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Degradation model

z = Pα(Tx)

◮ x : original image in the Hilbert space H which is assumed to be
sparse after some appropriate transform,

◮ T : a linear operator from H to R
K ,

◮ Pα : effect of noise where α is the scaling parameter,
◮ z : degraded image of size K .

Original (x) Convolved (Tx) Degraded (z)
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Degradation model

z = Pα(Tx)

◮ x : original image in the Hilbert space H which is assumed to be
sparse after some appropriate transform,

◮ T : a linear operator from H to R
K ,

◮ Pα : effect of noise where α is the scaling parameter,
◮ z : degraded image of size K .

Original (x) Convolved (Tx) Degraded (z)
◮ Question : How can we recover x from the observations z .
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Existing works : Gaussian noise

Regularized approach Constrained approach

min
x∈H

‖Tx − z‖2 + λf (x) min
‖Tx−z‖2≤η

f (x)

[Tikhonov, 1963] [Combettes, Trussell, 1991]
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min
x∈H

‖Tx − z‖2 + λf (x) min
‖Tx−z‖2≤η

f (x)

[Tikhonov, 1963] [Combettes, Trussell, 1991]

If f = ‖F · ‖2

→ Gradient-based methods → POCS [Trussell, Civanlar, 1984]

→ Subgradient projections
[Luo, Combettes, 1999]

If f (x) =
∑

i

|(Fx)(i)|1

(F : a wavelet transform, an analysis frame) [Elad et al,2007][Nam et al.,2011]

→ Proximal methods → Proximal methods
[Combettes, Pesquet, 2011] [Combettes, Pesquet, 2011]



Proximal methods for constrained cosparse modelling 5/28

Existing works : Poisson noise

Regularized approach Constrained approach

min
x∈H

DKL(Tx , z) + λf (x) min
DKL(Tx ,z)≤η

f (x)
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Existing works : Poisson noise

Regularized approach Constrained approach

min
x∈H

DKL(Tx , z) + λf (x) min
DKL(Tx ,z)≤η

f (x)

If f = ‖F · ‖2

→ Cross-Entropy minimization → ?

[Byrne, 1993]

→ Barrier function optimization
[Chouzenoux et al., 2011]

If f (x) =
∑

i

|(Fx)(i)|1

(where F can denote a gradient filter, a wavelet transform, a frame)
→ Proximal methods → ?

[Combettes, Pesquet, 2011]
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Considered problem

minimize
x∈H

‖Fx‖2,1 subject to

{
x ∈ C

g(Tx , z) ≤ η.

◮ C ⊂ H : nonempty closed convex set, models the data range dynamic,
◮ g(·, z) ∈ Γ0(R

K ) – the class of convex, l.s.c, and proper functions,
◮ η ∈ R,
◮ F : bounded linear operator from H to ℓ2(K),
◮ ‖ · ‖2,1 =

∑
b∈L

‖Bb · ‖ : a block sparsity measure,
◮ for every b ∈ L ⊂ K, Bb is some block selection transform.

A linear transform B from ℓ2(K) to R
L will be said to be a block selection

transform if it allows us to select a block of L data from its input vector.
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Considered problem

minimize
x∈H

∑

b∈L

‖BbFx‖ subject to

{
x ∈ C

g(Tx , z) ≤ η.

◮ For computational reasons, it will be assumed that there exists a
partition of L in S subsets (Ls)1≤s≤S of non-overlapping blocks :∑

b∈L
‖Bb · ‖ =

∑S
s=1

∑
b∈Ls

‖Bb · ‖.
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minimize
x∈H

S∑

s=1

∑

b∈Ls

‖BbFx‖ subject to

{
x ∈ C

g(Tx , z) ≤ η.

◮ For computational reasons, it will be assumed that there exists a
partition of L in S subsets (Ls)1≤s≤S of non-overlapping blocks :∑

b∈L
‖Bb · ‖ =

∑S
s=1

∑
b∈Ls

‖Bb · ‖.

