TFOCS: A General First-Order Framework for
Constrained Optimization

Stephen Becker

Laboratoire Jacques-Louis Lions, Paris VI;
Fondation Sciences Mathématiques de Paris

November 18, 2011

TFOCS = Templates for First-Order Conic Solvers

Collaborators:
Michael Grant (Caltech, CVX Research)
Emmanuel Candés (Stanford)



Motivation: new analog-to-digital converter
Analog-to-information (A2l) converter using compressed sensing

Sample at 400 MHz
(12.5% below Nyquist)
Output:

Input signal z(t)
2.5 GHz

b, keZ

Measurements are linear and x is finite dimensional:
b= Az

Convex optimization to recover x, exploiting prior knowledge of the
signal class

Applicable to many other fields: machine learning, image processing,
economics, operations research, ...



Typical problems

b=Ax+z, AeR™™ zis noise

x is sparse, m < n. Define ||z|1 =), x|
Basis Pursuit BP

min ||z|; such that Axz=1b
x

orif x is “W-sparse”: i.e. 3o € R? sparse, such that W a ~ x.
Basis Pursuit Denoising BP., analysis (includes TV denoising)

min [|[Wz|; such that ||Az —b|2 <e¢
x

Alternatives:

Dantzig Selector

min ||z||; such that ||AT(Az —b)||e <6




Typical problems: matrix completion

Matrix completion

H}}n | Xl such that A(X) =b,X € R™*"2,

[IX ||¢r is the nuclear norm (sum of singular values).
A R™MX"2 — R™ s linear

x 77 x 7
7 x 7 x X
AX)=|x x 7 7 72
7 x x x 7
77 x 70X

If m < ny X ng, want prior on X. Convenient prior: X is low-rank.

Variants:
n}%}u”X”tr such that [JA(X) =]z <e
min | X e + ]| ACX) ~ b3



Typical problems: RPCA
Robust PCA (one type):

RPCA
min Ll + AIS|ly  suchthat L+S=X,AX)=5b

Idea: X is composed of Low-rank and Sparse
May use A =/
variants, e.g. AWGN noise:

Stable Principal Component Pursuit

I{liél |L|ler + A||S|l1 such that  [JA(X) —b|l2 <€

or constraints appropriate for quantization error (e.g. [0, 255] indexed
image):
JA(X) = blloc <&



Example of RPCA

Background subtraction

image from Goldfarb, Ma, Sheinberg '10



Typical problems: variational image processing
Goal: denoise, deblur, inpaint, or improve resolution of an image... or do
combinations!
Variational image denoising: add regularizers r(x).

Example'
r(x) = |lzllrv =32, V(Axz)? + (Ayz)? “total-variation” aka “TV"
r(x ) = ||W*z||1 where W* is a wavelet or curvelet analysis operator
Ps= > pen 1T [|2, block-variant of £1, where B is some partition of
{1,...,n

Image deblurring and denoising and inpainting

: 1
min [[ul| Pz + [|Wullzv + Sllb— BS(Wu)ll3

where signal is recovered via x = Wu, and B is a blur and S is a sub-sample.

(c) LaBoute yo (d) y= MKyo +

B (e) tio =W, 23.83 dB

image from Raguet, Fadili, Peyré '11 (using W a wavelet tight frame)



Interior Point methods

Experiments that ran on a cluster (2008) are now run on
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Time to solve (in seconds)

10"

a laptop.

1 hour

10 minutes

1 minute

-~ .
S

—e— SeDuMi (high precision)
- - SeDuMi (low precision)
—s—|1-Magic (high precision)
-+ - |1-Magic (low precision)
——LIPSOL (high precision)
-« - LIPSOL (low precistion)
—o— Simplex (high precision)
- - Simplex (low precision)
—e—TFOCS (high precision)
- @~ TFOCS (low precision)

10

Size of problem "N"

10"



Interior Point methods (2)
But accuracy of first-order methods...? Not a problem.
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First-order methods

Conclusion: due to size of problem, first-order methods beat IPM for this
application since they scale better.

Also, first-order methods easily exploit fast operators (FFT,...)
Similar fact: homotopy-type methods only competitive in special cases
There are fast alternatives that solve similar problems: greedy (OMP,

CoSaMP), hybrid (ALPS), message passing (AMP), iterative
hard-thresholding.

