Proximal methods for constrained cosparse modelling

N. Pustelnik

in collaboration with G. Cherchia, J.-C. Pesquet, and B. Pesquet-Popescu

Journée SMAI-SIGMA

18 novembre 2011

Outline

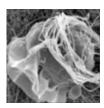
- 1. Problem : image recovery.
- 2. Regularized approach versus Constrained approach.
- 3. Proposed solution to the general constrained minimization problem.
- 4. Experimental results.
- 5. Conclusions.

Degradation model

$$z = \mathcal{P}_{\alpha}(T\overline{x})$$

- \overline{x} : original image in the Hilbert space \mathcal{H} which is assumed to be sparse after some appropriate transform,
- ightharpoonup T: a linear operator from \mathcal{H} to \mathbb{R}^K ,
- $\triangleright \mathcal{P}_{\alpha}$: effect of noise where α is the scaling parameter,
- \triangleright z : degraded image of size K.

Original (\overline{x})



Convolved $(T\overline{x})$

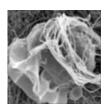
Degraded (z)

Degradation model

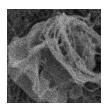
$$z = \mathcal{P}_{\alpha}(T\overline{x})$$

- \overline{x} : original image in the Hilbert space \mathcal{H} which is assumed to be sparse after some appropriate transform,
- ightharpoonup T: a linear operator from \mathcal{H} to \mathbb{R}^K ,
- $\triangleright \mathcal{P}_{\alpha}$: effect of noise where α is the scaling parameter,
- \triangleright z : degraded image of size K.

Original (\overline{x})



Convolved $(T\overline{x})$



Degraded (z)

Question: How can we recover \overline{x} from the observations z.

Existing works: Gaussian noise

Regularized approach

$$\min_{x \in \mathcal{H}} ||Tx - z||^2 + \lambda f(x)$$

[Tikhonov, 1963]

Constrained approach

$$\min_{\|Tx-z\|^2 \le \eta} f(x)$$
Combettes Trussell 1993

Existing works: Gaussian noise

→ Proximal methods

[Combettes, Pesquet, 2011]

Existing works: Gaussian noise

Regularized approach Constrained approach $\min_{x \in \mathcal{H}} \|Tx - z\|^2 + \lambda f(x)$ [Combettes, Trussell, 1991] [Tikhonov, 1963] $f = ||F \cdot ||^2$ → Gradient-based methods → POCS [Trussell, Civanlar, 1984] → Subgradient projections [Luo, Combettes, 1999] If $f(x) = \sum_{i} |(Fx)^{(i)}|_1$ (F: a wavelet transform, an analysis frame) [Elad et al,2007][Nam et al.,2011]

→ Proximal methods
[Combettes, Pesquet, 2011]

Existing works: Poisson noise

Regularized approach

$$\min_{x \in \mathcal{H}} D_{KL}(Tx, z) + \lambda f(x)$$

Constrained approach

$$\min_{D_{KL}(Tx,z) \le \eta} f(x)$$

Existing works : Poisson noise

Regularized approach

$$\min_{x \in \mathcal{H}} D_{KL}(Tx, z) + \lambda f(x)$$

If
$$f = ||F \cdot ||^2$$

- $\rightarrow \ \mathsf{Cross\text{-}Entropy} \ \mathsf{minimization}$
- [Byrne, 1993]
- $\rightarrow \ \mathsf{Barrier} \ \mathsf{function} \ \mathsf{optimization}$

[Chouzenoux et al., 2011]

Constrained approach

$$\min_{D_{KL}(Tx,z)\leq \eta} f(x)$$

 \rightarrow

[Combettes, Pesquet, 2011]

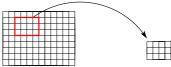
Existing works: Poisson noise

Regularized approach Constrained approach $\min_{x \in \mathcal{H}} D_{KL}(Tx, \overline{z}) + \lambda f(x)$ If $f = ||F \cdot ||^2$ → Cross-Entropy minimization [Byrne, 1993] → Barrier function optimization [Chouzenoux et al., 2011] If $f(x) = \sum_{i} |(Fx)^{(i)}|_1$ (where F can denote a gradient filter, a wavelet transform, a frame) → Proximal methods

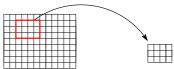
$$\underset{x \in \mathcal{H}}{\mathsf{minimize}} \|Fx\|_{2,1} \quad \mathsf{subject to} \quad \begin{cases} x \in C \\ g(Tx, z) \leq \eta. \end{cases}$$