(S = 2)

◮ Particular case : S = 1, L = L1 = K and, for every b ∈ L, Bb selects one

element (i.e. one pixel) → the classical ℓ1-norm is obtained.
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Considered problem

minimize
x∈H

S∑

s=1

fs(Fx) subject to

{
x ∈ C

g(Tx , z) ≤ η.

◮ fs =
∑

b∈Ls
‖Bb · ‖,

◮ for every b ∈ Ls , Bb : ℓ2(K) → R
Lb is a block selection operator,

◮ (Ls)1≤s≤S is a partition of L.
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Considered problem

minimize
x∈H

S∑

s=1

fs(Fx) subject to

{
x ∈ C

g(Tx , z) ≤ η.

◮ fs =
∑

b∈Ls
‖Bb · ‖,

◮ for every b ∈ Ls , Bb : ℓ2(K) → R
Lb is a block selection operator,

◮ (Ls)1≤s≤S is a partition of L.

The criterion can be rewritten :

minimize
x∈H

S∑

s=1

fs(Fx)+ιC (x) + ιD(Tx)

◮ ιC : indicator function (is equal to 0 on C and +∞ on H \ C ),
◮ D =

{
u ∈ RK

∣∣ g(u, z) ≤ η
}

= lev≤η g(·, z).
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Algorithms to minimize
∑S

s=1 fs(F ·) + ιC (·) + ιD(T ·)

Proximal algorithms :
◮ To solve minx∈H

∑n
i=1 fi(Lix) where Li denotes a bounded linear

operator and fi denotes a convex, l.s.c., and proper function.
◮ Based on proximal tools : proxf x = argmin

p∈H

1
2‖p − x‖2 + f (p).

Proximity operator :
◮ Generalization of projection onto a closed convex set : proxιC

= PC .
◮ Numerous closed form (ℓp-norm, gamma,. . . ) [Chaux et al., 2007].

Existing algorithms :
◮ Primal : FB [Combettes, Wajs, 2005], DR [Combettes, Pesquet, 2007],

PPXA+ [Pesquet, Pustelnik, 2011].
◮ Primal-dual : M+SFBF [Briceño-Arias, Combettes, 2011], M+LFBF

[Combettes, Pesquet, 2011], Generalized FB [Raguet et al., 2011], [Condat,

2011], [Vu, 2011].
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Primal algorithm : PPXA+ [Pesquet, Pustelnik, 2011]

Initialization

(ǫi )1≤i≤n ∈ [0, 1[n, (ωi)1≤i≤n ∈ ]0, +∞[n ,
(λℓ)ℓ∈N be a sequence of reals,
(vi ,0)1≤i≤n ∈ (H)n, (pi ,−1)1≤i≤n ∈ (H)n,

u0 = arg minu∈H

∑n
i=1 ωi‖Liu − vi ,0‖

2

For every i ∈ {1, . . . , n}, (ai ,ℓ)ℓ∈N be a sequence of reals,

For ℓ = 0, 1, . . .

For i = 1, . . . , n
⌊ pi ,ℓ = prox (1−ǫi )fi

ωi

(
(1 − ǫi)vi ,ℓ + ǫipi ,ℓ−1

)
+ ai ,ℓ

cℓ = arg minu∈H
∑n

i=1 ωi‖Liu − pi ,ℓ‖
2

For i = 1, . . . , n
⌊ vi ,ℓ+1 = vi ,ℓ + λℓ

(
Li (2cℓ − uℓ) − pi ,ℓ

)

uℓ+1 = uℓ + λℓ(cℓ − uℓ)
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Primal algorithm : PPXA+ [Pesquet, Pustelnik, 2011]

The weak convergence of the sequence (uℓ)ℓ∈N to a minimizer of∑n
i=1 fi ◦ Li is established under the following assumptions :