—N=4096
—N=16,384
~——N = 65,536

Example: basis pursuit with w0 —=s
DCT using TFOCS. Solve 10° w -

variables to 1072 relative error g
in 1 minute H

z




Existing first-order solvers (2010)

) A
min [Wa]; min [z, + 7| Az — b3
xT

such that | Az —bfl; <& min |||y such that Az — b
xT

® Require AAT = I or solve inner subproblem
NESTA (B., Bobin, Candés)

C-SALSA (Afonso, Figueiredo, Bioucas-Dias)
Z. Lu (for the Dantzig)

(Lu, Pong, Zhang) ADM for Dantzig

® Restrictions on W
e SPGL1 (Friedlander, van den Berg)

© Solve un-constrained version, or equality constraints only

e FPC, FPC-AS, GPSR, SpaRSA, FISTA, Bregman, ...
e (cannot handle W)



Brand-new first-order solvers (2011)

First-order methods that can solve these complicated variants:

TFOCS: Becker-Candés-Grant (2010)

e Chambolle-Pock (2010)

e ...extended by He and Yuan (2010)
e .. .extended by Condat (2011) and Vi (2011)

Bricefio-Arias—Combettes (2011) “monotone + skew”

e use modified Forward-Backward (“Forward-Backward-Forward") of
Tseng 1998
e or Monteiro-Svaiter 2010

Chen-Teboulle (1994)

Combettes-Pesquet (2011)

(Almost) all of these since September 2010!



Review

What is a first-order method?
Uses first-derivate information V £, as opposed to Hessian V2 f

min f(z) such that x € C

Projected gradient descent, aka forward-backward algorithm
Tr+1 = Polzr — tV f(2k)) J

Works if:
e f is smooth so that V f exists (also need V f Lipschitz)
e P, the projection onto C, is easy to compute



Challenges and desiderata

@ Allow difficult constraints and arbitrary linear operators
e How to project onto ||[Az —blj2 <& ?
o Allow several constraints, like ||[Az — b2 <&, 2> 0,2 <1
® Allow non-smooth objectives, so slower convergence: how to fix?
® Allow complicated objectives, like ||[Wx||1 + ||z||7v
O Flexible: allow prototyping, like CVX
@ Few parameters

@ Exploit sparsity or FFT-based operators

@ (Matrix problems) Keep iterates low-rank when possible



TFOCS main idea

min f(z) + Y (Az +b)

® Find conic formulation*
® Add strongly convex term
® fu(z) = f(z) + Hllz — xgll?
e dual problem becomes
nicer
® Solve dual problem
e composite approach

® g = (smooth + h
e h nonsmooth but “nice”



TFOCS main idea

min f(z) + Y (Az +b)

® Find conic formulation*
® Add strongly convex term

® fu(z) = f(z) + Hllz — xgll?
e dual problem becomes
nicer

® Solve dual problem

e composite approach
® g = (smooth + h
e h nonsmooth but “nice”

Potential drawbacks:
Q: Primal iterate is not feasible

A: ||Az —b]| <e buteis
estimate!

Q: Effect of smoothing
A: Use continuation
® rigorous via proximal point
framework
® accelerated continuation

e sometimes no effect even for
pw>0



Benefits of duality

@ Projection onto dual cone has no linear A term

® Better smoothing: primal retains its kink

— 100 = x|

M nea ) Fenchel dual

0.9 —— primal smoothed f(x)

07 ) = sup (A x)— f(x)

f strongly convex — f*

o differentiable and V f* Lipschitz

o1 Smooth problems: much faster

4 T i convergence, i.e. O(7) vs
O(7)

Vk



Example: matrix completion

minimize || X ||y —  minimize || X[y + 5| X — Xo|/%
subject to | A(X) —b|| <e subject to  (A(X) —b,e) € K

Dual problem

maximize  inf {1 X[l + 51X = Xoll3 — (A ACX) - )}~ €[\l

—Gsmooth (>\)

gsmooth (A) has gradient A(X)) — b, where X is unique minimizer above



Example: matrix completion, version 2

minimize || X ||y —  minimize ¢+ §]|X — Xo|/%
subject to | A(X) —b|| <e subject to  (A(X) —b,e) € K
(X7 f) € ’Ctr

Dual problem

maximize —el|All«+...
——

>‘><V~S)EK5pectral
h(A)
inf {1 + 21X = Xoll — (A AX) =b) — (v, X) — st}

—0Gsmooth <)\)

Similar algorithm, but now X} ,, is linear in A and v, so dual is
constrained quadratic (and with 2x variables).