- ho $C\subset \mathcal{H}$: nonempty closed convex set, models the data range dynamic,
- ▶ $g(\cdot,z) \in \Gamma_0(\mathbb{R}^K)$ the class of convex, l.s.c, and proper functions,
- u $\eta \in \mathbb{R}$,
- ightharpoonup F : bounded linear operator from $\mathcal H$ to $\ell^2(\mathbb K)$,
- $\|\cdot\|_{2,1} = \sum_{b \in \mathbb{L}} \|B_b \cdot \|$: a block sparsity measure,
- for every $b \in \mathbb{L} \subset \mathbb{K}$, B_b is some **block selection transform**.

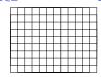
A linear transform B from $\ell^2(\mathbb{K})$ to \mathbb{R}^L will be said to be a block selection transform if it allows us to select a block of L data from its input vector.



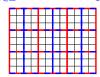
- ho $C\subset \mathcal{H}$: nonempty closed convex set, models the data range dynamic,
- ▶ $g(\cdot, z) \in \Gamma_0(\mathbb{R}^K)$ the class of convex, l.s.c, and proper functions,
- $hline \eta \in \mathbb{R},$
- ▶ F : bounded linear operator from \mathcal{H} to $\ell^2(\mathbb{K})$,
- $\|\cdot\|_{2,1} = \sum_{b\in\mathbb{L}} \|B_b\cdot\|$: a block sparsity measure,
- ▶ for every $b \in \mathbb{L} \subset \mathbb{K}$, B_b is some **block selection transform**. A linear transform B from $\ell^2(\mathbb{K})$ to \mathbb{R}^L will be said to be a block selection transform if it allows us to select a block of L data from its input vector.



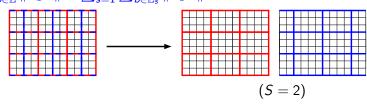
For computational reasons, it will be assumed that there exists a partition of \mathbb{L} in S subsets $(\mathbb{L}_s)_{1 \leq s \leq S}$ of non-overlapping blocks : $\sum_{b \in \mathbb{L}} \|B_b \cdot \| = \sum_{s=1}^S \sum_{b \in \mathbb{L}_s} \|B_b \cdot \|.$



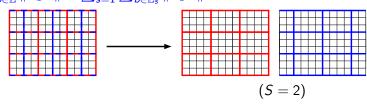
For computational reasons, it will be assumed that there exists a partition of \mathbb{L} in S subsets $(\mathbb{L}_s)_{1 \leq s \leq S}$ of non-overlapping blocks : $\sum_{b \in \mathbb{L}} \|B_b \cdot \| = \sum_{s=1}^S \sum_{b \in \mathbb{L}_s} \|B_b \cdot \|.$



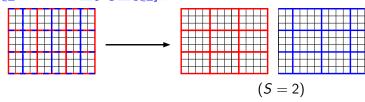
For computational reasons, it will be assumed that there exists a partition of \mathbb{L} in S subsets $(\mathbb{L}_s)_{1 \leq s \leq S}$ of non-overlapping blocks : $\sum_{b \in \mathbb{L}} \|B_b \cdot \| = \sum_{s=1}^S \sum_{b \in \mathbb{L}_s} \|B_b \cdot \|.$



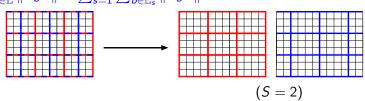
For computational reasons, it will be assumed that there exists a partition of \mathbb{L} in S subsets $(\mathbb{L}_s)_{1 \leq s \leq S}$ of non-overlapping blocks : $\sum_{b \in \mathbb{L}_s} \|B_b \cdot \| = \sum_{s=1}^S \sum_{b \in \mathbb{L}_s} \|B_b \cdot \|.$



For computational reasons, it will be assumed that there exists a partition of \mathbb{L} in S subsets $(\mathbb{L}_s)_{1 \leq s \leq S}$ of non-overlapping blocks : $\sum_{b \in \mathbb{L}_s} \|B_b \cdot \| = \sum_{s=1}^S \sum_{b \in \mathbb{L}_s} \|B_b \cdot \|.$



For computational reasons, it will be assumed that there exists a partition of \mathbb{L} in S subsets $(\mathbb{L}_s)_{1 \leq s \leq S}$ of non-overlapping blocks : $\sum_{b \in \mathbb{L}_s} \|B_b \cdot \| = \sum_{s=1}^S \sum_{b \in \mathbb{L}_s} \|B_b \cdot \|.$



▶ Particular case : S = 1, $\mathbb{L} = \mathbb{L}_1 = \mathbb{K}$ and, for every $b \in \mathbb{L}$, B_b selects one element (i.e. one pixel) \rightarrow the classical ℓ^1 -norm is obtained.

