
TFOCS: A General First-Order Framework for
Constrained Optimization

Stephen Becker

Laboratoire Jacques-Louis Lions, Paris VI;
Fondation Sciences Mathématiques de Paris

November 18, 2011

TFOCS = Templates for First-Order Conic Solvers

Collaborators:
Michael Grant (Caltech, CVX Research)

Emmanuel Candès (Stanford)

Motivation: new analog-to-digital converter
Analog-to-information (A2I) converter using compressed sensing

Input signal x(t)
2.5 GHz

Sample at 400 MHz
(12.5× below Nyquist)
Output:

bk, k ∈ Z

Measurements are linear and x is finite dimensional:

b = Ax

Convex optimization to recover x, exploiting prior knowledge of the
signal class

Applicable to many other fields: machine learning, image processing,
economics, operations research, . . .

Typical problems

b = Ax+ z, A ∈ Rm×n, z is noise

x is sparse, m� n. Define ‖x‖1 =
∑
i |xi|.

Basis Pursuit BP

min
x
‖x‖1 such that Ax = b

or if x is “W -sparse”: i.e. ∃α ∈ Rd sparse, such that WTα ' x.

Basis Pursuit Denoising BPε, analysis (includes TV denoising)

min
x
‖Wx‖1 such that ‖Ax− b‖2 ≤ ε

Alternatives:

Dantzig Selector

min
x
‖x‖1 such that ‖AT (Ax− b)‖∞ ≤ δ

Typical problems: matrix completion

Matrix completion

min
X
‖X‖tr such that A(X) = b,X ∈ Rn1×n2 .

‖X‖tr is the nuclear norm (sum of singular values).
A : Rn1×n2 → Rm is linear

A(X) =


× ? ? × ?
? × ? × ×
× × ? ? ?
? × × × ?
? ? × ? ×


If m� n1 × n2, want prior on X. Convenient prior: X is low-rank.

Variants:

min
X
‖X‖tr such that ‖A(X)− b‖2 ≤ ε

min
X
‖X‖tr + τ‖A(X)− b‖22

Typical problems: RPCA

Robust PCA (one type):

RPCA

min
L,S
‖L‖tr + λ‖S‖1 such that L+ S = X,A(X) = b

Idea: X is composed of Low-rank and Sparse

May use A = I

variants, e.g. AWGN noise:

Stable Principal Component Pursuit

min
L,S
‖L‖tr + λ‖S‖1 such that ‖A(X)− b‖2 ≤ ε

or constraints appropriate for quantization error (e.g. [0, 255] indexed
image):

‖A(X)− b‖∞ ≤ ε

Example of RPCA

Background subtraction

image from Goldfarb, Ma, Sheinberg ’10

Typical problems: variational image processing
Goal: denoise, deblur, inpaint, or improve resolution of an image... or do
combinations!
Variational image denoising: add regularizers r(x).
Example:

• r(x) = ‖x‖TV =
∑
i,j

√
(∆Xx)2 + (∆Y x)2 “total-variation” aka “TV”

• r(x) = ‖W ∗x‖1 where W ∗ is a wavelet or curvelet analysis operator

• ‖x‖B1,2 =
∑
p∈B ‖x(p)‖2, block-variant of `1, where B is some partition of

{1, . . . , n}

Image deblurring and denoising and inpainting

min
u
‖u‖B1,2 + ‖Wu‖TV +

1

2
‖b−BS(Wu)‖22

where signal is recovered via x = Wu, and B is a blur and S is a sub-sample.

image from Raguet, Fadili, Peyré ’11 (using W a wavelet tight frame)

Interior Point methods
Experiments that ran on a cluster (2008) are now run on a laptop.

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

10
4

Size of problem "N"

T
im

e
to

 s
ol

ve
 (

in
 s

ec
on

ds
)

1 hour

10 minutes

1 minute

SeDuMi (high precision)
SeDuMi (low precision)
l1−Magic (high precision)
l1−Magic (low precision)
LIPSOL (high precision)
LIPSOL (low precistion)
Simplex (high precision)
Simplex (low precision)
TFOCS (high precision)
TFOCS (low precision)

Interior Point methods (2)
But accuracy of first-order methods. . . ? Not a problem.

10
3

10
4

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Size of problem "N"

R
el

at
iv

e
er

ro
r

SeDuMi (high precision)

SeDuMi (low precision)

l1−Magic (high precision)

l1−Magic (low precision)

LIPSOL (high precision)

LIPSOL (low precistion)

Simplex (high precision)

Simplex (low precision)

TFOCS (high precision)

TFOCS (low precision)

First-order methods

Conclusion: due to size of problem, first-order methods beat IPM for this
application since they scale better.

Also, first-order methods easily exploit fast operators (FFT,. . .)

Similar fact: homotopy-type methods only competitive in special cases

There are fast alternatives that solve similar problems: greedy (OMP,
CoSaMP), hybrid (ALPS), message passing (AMP), iterative
hard-thresholding.