1. 0 ∈ sri {(L1v − w , . . . , Lnv − w) | v ∈ H, x1 ∈ dom f1, . . . , xn ∈

dom fn},

2. There exists λ ∈]0, 2[ such that (∀ℓ ∈ N), λ ≤ λℓ+1 ≤ λℓ,

3. For every i ∈ {1, . . . , n}, ai ,ℓ are absolutely summable
sequences in H.

4.
∑n

i=1 ωiL
∗
i Li is an isomorphism. (PPXA+ iterations can be

slightly modified to avoid this assumption)
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Primal-Dual algorithm : M+SFBF [Briceño-Arias, Combettes, 2011]

Initialization
For every i ∈ {1, . . . , n}, ωi ∈]0, 1] such that

∑m

i=1 ωi = 1
For every i ∈ {1, . . . , n}, vi ,0 ∈ Gi and ui ,0 ∈ H,
β = max1≤i≤m ‖Li‖, let ǫ ∈]0, 1/(β + 1)[, let (γℓ)ℓ≤0 in [ǫ, (1 − ǫ)/β].

For ℓ = 0, 1, . . .

uℓ =
∑n

i=1 ωiui ,ℓ

For i = 1, . . . , n⌊
y1,i ,ℓ = u1,i ,ℓ − γℓ(L

∗
i vi ,ℓ + a1,i ,ℓ)

y2,i ,ℓ = v1,i ,ℓ + γℓ(Liui ,ℓ + a2,i ,ℓ)
p1,ℓ =

∑n

i=1 ωiy1,i ,ℓ

For i = 1, . . . , n

p2,i ,ℓ = proxγℓf
∗

i
y2,i ,ℓ + bi ,ℓ

q1,i ,ℓ = p1,ℓ − γℓ(L
∗
i p2,i ,ℓ + c1,i ,ℓ)

q2,i ,ℓ = p2,ℓ + γℓ(Lip1,ℓ + c2,i ,ℓ)
ui ,ℓ+1 = ui ,ℓ − y1,i ,ℓ + q1,i ,ℓ

vi ,ℓ+1 = vi ,ℓ − y2,i ,ℓ + q2,i ,ℓ
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Primal-Dual algorithm : M+SFBF [Briceño-Arias, Combettes, 2011]

The weak convergence of the sequence (uℓ)ℓ∈N to a minimizer of∑n
i=1 ωi fi ◦ Li is established under the following assumptions :

1. 0 ∈ ran
∑n

i=1 ωiL
∗
i ◦ (∂fi ) ◦ Li ,

2. For every i ∈ {1, . . . , n}, (a1,i ,ℓ)ℓ∈N and (c1,i ,ℓ)ℓ∈N are
absolutely summable sequences in H,

3. For every i ∈ {1, . . . , n}, (a2,i ,ℓ)ℓ∈N, (bi ,ℓ)ℓ∈N, and (c2,i ,ℓ)ℓ∈N

are absolutely summable sequences in Gi .
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Proximity operators to compute

minimize
x∈H

S∑

s=1

fs(Fx) + ιC (x) + ιD(Tx)

Computation of the proximity operators :
◮ fs =

∑
b∈Ls

‖Bb · ‖,

◮ ιC with C ⊂ H : nonempty closed convex set, models data dynamic,

◮ ιD with D =
{
u ∈ R

K
∣∣ g(u, z) ≤ η

}
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Proximity operators to compute

minimize
x∈H

S∑

s=1

fs(Fx) + ιC (x) + ιD(Tx)

Computation of the proximity operators :
◮ fs =

∑
b∈Ls

‖Bb · ‖,

→ Closed form [Peyré, Fadili, 2011].

◮ ιC with C ⊂ H : nonempty closed convex set, models data dynamic,

→ Closed form : projection onto a hypercube [Rockafellar, 1969].

◮ ιD with D =
{
u ∈ R

K
∣∣ g(u, z) ≤ η

}

→ Closed form if g(·, z) = ‖ · −z‖2 [Rockafellar, 1969].