- $f_s = \sum_{b \in \mathbb{L}_s} \|B_b \cdot \|,$
- lacktriangleright for every $b\in\mathbb{L}_s$, $B_b:\ell^2(\mathbb{K}) o\mathbb{R}^{L_b}$ is a block selection operator,
- ▶ $(\mathbb{L}_s)_{1 \leq s \leq S}$ is a partition of \mathbb{L} .

- $\blacktriangleright f_s = \sum_{b \in \mathbb{L}_s} \|B_b \cdot \|,$
- ▶ for every $b \in \mathbb{L}_s$, $B_b : \ell^2(\mathbb{K}) \to \mathbb{R}^{L_b}$ is a block selection operator,
- \blacktriangleright $(\mathbb{L}_s)_{1\leq s\leq S}$ is a partition of \mathbb{L} .

The criterion can be rewritten:

$$\underset{x \in \mathcal{H}}{\text{minimize}} \sum_{s=1}^{S} f_s(Fx) + \iota_C(x) + \iota_D(Tx)$$

- $\triangleright \iota_C$: indicator function (is equal to 0 on C and $+\infty$ on $\mathcal{H} \setminus C$),
- $D = \{ u \in \mathbb{R}^K \mid g(u, z) \le \eta \} = \operatorname{lev}_{\leq \eta} g(\cdot, z).$

Algorithms to minimize $\sum_{s=1}^{S} \overline{f_s(F \cdot)} + \iota_C(\cdot) + \iota_D(T \cdot)$

Proximal algorithms:

- ▶ To solve $\min_{x \in \mathcal{H}} \sum_{i=1}^{n} f_i(L_{ix})$ where L_i denotes a bounded linear operator and f_i denotes a convex, l.s.c., and proper function.
- ▶ Based on proximal tools : $\operatorname{prox}_f x = \underset{p \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{2} \|p x\|^2 + f(p)$.

Proximity operator:

- ▶ Generalization of projection onto a closed convex set : $\text{prox}_{\iota_C} = P_C$.
- ▶ Numerous closed form (ℓ_p -norm, gamma,...) [Chaux et al., 2007].

Existing algorithms:

- Primal: FB [Combettes, Wajs, 2005], DR [Combettes, Pesquet, 2007], PPXA+ [Pesquet, Pustelnik, 2011].
- Primal-dual: M+SFBF [Briceño-Arias, Combettes, 2011], M+LFBF [Combettes, Pesquet, 2011], Generalized FB [Raguet et al., 2011], [Condat, 2011], [Vu, 2011].

Initialization

Primal algorithm: PPXA+ [Pesquet, Pustelnik, 2011]

```
(\epsilon_i)_{1 \le i \le n} \in [0, 1]^n, (\omega_i)_{1 \le i \le n} \in [0, +\infty]^n,
   (\lambda_{\ell})_{\ell \in \mathbb{N}} be a sequence of reals,
   (v_{i,0})_{1 \le i \le n} \in (\mathcal{H})^n, (p_{i,-1})_{1 \le i \le n} \in (\mathcal{H})^n,
   u_0 = \operatorname{arg\,min}_{u \in \mathcal{H}} \sum_{i=1}^n \omega_i \|L_i u - v_{i,0}\|^2
    For every i \in \{1, ..., n\}, (a_{i,\ell})_{\ell \in \mathbb{N}} be a sequence of reals,
For \ell = 0, 1, ...
```

Primal algorithm: PPXA+ [Pesquet, Pustelnik, 2011]

The weak convergence of the sequence $(u_{\ell})_{\ell \in \mathbb{N}}$ to a minimizer of $\sum_{i=1}^{n} f_i \circ L_i$ is established under the following assumptions :

- 1. $\mathbf{0} \in \text{sri} \{ (L_1 v w, \dots, L_n v w) \mid v \in \mathcal{H}, x_1 \in \text{dom } f_1, \dots, x_n \in \text{dom } f_n \},$
- 2. There exists $\underline{\lambda} \in]0,2[$ such that $(\forall \ell \in \mathbb{N}), \ \underline{\lambda} \leq \lambda_{\ell+1} \leq \lambda_{\ell}$,
- 3. For every $i \in \{1, ..., n\}$, $a_{i,\ell}$ are absolutely summable sequences in \mathcal{H} .
- 4. $\sum_{i=1}^{n} \omega_i L_i^* L_i$ is an isomorphism. (PPXA+ iterations can be slightly modified to avoid this assumption)