General form

Exploit structure, not just “black-box"
Two viewpoints: conic dual or Fenchel dual

Fenchel duality view

min f(x) + Y i(Aix — b;)
i
where f,} are “prox-capable”, v; : R™ — R
. 1 2
prox,(y) = axgmin f(x) + 5 e — y]
Matrix completion: ’t/Jl(X) = UX||IX|I<e)s A=A, by =0
@ matrix completion style 1 corresponds to:
flx) =X, 12=0
® matrix completion style 2 corresponds to:

f = 0; 11)2(1') = HX”tI’aAQ = Ia b2 =0

If f =0, dual is always (constrained) quadratic.



Solving the dual
“Proximal gradient descent”, aka “forward-backward” algorithm. Handles
smooth + nonsmooth (Fukushima and Mine, 1981).
e Gradient projection step for minimizing smooth ¢:

. L
Abt1 argmin g(Ak) + (Vg(Ae), A = A) + 5\\)\ = Xel)?
e

o Generalized gradient projection for minimizing g + h (h nonsmooth)
: L 2
A1 argmin 9(Ak) +(Vg(Ae), A = Ag) + §||)\ = Akll” +h(A)

e Solution is proximity operator of h. Often known.
e Ex. h = xc, then proximity operator is just projection onto C'
e Ex. h = ||z||1, then proximity operator is shrinkage
e Works with backtracking and Nesterov acceleration (Nesterov,
Beck/Teboulle 2005)



Generic algorithm (Nesterov's style)

Auslender-Teboulle version, no backtracking

min, f(z) + ¥ (Az +b), h=p*

Algorithm 1 Generic algorithm for the conic standard form

Require: \g,xzg € R™, u > 0, step sizes {t;}
for k=0,1,2,... do
. <= argmin, f(x) + p/2||lx — w0l — (A" (vp), = >

1:

2:

3

4 (v

5. App1 < argming h(A) + o5 [|A — Akll? + (Ala) +
6

7

8:

end for

x is primal

A, v,v are dual, 0 is scalar



Algorithm for Matrix Completion

Matrix completion, style 1

Algorithm 2 Algorithm for nuclear-norm minimization (¢ constraint)

4: X} + SoftThresholdSingVal(Xy — u =t AT (1), u= )
5: A1 < Shrink(\y — 0, 't (b — A(X4)), 0 tre)

SoftThreshold(x, 7) = sgn(x) - max{|z| — 7,0}
Soft ThresholdSingVal(X,t) = U - SoftThreshold(%, t) - VT,

01 HZ”2 <t

Shrink(z,t) £ max{1 —t/||z||2,0} - z =
(A =t/llzll2) -z [lzll2 > ¢

Significantly extends SVT



Other new algorithms

Algorithm 3 Algorithm excerpt for Dantzig

4: x), + SoftThreshold(xg — u=tAT Ay, u=1).
5: App1 ¢ SoftThreshold( Ay — 0 't AT (b — Axy,), 0 't1.6)

Algorithm 4 Algorithm excerpt for LASSO

4: @), < SoftThreshold(xg — = AT vy, u=1)
5: A1 < Shrink(\y — 0, 't (b — Axy), 0, 'txe)

Algorithm 5 Algorithm excerpt for TV minimization

4: T} — x0 + ,u_l(%(D*l/]gl)) — A*V](Cz))
5. )\,(91)1 — C’I‘runc()\(l) 97 t<1)D$ck,97 t(l))
' Aﬁl + Shrink(\”) — 6, <2)(b Azy), 0,1 €)




Conic Programs

min (¢,x) such that x>0, Az =1b

K =R" — P
K={(z,t) e R"": ||z|| <t} = SOCP
K= sn —  SDP

Dual, before smoothing

max —(b,v) suchthat A>x-0, A=c+ A"v

|29\

Dual, after smoothing

1
max — (b, u>—2—||c—)\—l—A*u||2—i-<c—)\—i-A*V7 xo) such that A >i 0.
v, o



TFOCS ideas: extras

Software is modular. Easy to add constraints, change solver. ..

