Proximal methods for constrained cosparse

modelling

N. Pustelnik
in collaboration with G. Cherchia, J.-C. Pesquet, and B. Pesquet-Popescu

Journée SMAI-SIGMA
18 novembre 2011



Proximal methods for constrained cosparse modelling 2/28

1. Problem : image recovery.

2. Regularized approach versus Constrained approach.

3. Proposed solution to the general constrained minimization problem.
4. Experimental results.

5. Conclusions.
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Degradation model

z = Pu(TX)

» X : original image in the Hilbert space H which is assumed to be
sparse after some appropriate transform,

» T : a linear operator from H to RX,

» P, : effect of noise where « is the scaling parameter,

» z : degraded image of size K.

Original (X) Convolved (Tx) Degraded (z)
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Degradation model

z = Pu(TX)

» X : original image in the Hilbert space H which is assumed to be
sparse after some appropriate transform,

» T : a linear operator from H to RX,

» P, : effect of noise where « is the scaling parameter,

» z : degraded image of size K.

Original (X) Convolved (Tx) Degraded (z)
» Question : How can we recover x from the observations z.
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Existing works : Gaussian noise

Regularized approach Constrained approach

in[| Tx — z||* + Af f
min|[ Tx — z[|" + Af(x) (x)

min
| Tx—z||2<n

[Tikhonov, 1963] [Combettes, Trussell, 1991]




Proximal methods for constrained cosparse modelling 4/28

Existing works : Gaussian noise

Regularized approach Constrained approach
min|| Tx — z||? + A () min  f(x)
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F F=|F- P
— Gradient-based methods — POCS [Trussell, Civanlar, 1984]

— Subgradient projections
[Luo, Combettes, 1999]
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Existing works : Gaussian noise

Regularized approach Constrained approach
min|| Tx — z||? + A () min  f(x)
x€H | Tx—z|]2<n
[Tikhonov, 1963] [Combettes, Trussell, 1991]
F F=|F- P
— Gradient-based methods — POCS [Trussell, Civanlar, 1984]

— Subgradient projections
[Luo, Combettes, 1999]

If F(x) =Y 1(F)"]

(F: a wavelet transform, an analysis frame) [Elad et al,2007][Nam et al.,2011]
— Proximal methods — Proximal methods
[Combettes, Pesquet, 2011] [Combettes, Pesquet, 2011]
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Existing works : Poisson noise

Regularized approach Constrained approach
inDyy (Tx, A i f
>r<2l7r‘]l (T, 2) £ AF(x) DKL(r%I(?Z)Sﬂ ()
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Existing works : Poisson noise

Regularized approach Constrained approach
min Dy ( Tx, Af min  f
PR (T 2) + M) bz )
i F=|F- P
— Cross-Entropy minimization — ?

[Byrne, 1993]
— Barrier function optimization
[Chouzenoux et al., 2011]
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Existing works : Poisson noise

Regularized approach Constrained approach
min Dy ( Tx, Af min  f
PR (T 2) + M) bz )
i F=|F- P
— Cross-Entropy minimization — ?

[Byrne, 1993]
— Barrier function optimization
[Chouzenoux et al., 2011]

OGO

(where F can denote a gradient filter, a wavelet transform, a frame)
— Proximal methods — 7
[Combettes, Pesquet, 2011]
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Considered problem

xeC
g(Tx,z) <.

minimize ||Fx|2,1 subject to {
xeH

C C 'H : nonempty closed convex set, models the data range dynamic,
g(-,z) € To(R¥) - the class of convex, |.s.c, and proper functions,

n € R,

F : bounded linear operator from H to ¢?(K),

|- l2,0 = > per, I|Bb - || : a block sparsity measure,

for every b € L C K, B, is some block selection transform.

A linear transform B from (?(K) to RL will be said to be a block selection
transform if it allows us to select a block of L data from its input vector.
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Considered problem

eC
minimize Z ||BpFx| subject to X
T el g(Tx,z) <.

C C H : nonempty closed convex set, models the data range dynamic,
g(-,z) € To(RK) - the class of convex, |.s.c, and proper functions,

n €R,

F : bounded linear operator from H to /?(K),

|- |22 = > per, [|Bb - || = a block sparsity measure,

for every b € I. C K, By is some block selection transform.

A linear transform B from ¢*(K) to Rt will be said to be a block selection
transform if it allows us to select a block of L data from its input vector.
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Considered problem

eC
minimize ZHBbeH subject to x
X el g(Tx,z) <.

» For computational reasons, it will be assumed that there exists a
partition of L in S subsets (Ls)1<s<s of non-overlapping blocks :

S
Zbe]L HBb ) H = Zs:l Zbe]Ls HBb : ||
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Considered problem

S
xeC
minimize ||BpFx|| subject to
x€H S:ZI beZJLs g(Tx,z) <.