Primal-Dual algorithm: M+SFBF [Briceño-Arias, Combettes, 2011]

```
Initialization
       For every i \in \{1, \ldots, n\}, \omega_i \in ]0, 1] such that \sum_{i=1}^m \omega_i = 1
For every i \in \{1, \ldots, n\}, v_{i,0} \in \mathcal{G}_i and u_{i,0} \in \mathcal{H}, \beta = \max_{1 \leq i \leq m} \|L_i\|, let \epsilon \in ]0, 1/(\beta+1)[, let (\gamma_\ell)_{\ell \leq 0} in [\epsilon, (1-\epsilon)/\beta].
For \ell = 0, 1, ...
        u_{\ell} = \sum_{i=1}^{n} \omega_{i} u_{i,\ell}
   p_{1,\ell} = \sum_{i=1}^n \omega_i y_{1,i,\ell}
         For i = 1, ..., n
        \begin{array}{c|c} p_{2,i,\ell} = \operatorname{prox}_{\gamma_{\ell}f_{i}^{*}} y_{2,i,\ell} + b_{i,\ell} \\ q_{1,i,\ell} = p_{1,\ell} - \gamma_{\ell}(L_{i}^{*} p_{2,i,\ell} + c_{1,i,\ell}) \\ q_{2,i,\ell} = p_{2,\ell} + \gamma_{\ell}(L_{i} p_{1,\ell} + c_{2,i,\ell}) \\ u_{i,\ell+1} = u_{i,\ell} - y_{1,i,\ell} + q_{1,i,\ell} \end{array} 
                    v_{i,\ell+1} = v_{i,\ell} - v_{2,i,\ell} + q_{2,i,\ell}
```

Primal-Dual algorithm: M+SFBF [Briceño-Arias, Combettes, 2011]

The weak convergence of the sequence $(u_{\ell})_{\ell \in \mathbb{N}}$ to a minimizer of $\sum_{i=1}^{n} \omega_i f_i \circ L_i$ is established under the following assumptions :

- 1. $\mathbf{0} \in \operatorname{ran} \sum_{i=1}^{n} \omega_{i} L_{i}^{*} \circ (\partial f_{i}) \circ L_{i}$
- 2. For every $i \in \{1, \ldots, n\}$, $(a_{1,i,\ell})_{\ell \in \mathbb{N}}$ and $(c_{1,i,\ell})_{\ell \in \mathbb{N}}$ are absolutely summable sequences in \mathcal{H} ,
- 3. For every $i \in \{1, ..., n\}$, $(a_{2,i,\ell})_{\ell \in \mathbb{N}}$, $(b_{i,\ell})_{\ell \in \mathbb{N}}$, and $(c_{2,i,\ell})_{\ell \in \mathbb{N}}$ are absolutely summable sequences in \mathcal{G}_i .

Proximity operators to compute

$$\underset{x \in \mathcal{H}}{\text{minimize}} \sum_{s=1}^{S} f_s(Fx) + \iota_C(x) + \iota_D(Tx)$$

Computation of the proximity operators :

$$\blacktriangleright f_s = \sum_{b \in \mathbb{L}_s} \|B_b \cdot \|,$$

ullet ι_C with $C\subset \mathcal{H}$: nonempty closed convex set, models data dynamic,

$$u$$
 with $D = \{u \in \mathbb{R}^K \mid g(u, z) \leq \eta\}$

Proximity operators to compute

$$\underset{x \in \mathcal{H}}{\text{minimize}} \sum_{s=1}^{S} f_s(Fx) + \iota_C(x) + \iota_D(Tx)$$

Computation of the proximity operators :

- ▶ $f_s = \sum_{b \in \mathbb{L}_s} \|B_b \cdot \|$, → Closed form [Peyré, Fadili, 2011].
- ▶ ι_C with $C \subset \mathcal{H}$: nonempty closed convex set, models data dynamic, \rightarrow Closed form: projection onto a hypercube [Rockafellar, 1969].
- energy in the projection of the property (internationally appearance)
- ▶ ι_D with $D = \{u \in \mathbb{R}^K \mid g(u, z) \leq \eta\}$ \rightarrow Closed form if $g(\cdot, z) = \|\cdot -z\|^2$ [Rockafellar, 1969].

