Éléments de mathématiques en sanskrit II Formation Doctorale

Gautami Bhowmik

Laboratoire Paul Painlevé

6 octobre 2020

Various Numerals

- <ロ > < 部 > < き > < き > し き 9 < の

- Verbal Forms
 - Primary Numbers eka (1), dvi (2), tri (3), catur (4), pañca (5), ṣaṭ
 (6), sapta (7), aṣta (8), nava (9)
 - Multiples of ten daśa (10), vimśati (20)....., Powers 10⁴ ayuta
 - Compositions "seven hundred and twenty" sapta śatāni vimšatiḥ in Ŗgveda (1.164.11).
- Oecimal System
 - Usual Decimal System $\{1, 2, ..., 9, 0\}$ Digit/Numeral is a symbol. Place value digit d in r^{th} place gives

$$d \times 10^{r-1}$$

Positional decimal in Āryabhaṭīya (499 CE).

 Sanskrit "digit" is anka (literally, "mark") and the term for "place" is sthāna.

Bhūtasaṃkhyā

- words to express numbers
 bhūta: being, saṃkhya: number
- several words for one number very useful for verse form
- significant words
- Unit place first. (Read \rightarrow , though written \leftarrow) Maxim aṅkānāṃ vāmato gatiḥ

Example

2020 : ākāśa-kara-nabhas-nayana sky-hand-sky-eye 0-2-0-2

Examples

0	śunya, kha, ananta						
1	indu, dharā, rūpa						
2	netra, kara, yamala, pakṣa						
3	agni ¹ , kāla						
4	veda, yuga						
5	vāṇa						
6	rasa ²						
:							
10	aṅgula, dik						
:							
24	jina						

 $^{^{1}}$ 3 sacrificial fires $g\bar{a}rhapatya$, $\bar{a}havan\bar{\imath}ya$, daksina householder's, oblation, southern 2 6 tastes of $\bar{A}yurveda$, madhur (sweet), amla (sour), lavana (salty), katu (bitter), tikta (bitter), $kas\bar{a}ya$ (astringent)

- Well-understood within a context
- Sporadic use in ancient texts (Srautasūtra of Kātāyana)
- About 100 occurences in Pingala (about 300 BCE). Decimals not used.
- With place value in Yavanajātaka, translation of a Greek text on astrology by Sphujidhvaja, who
 - Used bindu for zero in decimal. (Among the first occurences)
 - Ended text with nārāyaṇaṅkendu mitābda³ 191 śaka, 269-270 CE.
- Transmitted to Tibet and South-East Asia. Earliest inscription in Cambodian Śiva temple rasa-dasara-bāṇa 526 śaka⁴ as year of construction.

³nārāyana (1), aṅka, digits (9), indu, moon (1)

⁴624-25 CE

π in word-numeral

Example

A value of π in *Kriyākramakarī*

mādhavācāryaḥ punaḥ atopyāsannatamām
paridhisankhyāmuktavān |
vibudhanetragajāhihutāśanatriguṇavedabhavāraṇabāhavaḥ|
navanikharvamite vṛtivistare paridhimānamidam
jagadurbudhāḥ ||

$$\pi = \frac{2827433388233}{9 \times 10^{11}} = 3.141592653592$$

(correct to 11 places)

vibudha=33, netra=2, gaja=8, ahi=8, hutāśana=3, triguṇa=3, veda=4, bha=27, vāraṇa=8, bāhu=2, nava-nikharva= 9×10^{11} .

Kaṭapayādi

- Each consonant mapped to a digit $\{1, 2, \dots, 9, 0\}$
- Not to consecutive numbers.
- Very popular in Kerala.
- The first complete definition can be dated to 1819 CE.

1	2	3	4	5	6	7	8	9	0
ka	kha	ga	gha	'nа	ca	cha	ja	jha	ña
ţa	ṭha	фа	ḍha	ņа	ta	tha	da	dha	na
pa	pha	ba	bha	ma					
ya	ra	la	va	śa	șa	sa	ha		unattached vowels

- First datable occurence in 683 CE in a work of astronomy.
- The astronomical tables $z\bar{i}j$ in the arabic world used a similar system called *abjad* ⁵.

⁵ alif, bā, jim, dāl in arabic

Words for longer numbers: Example *bhavati* (Madame) for 644. Used for dates at the end of a work.

Example

sphītaṃ līlāvatārair idam iha kurutām āyurārogyasaukhyaṃ

Nārāyanīyam 100.11

The poem of <code>Bhaṭṭatiri</code>, ends by wishing long life, good health and happiness. But <code>āyurārogyasaukhyaṃ</code> can be read as a date in <code>kaṭapayādi</code>. We then have 17,12, 210 in <code>Kali-ahargaṇa</code>, the number of civil days from the beginning of the present Kali era. 6

 $^{^68}th$ December 1586 CE, the Kali era begun at the sunrise on Friday 18th February 3102.

Application

- 72 rāgas of *Melakarta* described in Carnatic music in *Caturdaṇḍi* prakāśikā (1660) of the musicologist *Veṅkaṭamakhin*. These are root/ pure rāgas, also called *Janaka* rāgas, using all 8 notes, *S*, *R*, *G*, *M*, *P*, *D*, *N*, *S*, ⁷ therefore complete (*saṃpurna*) with the notes always in order (*krama*).
- Within a rāga the notes S, P, S are fixed.
- Octave has 12 semi-tones

$$S, R_1, R_2 = G_1, R_3 = G_2, G_3, M_1, M_2, P, D_1, D_2 = N_1, D_3 = N_2, N_3.$$

- The couples R_i , G_j and D_k , N_ℓ can be chosen in $\binom{4}{2} = 6$ ways each, M has 2 choices. $72 = 6 \times 6 \times 2$.
- First two consonants of name of *rāga* in *Kaṭapayādi* gives its number, according to which the *rāga*s are arranged.
- The arrangement is cyclic, each cakra (cycle) contains exactly one R_i , G_j and all possible D_k , N_ℓ . First 36 ragas contain M_1 and the second M_2 but are otherwise identical.
- The 12 cakras named in Bhūtasaṃkhya : indu, netra,..., āditya.

⁷Comparable to *Do, Re, Mi, Fa, So, La, Ti, Do*

⁸Compare with $C, C^{\sharp}, D, D^{\sharp}, E, F, F^{\sharp}, G, G^{\sharp}, A, A^{\sharp}, B$

Prototype of Hashing system

- The Melakatra number *n* decides the notes.
 - $c = \left\lceil \frac{n}{6} \right\rceil$ fixes R_i , G_j . After an initial value of (1,1), $i = \left\lfloor \frac{c}{2} \right\rfloor$, $j = \begin{cases} c, & c \leq 3 \\ \left\lceil \frac{c}{2} \right\rceil, & c > 3 \end{cases}$

Example

rāga Suryākāntam, (sa 7, ya 1), Number 17, cakra 3, (agni),

$$SR_1G_3M_1PD_2N_3$$

$$c = \left\lceil \frac{17}{6} \right\rceil = 3, 17 = 5 \mod 6, m = 5, k = \left\lfloor \frac{5}{2} \right\rfloor = 2, \ell = \left\lceil \frac{5}{2} \right\rceil = 3$$

rāga Gamanāśrama, Number 53=39+17, cakra 9,

$$SR_1G_3M_2PD_2N_3$$