» For computational reasons, it will be assumed that there exists a
partition of L in S subsets (Ls)1<s<s of non-overlapping blocks :

S
ZbeL HBb ) || = Zs:l Zbe]Ls HBb : ||

(§=2)
> Particular case : S =1, L =1L, =K and, for every b € L, By, selects one
element (i.e. one pixel) — the classical /!-norm is obtained.



Proximal methods for constrained cosparse modelling 8/28

Considered problem

xeC
g(Tx,z) <.

s
inimi fs(F bject t
minimize ;:1 s(Fx) subject to {

> fo =2 per, 1B -,
» for every b € g, By, : £?(K) — R is a block selection operator,
» (Ls)1<s<s is a partition of L.
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Considered problem

xeC
g(Tx,z) <.

S
inimi fs(F bject t
minimize 55:1 <(Fx) subject to {

> fo =2 per, 1B -,
» for every b € g, By, : £?(K) — R is a block selection operator,
» (Ls)1<s<s is a partition of L.

The criterion can be rewritten :

S
mi)r:ier;r}izez; fs(Fx)+uc(x) + tp(Tx)
s=

» 1 : indicator function (is equal to 0 on C and +o00 on H \ C),
» D={ueRF| g(uz) <n}=leve, g(-, 2).
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Algorithms to minimize Zle fs(F)+tc(:) +ep(T)

Proximal algorithms :
» To solve minyep .+ fi(Lix) where L; denotes a bounded linear
operator and f; denotes a convex, |.s.c., and proper function.
» Based on proximal tools : prox,x = argmin3|p — x| + f(p).
peEH

Proximity operator :
» Generalization of projection onto a closed convex set : prox, = Pc.
» Numerous closed form (¢,-norm, gamma,...) [Chaux et al., 2007].

Existing algorithms :
» Primal : FB [Combettes, Wajs, 2005], DR [Combettes, Pesquet, 2007],
PPXA+ [Pesquet, Pustelnik, 2011].
» Primal-dual : M+SFBF [Bricefio-Arias, Combettes, 2011], M+LFBF
[Combettes, Pesquet, 2011], Generalized FB [Raguet et al., 2011], [Condat,
2011], [Vu, 2011].
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Primal algorithm : PPXA+ [Pesquet, Pustelnik, 2011]

Initialization .
(€i)1<i<n € [0, 1]", (wi)1<i<n € ]0, 400",
(Ae)een  be a sequence of reals,
(vio)i<i<n € (H)", (pi,—1)1<i<n € (H)",

. n 2
Up = arg minyecx Zi:l willLiu — viol|

| Foreveryi e {1,...,n}, (air)een be a sequence of reals,
For £=0,1,...

For i=1,...,n

| pie=proxa-cp (1 — €)Vvig + €pi—1) + iz

2

cg = argminyep Y willLiu — pj gl
For i=1,...,n

| Vierr = vig+ Me(Li(Ree — ug) — piy)
Upyl = Ug + )\[(Cg — Ug)
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Primal algorithm : PPXA+ [Pesquet, Pustelnik, 2011]

The weak convergence of the sequence (uy)eeny to a minimizer of
>o%_ i fioLjis established under the following assumptions :

L 0esri{(Lyv—w,....Ly,v—w)|vEH,xgs €dom*fy,...,x, €

dom f,},
2. There exists A €]0,2[ such that (V£ € N), A < Appq1 < Ap,
3. Forevery i € {1,...,n}, aj are absolutely summable

sequences in H.
4. 3% Jwil¥L;is an isomorphism. (PPXA+ iterations can be
slightly modified to avoid this assumption)
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Primal-Dual algorithm : M+SFBF [Bricefio-Arias, Combettes, 2011]

Initialization
For every i € {1,...,n}, w; €]0,1] such that > w; =1
Foreveryie {1,...,n}, vio € Giand ujg € H,
i 0= maxi<i<m ||L,||, let € E]O, 1/(,8 + 1)[, let ('YZ)ZSO in [6, (1 — 6)/,8]
For¢=0,1,...
up = 357y willje
For i=1,...,n
yiie = tie¢—Ye(Livig+ av,i)
| yaie = viie+ve(Livie + azi0)
n
PLe =g WiVt
For i=1,...,n
P2,i.e = PrOX, ¢y2i¢ + bie
qu,ie = pre — Ye(Li p2,ije + c1iye)
Go,ie = P20 + Ye(Lipre + c2,i0)
Uiyl = Uig — Y1,ie+ qQuiz
| L Vie+1 = Vige — Yeiiet+ Q2ie
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Primal-Dual algorithm : M-+SFBF [Bricefio-Arias, Combettes, 2011]