Proximity operators to compute

$$\underset{x \in \mathcal{H}}{\text{minimize}} \sum_{s=1}^{S} f_s(Fx) + \iota_C(x) + \iota_D(Tx)$$

Computation of the proximity operators :

- ► $f_s = \sum_{b \in \mathbb{L}_s} \|B_b \cdot \|$, → Closed form [Peyré, Fadili, 2011].
- ι_C with $C \subset \mathcal{H}$: nonempty closed convex set, models data dynamic,
 - \rightarrow Closed form : projection onto a hypercube [Rockafellar, 1969].
- u with $D = \{u \in \mathbb{R}^K \mid g(u, z) \leq \eta\}$
 - \rightarrow Closed form if $g(\cdot, z) = \|\cdot -z\|^2$ [Rockafellar, 1969].
 - → NO closed form in a general context.

How to handle a convex constraint \widetilde{D} of the form

$$\widetilde{D} = \left\{ v \in \mathbb{R}^{KM} \mid h(v) \leq \eta \right\}$$
 ?

where

the generic vector v has been decomposed into K blocks of coordinates as follows

$$\mathbf{v}^{\top} = [\underbrace{(\mathbf{v}^{(1)})^{\top}}_{\text{size } M}, \dots, \underbrace{(\mathbf{v}^{(K)})^{\top}}_{\text{size } M}],$$

- $\qquad (\forall v \in \mathbb{R}^{KM}), \ h(v) = \sum_{r=1}^{K} h_r(v^{(r)}),$
- ▶ For every r, h_r is a function in $\Gamma_0(\mathbb{R})$.

How to handle a convex constraint \widetilde{D} of the form

$$\widetilde{D} = \left\{ v \in \mathbb{R}^{KM} \mid h(v) \le \eta \right\} = \left\{ v \in \mathbb{R}^{KM} \mid \sum_{r=1}^{K} h_r(v^{(r)}) \le \eta \right\} ?$$

where

▶ the generic vector v has been decomposed into K blocks of coordinates as follows

$$\mathbf{v}^{\top} = [\underbrace{(\mathbf{v}^{(1)})^{\top}}_{\text{size } M}, \dots, \underbrace{(\mathbf{v}^{(K)})^{\top}}_{\text{size } M}],$$

- $(\forall v \in \mathbb{R}^{KM}), \ h(v) = \sum_{r=1}^{K} h_r(v^{(r)}),$
- ▶ For every r, h_r is a function in $\Gamma_0(\mathbb{R})$.

How to handle a convex constraint \widetilde{D} of the form

$$\widetilde{D} = \left\{ v = (v^{(r)})_{1 \leq r \leq K} \in \mathbb{R}^{KM} \mid \sum_{r=1}^{K} h_r(v^{(r)}) \leq \eta \right\} \quad ?$$

Solution: Define an auxiliary vector $\zeta = (\zeta^{(r)})_{1 \le r \le K} \in \mathbb{R}^K$.

 \Rightarrow the inequality in \widetilde{D} can be equivalently rewritten as

$$\begin{cases} \sum_{r=1}^{K} \zeta^{(r)} \leq \eta \\ (\forall r \in \{1, \dots, K\}), & h_r(\mathsf{v}^{(r)}) \leq \zeta^{(r)}. \end{cases}$$

How to handle a convex constraint \widetilde{D} of the form

$$\widetilde{D} = \left\{ v = (v^{(r)})_{1 \le r \le K} \in \mathbb{R}^{KM} \mid \sum_{r=1}^{K} h_r(v^{(r)}) \le \eta \right\} ?$$

Solution: Define an auxiliary vector $\zeta = (\zeta^{(r)})_{1 \le r \le K} \in \mathbb{R}^K$.