(Important) details

6 first-order methods (GRA + 5 accelerated methods)

Efficient step size procedures (based on Tseng's convergence
analysis): no Lipschitz constant needed. Key idea: if L updated,
must be updated as well

Easy testing and benchmarking
Efficient use of linear operator structure: crucial when backtracking
occurs
minimize  gsmooth (A7 A) + h(\)
Accelerated continuation: remove effect of p
Exact perturbation

Restart strategies to ensure optimal performance




Conjugate Gradient

Advantage of modularity: easy to try new solvers, line search.
CG, (L-)BFGS, SESOP ...

10°

10°

10
10"
%o
¥ 10
£
10°
107107
12 —tfocs (GRA)
10 —tfocs (AT)
tfocs w/ restart
14 —tfocs with CG
10 : :

. . . . . . .
0 200 400 600 800 1000 1200 1400 1600 1800 2000
number of calls to A and A*

Ex: Non-linear CG (Polak-Ribiere), noiseless basis pursuit, N = 2048.



Standard continuation
Want perturbation small

minimize f(@) + ullz — 202
subjectto  A(z)+be Kl

Problem: L o<1/

Algorithm 6 Standard continuation

Require: Yj, po >0, 5 <1
1: for =0,1,2,... do
20 X4« argmin f(z)+ &Hm - Y3
A(z)+beK 2
3: ij+1 — Xj+1 (or )/jJrl — Yo)

4 P < By
5: end for

FPC: Hale, Yin, and Zhang ('08)



Moreau-Yosida regularization

Moreau envelope h(Y) = miél f(z) + ng — Y2
EAS

Moreau proximity operator Xy =argmin f(x) + ng -Y|3
zeC

Theorem
h is continuously differentiable with gradient

Vh(Y) = p(Y - Xy)

The gradient is Lipschitz continuous with constant L = p

Minimizing h by gradient descent — proximal point algorithm (PPA)
(Martinet, Rockafellar, 70s)



Accelerated continuation (Nesterov style)

If proximal-point algorithm is gradient descent, then why not accelerate?

Algorithm 7 Accelerated continuation

Require: Yj, po >0

Xo + Yo

2: for j =0,1,2,... do

3 X argmin f(0) + Hfle - Y3

[y

A(z)+beK
4: ij+1 (—X]+1+J+3(Xj+1—Xj)
5. (optional) increase or decrease p;
6: end for

Keep f1; = 1 so subproblems quick to solve
Warm-start subproblems

For small p, typically 5 iterations



Simple vs. accelerated continuation: LASSO example

"y ——Regular continuation (fixed p)
——Accelerated continuation (fixed p)

5 10

15
outer iteration

lzx — 2*||/|lxo — x*|| vs. outer iteration count



Effect of perturbation
Nice surprise:

Linear programs (ex. Dantzig, Basis Pursuit) have exact penalty

Theorem (Exact penalty)

o Arbitrary LP with objective (c,x) and with optimal solution
e Perturbed LP with objective (c,z) + 3|z — zol|3

There is g > 0 s.t. for 0 < p < pg, any solution to perturbed problem is
a solution to LP

e Special case (BP): Yin ('10)
o More general result: Friedlander and Tseng ('07)

e Combine with continuation == finite termination

Known since Bertsekas '75, Polyak and Tretjakov '74, Mangasarian
'79



[[lustration

Exact penalty for Dantzig Selector (since linear program)
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Parameters

Lipschitz Gradient

1) < F@)+ ly— 2, V@) + £l — ol

Strong Convexity

@) = f(@) + (y— 2, V(@) + L=yl

If V2f exists, equivalent to
mpl X V?f < LI

Goal: user needs no knowledge of my and L
e For L, trick: backtracking line search

o For my, trick: restart



Linesearch

Tentative new point yk41 using stepsize 1/Lj; must satisfy:

Fyk+1) < Flyk) + Wrrr — ye, ViF(yr)) + %Hykﬂ —ull3 }

Problem: suffers from cancellation issues in finite precision. To see this:
Let yx+1 — yx = €h where ||h]| = 1. As k — 0o, e = 0. Then

2
Flken) < F) +2 (0, VF ) + S0

If (h, Vf(yx)) > ¢, this term dominates the e2L;, term.
Solution: instead, check this (equivalent) condition

L
(01 = 0, VI k) = VI < s — el ]

Since Vf is Lipschitz, ||V f(yr+1) — Vf(yr)|| < Le, so both sides of the
inequality are O(g?). Cost of V£ is often similar to cost of f.




Linesearch subtleties

Linesearch test:

L
(iar =, VI 1) = VI @) < S lomes = unl3

Often, f has structure f(z) = g(Ax), so Vf(x) = A*Vg(Azx).
Algorithm is aware of this and computes

L
(Ayr41 — Ayr, Vg(Ayr41) — Vg(Ayg)) < 7k||yk+1 —ukll3

so Aygs1 and Ayy can be re-used.
If Ly changes, convergence rate bound is improved if weight parameter 6
is also updated:

2
L+ /14 4Ly 1 /(L167)

Op+1 =




Restart

Problem: accelerated schemes don't automatically take advantage of

strong convexity.

i.e. my unknown == no linear convergence

error

---GRA, backtracking
— AT, backtracking
AT, restart every 5
—AT, restart every 10
—AT, restart every 50
— AT, restart every 1004
fN83, using m

I
500

L
1000 1500 2000 2500 3000
iterations



Restart

Convergence of accelerated method:
L
Flar) = 7 < 5l = zo|®
If f is strongly convex with parameter my¢,
lzp — ¥ < ——= 5 llz* — |

With restart, xg is xj of a previous sequence. Do this j times.

2L
Lo < _
|z — 2| < (1 [ — m; k;) lz* — Zol|

1/k
This is linear convergence with rate p = (1 /%%) .

2L
mpy
See PARNES paper (Gu, Lim, Wu 2009), Nesterov 2007, and also

Nemirovskii-Yudin (80s).
Goes back to Powell (1977) for non-linear CG.

kopt =€



Restart: sensitivity

N
o
o
o

1500

Number of iterations to reach desired accuracy

1000

500

Sensitivity of restart, no backtracking

3000 gh

2000

.
—e—low accuracy

—e—med accuracy
—e— high accuracy/]|

200 400 600 800 1000 1200
Restart value



Restart: improvements

“No Regress" feature, since accelergted
10° .

methods are non-monotone

(fi= F/F*

1oL

12

- = -GRA

—— AT, no restart

—— AT, restart 10

—— AT, restart 50
AT, restart 100

—— AT, no regress ||

—— N83, using m

0 500 1000

I
1500
k

I
2000

I
2500 3000



Comparison with Chambolle/Pock
min f(z)+P(Az—b),  max ¢’ () + [ (—AN) + (), L= 4|l
TFOCS. Uzawa applied to perturbed problem. Pick ¢t < p/L?.

xpy1 = argmin f(z) — ( X\, Az — b) + %HLL — x0?

. « 1
Apt1 = argmin ™ (A) — (Azg41, A) + EH)‘ . /\kH2
A t

A= Ait+1 + 0k (Akt1 — Ak)  (e.g. simple Nesterov; other choices possible)

Chambolle/Pock. Arrow-Hurwicz if @ = 0. Gradient descent on primal-dual
simultaneously. Pick 7o < 1/L?.