The weak convergence of the sequence (uy)eeny to a minimizer of
> wifi o L; is established under the following assumptions :

1. 0€ran Y 1 wil¥ o (0f)oL;,

2. Forevery i € {1,...,n}, (a1,ir)een and (ciir)een are
absolutely summable sequences in ‘H,

3. Forevery i € {1,...,n}, (a2,i)een, (bir)een, and (c2i0)een
are absolutely summable sequences in G;.
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Proximity operators to compute

S
inimi fs(F T
ml)rzlerwze;:l s(Fx) + tc(x) + tp(Tx)

Computation of the proximity operators :
> fs =2 per, I1Bo - Il

» 1c with C C H : nonempty closed convex set, models data dynamic,

> 1p with D = {u € R | g(u,z) < n}
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S
inimi fs(F T
ml)rzlerwze;:l s(Fx) + tc(x) + tp(Tx)

Computation of the proximity operators :

> fs = ber, 1Bb - Il
— Closed form [Peyré, Fadili, 2011].

» 1c with C C H : nonempty closed convex set, models data dynamic,
— Closed form : projection onto a hypercube [Rockafellar, 1969].

» up with D={ueRX | g(u,z) <n}
— Closed form if g(-,z) = || - —z||? [Rockafellar, 1969].
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Proximity operators to compute

S
inimi fs(F T
ml)rzlerwze;:l s(Fx) 4+ tc(x) + tp(Tx)

Computation of the proximity operators :

> fs = ber, 1Bb - Il
— Closed form [Peyré, Fadili, 2011].

» 1c with C C H : nonempty closed convex set, models data dynamic,
— Closed form : projection onto a hypercube [Rockafellar, 1969].

» tp with D = {u € RK | gu,z) <n}
— Closed form if g(-,z) = || - —z||? [Rockafellar, 1969].
— NO closed form in a general context.
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Epigraphical projection

How to handle a convex constraint D of the form
bz{veRKM | A(v) <n} 7

where

> the generic vector v has been decomposed into K blocks of
coordinates as follows

vi= [T )T,
N—— N——
size M size M

- (v € RAM), h(v) = YK, (V)
» For every r, h, is a function in Io(R).
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Epigraphical projection

How to handle a convex constraint D of the form

K
D= {VGRKM | h(v) gn} = {VERKM ‘ Zh,(v(')) gn} ?
r=1

where

> the generic vector v has been decomposed into K blocks of
coordinates as follows

vi=[(v) T, ()T,
N—— ~——
size M size M

- (W € REMY, h(v) = T b (V)
» For every r, h, is a function in o(R).
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Epigraphical projection

How to handle a convex constraint D of the form

K
D= {v=(")cck € RM | Zhr(v(')) <) 7

r=1
Solution : Define an auxiliary vector ( = (C(r))lgrSK € RX.
= the inequality in D can be equivalently rewritten as

Y, ¢ <
(Vre{1,...,K}), h(v() <.
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Epigraphical projection

How to handle a convex constraint D of the form

K
D= {v=(")cck € RM | Zhr(v(')) <) 7

r=1

Solution : Define an auxiliary vector ¢ = (¢() € RX.

» 1<r<K
= the inequality in D can be equivalently rewritten as

Y, ¢ < - eV
(Vre{1,...,K}), h(v() <. (v,()€E
where

V={CeRX|1i(<n}
E={(v,¢Q) eRFM x R¥X | (vr € {1,...,K}) (V(7,¢() € epih,}.
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Epigraphical projection

sV ={¢eR" | 1k <n}

s | E={(v,0) e RFM x RX | (vr e {1,...,K}) (v, ¢(D)) € epih,}
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Epigraphical projection

>

V={CeR"[14(<n}

— The projection operator is simply given by

(VCeR")  Py(Q)= {

¢ if 15¢ <n
¢+ "_—,?CIK otherwise,

E={(v.Q) € R x RK | (vr € {1,.... K}) (V") () € epih,}
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Epigraphical projection

>

V={CeR"[14(<n}

— The projection operator is simply given by

(VCeR")  Py(Q)= {

¢ if 1,¢ <7
¢+ 2218, otherwi
R K otherwise,

E={(v.Q) € R x RK | (vr € {1,.... K}) (V") () € epih,}

— The projection onto E [Bauschke, Combettes, 2011] is given by
(V(v, Q) e RM X RF)  Pe(v,¢) = (p.0)