 \Rightarrow the inequality in $\stackrel{\frown}{D}$ can be equivalently rewritten as

$$\begin{cases} \sum_{r=1}^{K} \zeta^{(r)} \leq \eta \\ (\forall r \in \{1, \dots, K\}), & h_r(\mathsf{v}^{(r)}) \leq \zeta^{(r)}. \end{cases} \Leftrightarrow \begin{cases} \zeta \in V \\ (v, \zeta) \in E \end{cases}$$

where

$$\begin{cases} V = \left\{ \zeta \in \mathbb{R}^K \mid \mathbf{1}_K^\top \zeta \leq \eta \right\} \\ E = \left\{ (v, \zeta) \in \mathbb{R}^{KM} \times \mathbb{R}^K \mid (\forall r \in \{1, \dots, K\}) (\mathsf{v}^{(r)}, \zeta^{(r)}) \in \mathsf{epi} \ h_r \right\}. \end{cases}$$

$$V = \{ \zeta \in \mathbb{R}^K \mid 1_K^\top \zeta \le \eta \},$$

- $\begin{array}{c|c} \blacktriangleright & V = \left\{ \zeta \in \mathbb{R}^K \ \middle| \ \mathbf{1}_K^\top \zeta \leq \eta \right\} \\ \rightarrow & \text{The projection operator is simply given by} \end{array}$

$$(\forall \zeta \in \mathbb{R}^K) \qquad P_V(\zeta) = \begin{cases} \zeta & \text{if } 1_K^\top \zeta \le \eta \\ \zeta + \frac{\eta - 1_K^\top \zeta}{K} 1_K & \text{otherwise,} \end{cases}$$

- $\begin{array}{c|c} \blacktriangleright & V = \left\{ \zeta \in \mathbb{R}^K \ \middle| \ \mathbf{1}_K^\top \zeta \leq \eta \right\} \\ \rightarrow & \text{The projection operator is simply given by} \end{array}$

$$(\forall \zeta \in \mathbb{R}^K) \qquad P_V(\zeta) = \begin{cases} \zeta & \text{if } 1_K^\top \zeta \leq \eta \\ \zeta + \frac{\eta - 1_K^\top \zeta}{K} 1_K & \text{otherwise,} \end{cases}$$

 \rightarrow The projection onto E [Bauschke, Combettes, 2011] is given by

$$(\forall (v,\zeta) \in \mathbb{R}^{KM} \times \mathbb{R}^K) \qquad P_E(v,\zeta) = (p,\theta)$$
 where
$$\begin{cases} \theta = (\theta^{(1)}, \dots \theta^{(K)})^\top & \text{and} \quad p^\top = ((p^{(1)})^\top, \dots, (p^{(K)})^\top), \\ (\forall r \in \{1, \dots, K\}) \quad (p^{(r)}, \theta^{(r)}) = P_{\mathsf{epi}\;h_r}(\mathsf{v}^{(r)}, \zeta^{(r)}). \end{cases}$$

- $V = \left\{ \zeta \in \mathbb{R}^K \mid \mathbf{1}_K^\top \zeta \leq \eta \right\},$ $\rightarrow \text{The projection operator is simply given by}$

$$(\forall \zeta \in \mathbb{R}^K) \qquad P_V(\zeta) = \begin{cases} \zeta & \text{if } 1_K^\top \zeta \le \eta \\ \zeta + \frac{\eta - 1_K^\top \zeta}{K} 1_K & \text{otherwise,} \end{cases}$$

►
$$E = \{(v, \zeta) \in \mathbb{R}^{KM} \times \mathbb{R}^K \mid (\forall r \in \{1, ..., K\}) (v^{(r)}, \zeta^{(r)}) \in \text{epi } h_r\}$$

→ The projection onto E [Bauschke, Combettes, 2011] is given by

$$(\forall (v,\zeta) \in \mathbb{R}^{KM} \times \mathbb{R}^K) \qquad P_E(v,\zeta) = (p,\theta)$$
 where
$$\begin{cases} \theta = (\theta^{(1)}, \dots \theta^{(K)})^\top & \text{and} \quad p^\top = ((p^{(1)})^\top, \dots, (p^{(K)})^\top), \\ (\forall r \in \{1, \dots, K\}) \quad (p^{(r)}, \theta^{(r)}) = P_{\mathsf{epi}\,h_r}(\mathsf{v}^{(r)}, \zeta^{(r)}). \end{cases}$$

⇒ Lower-dimensional problem of the determination of the projection onto the convex subset epi h_r for each $r \in \{1, ..., K\}$. These projections have a closed form expression in a number of cases.