. * — 1
Ai+1 = argmin™ (\) — (AT, A\) + % A — >\k||2
by o

. 1 .
T = argmin f(2) — i, Az = 8) + o —

T = Tk41 + Ok (Tp+1 — k) (acceleration sometimes possible)



Comparison with Chambolle/Pock (2)

Analogous to dual-IPM and primal-dual IPM. Merits to both algorithms.
TFOCS

® Best choice for u? Requires outer iteration, stopping criteria
o Accelerated outer iteration (a Nesterov)

o Accelerated inner iteration (always accelerated)

e Finite convergence of outer iteration for LP

e Inner iteration is standard: benefits from line search, so ¢t chosen
automatically

e For some problems, can use CG, L-BFGS, etc. on inner iteration

Overall, TFOCS will solve the inner problem faster, but it has to solve several
inner problems.
Chambolle/Pock

® How to choose 7 and o7 Linesearch possible?
e No outer iteration

e For accelerated version, line search not possible yet: less established
framework

e Sometimes accelerated, i.e. if f or ¢™ is strongly convex (i.e. f* or 1 has
Lipschitz gradient)



Comparison with Chambolle/Pock (3)

Dantzig Selector with weighted norm

min |[W*z||;  such that [|AT(Az — b)|lec <&

Numerical test with W™ an over-sampled DCT transform, and signal x
superposition of sine waves.
At solution, W*x is not sparse, which makes problem harder to solve

‘Chambolle-Pock algorithm o TFOCS algorithm
1 1
x(f =17
=7 = 10
7 = 10000,
g 1
==& = 1000000~
= 10000000~
-5 = 1000000007 .
1
\\ 5
.
N 5
\/’\
E
107
o o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 o o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iterations Iterations

Algorithms perform similarly. Knowing correct value of o/7 is quite helpful.



Convergence rates

. . H 2
Pl —
min min f(x)+ 2 |z =Y

o(Y)
e Inner iterations: objective converges in O(1/k?) (
9(Ak) = g* = o(Y) )

Outer iterations: if via proximal point method, locally linear, or
globally O(1/3). If via accelerated proximal point method, O(1/52).

e How to combine the two? One method: Liu/Sun/Toh 2009

Or, result of Giiler 1990s, on inexact accelerated proximal point
method. Need primal variables of inner iterates to converge.
e via Fadili/Peyré 2011, ||z; — =*||> < g* — g(Ax)
e Want p large for inner solve, u small for outer solve.
e If f smooth and (V%) bounded, then O(s~%/4) iterations to reach
e-solution.



Software release

e Paper

o User guide

e Software (MATLAB)

solvers

many simple examples

a few real-world examples

continuation wrappers
compatible with SPOT

o Parameters: any >0

TFOCS Templates for First-Order Conic Solvers

About TFOCS

r First-Order Conic Solvers (TFOC
t provides a set of templates, or
t efficient, customized sol
ind written by Stephen

ation about the software can be found in the paper linked at left, as
asn the user guide.

©2010, Cattech.

http://tfocs.stanford.edu


http://tfocs.stanford.edu

Example in TFOCS

Basis Pursuit Denoising B P, analysis

min |[Wz|; such that [[Az —bl2 <e
T

prox = { prox_12( epsilon ), proj_linf };
linear = { A, -b; W, 0 };
X = tfocs_SCD( [], linear, prox, mu, x0 };

Easy to add constraints, e.g. © > 0

prox = { prox_12( epsilon ), proj_linf, proj_Rplus };
linear = { A, -b; W, 0; 1, 0 };

Of course, this is also builtin. . .

x = solver_sBPDN_W(A,W,b,epsilon,mu)

No Lipschitz constant or step size needed!



Open problems
Optimization
® Compare the new general first-order methods: TFOCS, Chen-Teboulle,
Combettes-Pesquet, Bricefio-Arias—Combettes (2011), Chambolle-Pock (and

He-Yuan/Condat/Vii extensions)

® Complexity analysis of TFOCS in general case, stopping criteria
® Convergence rate of other algorithms

® First-order CVX. Modular, robust (no parameters), fast.

® |Improve speed of constrained first-order methods
® Performance on non-sparse problems is still slow
® Scaling issues are significant
® For unconstrained problems, non-linear CG and L-BFGS are fantastic. For constrained
problems, we have nothing
® Preconditioned truncated-Newton methods

Adapt to current computing paradigms

® Multicore processors
® Giant datasets with distributed memory
® Stochastic approaches, error tolerance

® Specific techniques for matrix variables

® Randomized SVDs: require error tolerance
® Keep iterates low-rank

Signal processing
® New measurement schemes: easy calibration
® Exploit unconventional prior information (beyond sparsity)

® Non-linear measurements