→ NO closed form in a general context.
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Epigraphical projection

How to handle a convex constraint D̃ of the form

D̃ =
{
v ∈ R

KM
∣∣ h(v) ≤ η

}
?

where

◮ the generic vector v has been decomposed into K blocks of
coordinates as follows

v⊤ = [(v(1))⊤︸ ︷︷ ︸
sizeM

, . . . , (v(K))⊤︸ ︷︷ ︸
sizeM

],

◮ (∀v ∈ R
KM), h(v) =

∑K
r=1 hr (v

(r)),

◮ For every r, hr is a function in Γ0(R).
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Epigraphical projection

How to handle a convex constraint D̃ of the form

D̃ =
{
v = (v(r))1≤r≤K ∈ R

KM
∣∣

K∑

r=1

hr (v
(r)) ≤ η

}
?

Solution : Define an auxiliary vector ζ =
(
ζ(r)

)
1≤r≤K

∈ R
K .

⇒ the inequality in D̃ can be equivalently rewritten as
{∑K

r=1 ζ(r) ≤ η

(∀r ∈ {1, . . . ,K}), hr (v
(r)) ≤ ζ(r).
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)
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K .

⇒ the inequality in D̃ can be equivalently rewritten as
{∑K

r=1 ζ(r) ≤ η

(∀r ∈ {1, . . . ,K}), hr (v
(r)) ≤ ζ(r).

⇔

{
ζ ∈ V

(v , ζ) ∈ E

where
{

V =
{
ζ ∈ R

K
∣∣ 1⊤K ζ ≤ η

}

E = {(v , ζ) ∈ R
KM × R

K | (∀r ∈ {1, . . . ,K}) (v(r), ζ(r)) ∈ epi hr}.
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Epigraphical projection

◮ V =
{
ζ ∈ R

K
∣∣ 1⊤K ζ ≤ η

}
,

◮ E = {(v , ζ) ∈ R
KM × R

K | (∀r ∈ {1, . . . ,K}) (v(r), ζ(r)) ∈ epi hr}



Proximal methods for constrained cosparse modelling 17/28

Epigraphical projection

◮ V =
{
ζ ∈ R

K
∣∣ 1⊤K ζ ≤ η

}
,

→ The projection operator is simply given by

(∀ζ ∈ R
K ) PV (ζ) =

{
ζ if 1⊤K ζ ≤ η

ζ +
η−1⊤K ζ

K
1K otherwise,

◮ E = {(v , ζ) ∈ R
KM × R

K | (∀r ∈ {1, . . . ,K}) (v(r), ζ(r)) ∈ epi hr}
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,
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(∀ζ ∈ R
K ) PV (ζ) =

{
ζ if 1⊤K ζ ≤ η

ζ +
η−1⊤K ζ

K
1K otherwise,

◮ E = {(v , ζ) ∈ R
KM × R

K | (∀r ∈ {1, . . . ,K}) (v(r), ζ(r)) ∈ epi hr}

→ The projection onto E [Bauschke, Combettes, 2011] is given by

(∀(v , ζ) ∈ R
KM × R

K ) PE (v , ζ) = (p, θ)

where

{
θ = (θ(1), . . . θ(K))⊤ and p⊤ =

(
(p(1))⊤, . . . , (p(K))⊤),

(∀r ∈ {1, . . . , K}) (p(r), θ(r)) = Pepi hr
(v(r), ζ(r)).

⇒ Lower-dimensional problem of the determination of the projection
onto the convex subset epi hr for each r ∈ {1, . . . ,K}. These
projections have a closed form expression in a number of cases.
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Epigraphical projection with a closed form

Explicit form of the projection operator associated with :

hr (v
(r)) = max{v(r ,j) + η(r ,j) | 1 ≤ j ≤ M}

where

→ v(r) = (v(r ,1), . . . , v(r ,M))⊤ ∈ R
M

→ r ∈ {1, . . . ,R} and (η(r ,1), . . . , η(r ,M))⊤ ∈ R
M

Example for R = 1 and M = 3 :
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Algorithmic solution

g(u, z) =

K∑

r=1

gr (u
(r), z (r)) ≃

K∑

r=1

hr (∆
(r)u(r))

where
◮ hr (v

(r)) = max{v(r ,j) + η(r ,j) | 1 ≤ j ≤ M},

◮ η(r ,j) = gr (a
(r)
j , z (r)) − δ

(r)
j a

(r)
j ,

◮ δ
(r)
j ∈ R is any subgradient of gr (·, z

(r)) at a
(r)
j ,

◮ ∆(r) = [δ
(r)
1 , . . . , δ

(r)
M ]⊤.