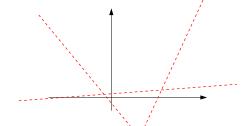
Epigraphical projection with a closed form

Explicit form of the projection operator associated with :

$$h_r(v^{(r)}) = \max\{v^{(r,j)} + \eta^{(r,j)} \mid 1 \le j \le M\}$$

where

Example for R = 1 and M = 3:



Epigraphical projection with a closed form

Explicit form of the projection operator associated with :

$$h_r(v^{(r)}) = \max\{v^{(r,j)} + \eta^{(r,j)} \mid 1 \le j \le M\}$$

where

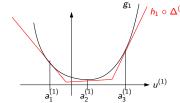
Example for R = 1 and M = 3:

Algorithmic solution

$$g(u,z) = \sum_{r=1}^{K} g_r(u^{(r)}, z^{(r)}) \simeq \sum_{r=1}^{K} h_r(\Delta^{(r)}u^{(r)})$$

where

- $h_r(v^{(r)}) = \max\{v^{(r,j)} + \eta^{(r,j)} \mid 1 \le j \le M\},$
- $\delta_i^{(r)} \in \mathbb{R}$ is any subgradient of $g_r(\cdot, z^{(r)})$ at $a_i^{(r)}$,
- \rightarrow The approximation can be as close as desired by choosing M large enough.

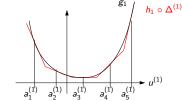


Algorithmic solution

$$g(u,z) = \sum_{r=1}^{K} g_r(u^{(r)}, z^{(r)}) \simeq \sum_{r=1}^{K} h_r(\Delta^{(r)}u^{(r)})$$

where

- $h_r(v^{(r)}) = \max\{v^{(r,j)} + \eta^{(r,j)} \mid 1 \le j \le M\},$
- $\eta^{(r,j)} = g_r(a_i^{(r)}, z^{(r)}) \delta_i^{(r)} a_i^{(r)},$
- $\delta_i^{(r)} \in \mathbb{R}$ is any subgradient of $g_r(\cdot, z^{(r)})$ at $a_i^{(r)}$,
- \rightarrow The approximation can be as close as desired by choosing M large enough.



Algorithmic solution

$$\underset{x \in \mathcal{H}}{\text{minimize}} \sum_{s=1}^{S} f_s(Fx) + \iota_C(x) + \iota_D(Tx)$$

⇒ Approximated criterion :

$$\underset{(x,\zeta)\in\mathcal{H}\times\mathbb{R}^K}{\text{minimize}} \sum_{s=1}^{S} f_s(Fx) + \iota_C(x) + \iota_V(\zeta) + \iota_E(\Delta Tx, \zeta)$$

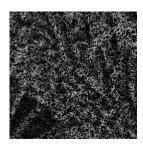
where

- $D = \{ u \in \mathbb{R}^K \mid g(u, z) \leq \eta \},$
- $V = \{ \zeta \in \mathbb{R}^K \mid 1_K^\top \zeta \le \eta \},$
- $E = \{ (v, \zeta) \in \mathbb{R}^{KM} \times \mathbb{R}^K \mid (\forall r \in \{1, \dots, K\}) \ (v^{(r)}, \zeta^{(r)}) \in \text{epi } h_r \},$
- ▶ For every $u \in \mathbb{R}^K$, $g(u, z) = \sum_{r=1}^K g_r(u^{(r)}, z^{(r)}) \simeq \sum_{r=1}^K h_r(\Delta^{(r)}u^{(r)})$.

« Compressed sensing » experiment in the presence of Poisson noise :

- ▶ Electron microscopy image of size $N = 128 \times 128$ ($\mathcal{H} = \mathbb{R}^N$),
- ▶ T denotes a randomly decimated blur : uniform blur of size 3×3 and approximately 60% of missing data, that leads to K = 9834,
- ▶ Poisson noise with scaling parameter 0.5.

Original



Degraded

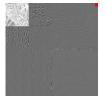
Choice of the criterion : $\sum_{s=1}^{S} f_s(F_r) + \iota_C(r) + \iota_D(T_r)$

- ▶ Data fidelity : approximation of the Poisson likelihood,
 - ► Influence of *M*,
- $C = [0, 255]^N$,
- ▶ F : Dual-Tree Transform (DTT) symmlet 6, 2 levels,
- ► Blocks :
 - ℓ_1 -reg : Classical ℓ_1 cost function,

Choice of the criterion : $\sum_{s=1}^{S} f_s(F_r) + \iota_C(r) + \iota_D(T_r)$

- ▶ Data fidelity : approximation of the Poisson likelihood,
 - ► Influence of *M*,
- $C = [0, 255]^N$,
- ▶ F : Dual-Tree Transform (DTT) symmlet 6, 2 levels,
- ► Blocks :
 - ℓ_1 -reg : Classical ℓ_1 cost function,