— (9O gUNT
Where{e (W, ... ot

and p' = ((pPM)T,....(p")T),

(Vre{Ll,...,K}) (p\,00)) = Pegin, (1), ¢).
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Epigraphical projection

>

V={CeR"[14(<n}|
— The projection operator is simply given by
¢ if 1p¢<n
-
¢+ "_—,iKClK otherwise,

(VCeR")  Py(Q)= {

E={(v.) € R"M X RF | (vr € {1,..., K}) (V),(0) € epihy }
— The projection onto E [Bauschke, Combettes, 2011] is given by
(V(v, Q) e RM X RF)  Pe(v,¢) = (p.0)

where 0=W,...00NT and p' = ((p(l))—r, (PN,
(Vre{Ll,...,K}) (p\,00)) = Pegin, (1), ¢).

= Lower-dimensional problem of the determination of the projection
onto the convex subset epi h, for each r € {1,..., K}. These
projections have a closed form expression in a number of cases.
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Epigraphical projection with a closed form

Explicit form of the projection operator associated with :

A (V) = max{v{r) 4 () | 1 < j < M}

where
— v = (rD) L vEMYT c RM
— re{l,...,R}and (nr1), ... nrMHT c RM

Example for R=1and M =3:

______
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Epigraphical projection with a closed form

Explicit form of the projection operator associated with :

(V) = max{v(r) 4 () | 1 < j < M}

where
— v = (v(r’l), . ,v(r’M))T e RM
— re{l,...,R}and (nr1), ... nrMHT c RM

Example for R=1and M =3:
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Algorithmic solution

K

g(u,z) = Zg ), 20y = 37 b (A0 ")

r=1

where
> h (VD) = max{v(r) £ () |1 < j < M},

> n(fJ) — gr(aj(_’)’z(r)) 5(’) (f)
> 6(r) € R is any subgradlent of g,(-,z(’)) at aJ(-'),
> A [5(f) ’55\;)]1'_

B hoa®
— The approximation can be as
close as desired by choosing M large
enough.
.
u
AT
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Algorithmic solution

K

g(u,z) = Zg ), 20y = 37 b (A0 ")

r=1

where
> h (VD) = max{v(r) 4 () |1 < j < M},

> n(fJ) — gr(aj(_’)’z(r)) 5(’) (f)
> 6(r) € R is any subgradlent of g,(-,z(’)) at aJ(-'),
> A [5(f) ’55\;)]1'_

1 hoaw
— The approximation can be as
close as desired by choosing M large
enough.
\ h1.d \ -
R RC R )
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Algorithmic solution

S
mi)r:iery_‘izezg fs(Fx) + tc(x) + tp(Tx)
s=

= Approximated criterion :
S

inimi fs(F ATx,
S 3 AP 1) + ) el BT )

where
» D={ueRX| g(uz)<n},
> V:{CERK | 1;C§77},
» E={(v,¢) e RKM x RK | (Vr € {1,...,K}) (v("),¢(1) € epih,},
> For every u € R¥, g(u,z) = 3K g (u(), 200y = K (A u().
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Experimental results

<« Compressed sensing > experiment in the presence of Poisson
noise :

» Electron microscopy image of size N = 128 x 128 (H = RV),

» T denotes a randomly decimated blur : uniform blur of size 3 x 3 and

approximately 60% of missing data, that leads to K = 9834,
» Poisson noise with scaling parameter 0.5.

Original
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Experimental results

Choice of the criterion : 32| f.(F-) + tc(-) + tp(T)
» Data fidelity : approximation of the Poisson likelihood,
» Influence of M,
» C =[0,255]",
» F : Dual-Tree Transform (DTT) — symmlet 6, 2 levels,
» Blocks :
» (1-reg : Classical ¢; cost function,
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Experimental results

» Impact of M,
> Results for ¢1-reg,

16.5

16

155

SNR

15

145

Value of M
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Experimental results

» Impact of M,

» Results for ¢1-reg,

SNR = 14.5 dB SNR = 16.1 dB SNR =16.3 dB
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Experimental results

» Impact of M,

» Impact of the regularization term.

17

o
Z 15.5¢
%]

15+ — | -reg

—— Block_PrimalDual
14.5 —— Block_4Pixel_overlap

14 : :
5 7
Value of M
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Experimental results

» M=17,

» Impact of the regularization term.

l1-reg Block_PrimalDual Block_4Pixel_overlap
SNR = 16.3 dB SNR = 16.5 dB SNR = 16.6 dB
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Conclusion and future works

» Convex optimization approach for solving cosparse modelling problems
under flexible convex constraints.

» Use of recent proximal algorithms combined with a novel epigraphical
projection technique.

» Approach applied to a reconstruction problem involving data
corrupted with Poisson noise.
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