ernie Croot and Izabella Laba.

  • 15h-16h Pieter Moree (Bonn)
  • The multiplicative order

    The invertible residue classes modulo n, Z/nZ^*, form a group of exponent λ(n), the Carmichael function. An element g of order λ(n) is said to be a primitive lambda-root. In case n is a prime we have λ(n)=n-1 and an element g of that order is said to be a primitive root. Despite the simplicity of the notion of multiplicative order, our understanding of it is rather poor. I will give a survey on this topic, with special focus on my own contributions over the years and address such questions as how often the order is maximal, how often it is even, and consider equidistribution (or lack thereof) of the order. In most cases we fix g, and let n run through the prime numbers.


  • 16h30-17h30 Arnaud Bodin (Lille)
  • Le problème de Waring pour les polynômes de plusieurs variables

    Nous prouvons que les polynômes de plusieurs variables peuvent se décomposer comme somme de puissances k-ième : P(x1,...,xn) = Q1(x1,...,xn)k+ ... + Qs(x1,...,xn)k, pourvu que les éléments du corps de base soient eux-même des sommes de puissances k-ième. Nous donnons aussi des bornes pour le nombre s de termes ainsi que pour les degré de Qik. C'est un travail en commun avec Mireille Car.



  • 19 h -


  • Brasserie La Paix

    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    Nous voudrions que tous les auditeurs s'inscrivent.

    For english speakers... We would like all participants to register.

    Contactez
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~




    Participants









    Avec le soutien de :






    GDR-STN