- ▶ Data fidelity : approximation of the Poisson likelihood,
 - ▶ Influence of *M*,
- $C = [0, 255]^N$
- ► F : Dual-Tree Transform (DTT) symmlet 6, 2 levels,
- ▶ Blocks :
 - \blacktriangleright ℓ_1 -reg : Classical ℓ_1 cost function,
 - Block_PrimalDual : Blocks gathering primal and dual DTT coefficients,



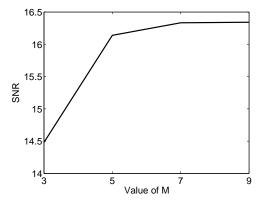
- Data fidelity : approximation of the Poisson likelihood,
 - ▶ Influence of *M*,
- $C = [0, 255]^N$,
- ► F : Dual-Tree Transform (DTT) symmlet 6, 2 levels,
- ▶ Blocks :
 - \blacktriangleright ℓ_1 -reg : Classical ℓ_1 cost function,
 - ▶ Block_PrimalDual : Blocks gathering primal and dual DTT coefficients,
 - \blacktriangleright Block_4Pixel_overlap : spatially overlapping blocks of size 2 \times 2 are employed for each tree (primal or dual) separately.

- ▶ Data fidelity : approximation of the Poisson likelihood,
 - ► Influence of *M*,
- $C = [0, 255]^N$,
- ► F : Dual-Tree Transform (DTT) symmlet 6, 2 levels,
- ▶ Blocks :
 - \blacktriangleright ℓ_1 -reg : Classical ℓ_1 cost function,
 - ▶ Block_PrimalDual : Blocks gathering primal and dual DTT coefficients,
 - ▶ Block_4Pixel_overlap : spatially overlapping blocks of size 2 × 2 are employed for each tree (primal or dual) separately.

- ▶ Data fidelity : approximation of the Poisson likelihood,
 - ► Influence of *M*,
- $C = [0, 255]^N$
- ► F : Dual-Tree Transform (DTT) symmlet 6, 2 levels,
- ▶ Blocks :
 - ℓ_1 -reg : Classical ℓ_1 cost function,
 - ▶ Block_PrimalDual : Blocks gathering primal and dual DTT coefficients,
 - ▶ Block_4Pixel_overlap : spatially overlapping blocks of size 2 × 2 are employed for each tree (primal or dual) separately.

- ▶ Data fidelity : approximation of the Poisson likelihood,
 - ► Influence of *M*,
- $C = [0, 255]^N$
- ► F : Dual-Tree Transform (DTT) symmlet 6, 2 levels,
- ▶ Blocks :
 - \blacktriangleright ℓ_1 -reg : Classical ℓ_1 cost function,
 - ▶ Block_PrimalDual : Blocks gathering primal and dual DTT coefficients,
 - \blacktriangleright Block_4Pixel_overlap : spatially overlapping blocks of size 2×2 are employed for each tree (primal or dual) separately.

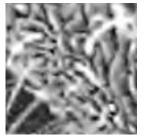
- ► Impact of *M*,
- ▶ Results for ℓ_1 -reg,



- ► Impact of *M*,
- ▶ Results for ℓ_1 -reg,



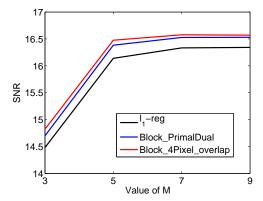
M = 3SNR = 14.5 dB



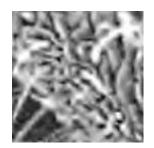
M = 5 SNR = 16.1 dB

M = 7SNR = 16.3 dB

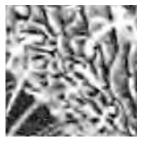
- ► Impact of *M*,
- ▶ Impact of the regularization term.



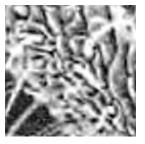
- M = 7
- ▶ Impact of the regularization term.



 ℓ_1 -reg SNR $= 16.3~\mathrm{dB}$



 $Block_PrimalDual$ SNR = 16.5 dB



 $\begin{aligned} \mathsf{Block_4Pixel_overlap} \\ \mathsf{SNR} &= 16.6 \; \mathsf{dB} \end{aligned}$

Conclusion and future works

- ► Convex optimization approach for solving cosparse modelling problems under flexible convex constraints.
- Use of recent proximal algorithms combined with a novel epigraphical projection technique.
- Approach applied to a reconstruction problem involving data corrupted with Poisson noise.

Thank you for your attention.