→ The approximation can be as
close as desired by choosing M large
enough.

a
(1)
2 a

(1)
3

h1 ◦ ∆(1)

a
(1)
1

g1

u(1)
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g(u, z) =

K∑

r=1

gr (u
(r), z (r)) ≃

K∑

r=1

hr (∆
(r)u(r))

where
◮ hr (v

(r)) = max{v(r ,j) + η(r ,j) | 1 ≤ j ≤ M},

◮ η(r ,j) = gr (a
(r)
j , z (r)) − δ

(r)
j a

(r)
j ,

◮ δ
(r)
j ∈ R is any subgradient of gr (·, z

(r)) at a
(r)
j ,

◮ ∆(r) = [δ
(r)
1 , . . . , δ

(r)
M ]⊤.

→ The approximation can be as
close as desired by choosing M large
enough.

h1 ◦ ∆(1)
g1

a
(1)
1 a

(1)
2 a

(1)
3 a

(1)
4 a

(1)
5

u(1)
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Algorithmic solution

minimize
x∈H

S∑

s=1

fs(Fx) + ιC (x) + ιD(Tx)

⇒ Approximated criterion :

minimize
(x ,ζ)∈H×RK

S∑

s=1

fs(Fx) + ιC (x) + ιV (ζ) + ιE (∆Tx , ζ)

where

◮ D =
{
u ∈ R

K
∣∣ g(u, z) ≤ η

}
,

◮ V =
{
ζ ∈ R

K
∣∣ 1⊤K ζ ≤ η

}
,

◮ E = {(v , ζ) ∈ R
KM × R

K | (∀r ∈ {1, . . . ,K}) (v(r), ζ(r)) ∈ epi hr},

◮ For every u ∈ R
K , g(u, z) =

∑K
r=1 gr (u

(r), z (r)) ≃
∑K

r=1 hr (∆
(r)u(r)).
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Experimental results

≪ Compressed sensing ≫ experiment in the presence of Poisson

noise :
◮ Electron microscopy image of size N = 128 × 128 (H = R

N),
◮ T denotes a randomly decimated blur : uniform blur of size 3 × 3 and

approximately 60% of missing data, that leads to K = 9834,
◮ Poisson noise with scaling parameter 0.5.

Original Degraded
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Experimental results

Choice of the criterion :
∑S

s=1 fs(F ·) + ιC (·) + ιD(T ·)
◮ Data fidelity : approximation of the Poisson likelihood,

◮ Influence of M ,
◮ C = [0, 255]N ,
◮ F : Dual-Tree Transform (DTT) – symmlet 6, 2 levels,
◮ Blocks :

◮ ℓ1-reg : Classical ℓ1 cost function,
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Experimental results

◮ Impact of M,

◮ Results for ℓ1-reg,
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Experimental results

◮ Impact of M,

◮ Results for ℓ1-reg,

M = 3 M = 5 M = 7
SNR = 14.5 dB SNR = 16.1 dB SNR = 16.3 dB
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Experimental results

◮ Impact of M,

◮ Impact of the regularization term.
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Experimental results

◮ M = 7,

◮ Impact of the regularization term.

ℓ1-reg Block PrimalDual Block 4Pixel overlap
SNR = 16.3 dB SNR = 16.5 dB SNR = 16.6 dB
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Conclusion and future works

◮ Convex optimization approach for solving cosparse modelling problems
under flexible convex constraints.

◮ Use of recent proximal algorithms combined with a novel epigraphical

projection technique.

◮ Approach applied to a reconstruction problem involving data
corrupted with Poisson noise.



Thank you for your attention.