Example: basis pursuit with
DCT using TFOCS. Solve 106

variables to 10−5 relative error
in 1 minute

0 10 20 30 40 50 60
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Time (seconds)

R
el

at
iv

e
er

ro
r

N = 4,096
N = 16,384
N = 65,536
N = 262,144
N = 1,048,576

Existing first-order solvers (2010)

min
x
‖Wx‖1

such that ‖Ax− b‖2 ≤ ε
min
x
‖x‖1 +

λ

2
‖Ax− b‖22

min
x
‖x‖1 such that Ax = b

1 Require AAT = I or solve inner subproblem
• NESTA (B., Bobin, Candès)
• C-SALSA (Afonso, Figueiredo, Bioucas-Dias)
• Z. Lu (for the Dantzig)
• (Lu, Pong, Zhang) ADM for Dantzig

2 Restrictions on W
• SPGL1 (Friedlander, van den Berg)

3 Solve un-constrained version, or equality constraints only
• FPC, FPC-AS, GPSR, SpaRSA, FISTA, Bregman, . . .
• (cannot handle W)

Brand-new first-order solvers (2011)

First-order methods that can solve these complicated variants:

• TFOCS: Becker-Candès-Grant (2010)

• Chambolle-Pock (2010)
• . . . extended by He and Yuan (2010)
• . . . extended by Condat (2011) and Vũ (2011)

• Briceño-Arias–Combettes (2011) “monotone + skew”
• use modified Forward-Backward (“Forward-Backward-Forward”) of

Tseng 1998
• or Monteiro-Svaiter 2010

• Chen-Teboulle (1994)

• Combettes-Pesquet (2011)

(Almost) all of these since September 2010!

Review

What is a first-order method?
Uses first-derivate information ∇f , as opposed to Hessian ∇2f

min
x
f(x) such that x ∈ C

Projected gradient descent, aka forward-backward algorithm

xk+1 = PC(xk − t∇f(xk))

Works if:

• f is smooth so that ∇f exists (also need ∇f Lipschitz)

• PC , the projection onto C, is easy to compute

Challenges and desiderata

1 Allow difficult constraints and arbitrary linear operators
• How to project onto ‖Ax− b‖2 ≤ ε ?
• Allow several constraints, like ‖Ax− b‖2 ≤ ε, x ≥ 0, x ≤ 1

2 Allow non-smooth objectives, so slower convergence: how to fix?

3 Allow complicated objectives, like ‖Wx‖1 + ‖x‖TV

4 Flexible: allow prototyping, like CVX

5 Few parameters

6 Exploit sparsity or FFT-based operators

7 (Matrix problems) Keep iterates low-rank when possible

TFOCS main idea

min
x
f(x) + ψ(Āx+ b̄)

1 Find conic formulation*

2 Add strongly convex term
• fµ(x) = f(x) +

µ
2
‖x − x0‖

2

• dual problem becomes
nicer

3 Solve dual problem
• composite approach
• g = gsmooth + h
• h nonsmooth but “nice”

TFOCS main idea

min
x
f(x) + ψ(Āx+ b̄)

1 Find conic formulation*

2 Add strongly convex term
• fµ(x) = f(x) +

µ
2
‖x − x0‖

2

• dual problem becomes
nicer

3 Solve dual problem
• composite approach
• g = gsmooth + h
• h nonsmooth but “nice”

Potential drawbacks:

Q: Primal iterate is not feasible

A: ‖Ax− b‖ ≤ ε, but ε is
estimate!

Q: Effect of smoothing

A: Use continuation
• rigorous via proximal point

framework
• accelerated continuation
• sometimes no effect even for
µ > 0

Benefits of duality

1 Projection onto dual cone has no linear A term

2 Better smoothing: primal retains its kink

−1 −0.5 −mu 0 +mu 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(x) = |x|
dual smoothed f(x)
primal smoothed f(x)

Fenchel dual

f∗(λ) ≡ sup
x
〈λ, x〉 − f(x)

f strongly convex =⇒ f∗

differentiable and ∇f∗ Lipschitz

Smooth problems: much faster
convergence, i.e. O(1

k2) vs
O(1√

k
)

Example: matrix completion

minimize ‖X‖tr

subject to ‖A(X)− b‖ ≤ ε
=⇒ minimize ‖X‖tr + µ

2 ‖X −X0‖2F
subject to (A(X)− b, ε) ∈ K

Dual problem

maximize
λ

inf
X
{‖X‖tr +

µ

2
‖X −X0‖2F − 〈λ,A(X)− b〉}︸ ︷︷ ︸
−gsmooth(λ)

− ε‖λ‖∗︸ ︷︷ ︸
h(λ)

gsmooth(λ) has gradient A(Xλ)− b, where Xλ is unique minimizer above

Example: matrix completion, version 2

minimize ‖X‖tr

subject to ‖A(X)− b‖ ≤ ε
=⇒ minimize t+ µ

2 ‖X −X0‖2F
subject to (A(X)− b̄, ε) ∈ K

(X, t) ∈ Ktr

Dual problem

maximize
λ,(ν,s)∈Kspectral

− ε‖λ‖∗︸ ︷︷ ︸
h(λ)

+ . . .

inf
X,t
{t+

µ

2
‖X −X0‖2F − 〈λ,A(X)− b〉 − 〈ν,X〉 − st}︸ ︷︷ ︸

−gsmooth(λ)

Similar algorithm, but now Xλ,ν is linear in λ and ν, so dual is
constrained quadratic (and with 2× variables).

General form
Exploit structure, not just “black-box”
Two viewpoints: conic dual or Fenchel dual

Fenchel duality view

min f(x) +
∑
i

ψi(Aix− bi)

where f, ψ∗i are “prox-capable”, ψi : Rmi → R̄

proxf (y) = argmin
x

f(x) +
1

2
‖x− y‖2

Matrix completion: ψ1(X) = ι{X:‖X‖≤ε}, A1 = A, b1 = b.

1 matrix completion style 1 corresponds to:
f(x) = ‖X‖tr, ψ2 = 0

2 matrix completion style 2 corresponds to:
f = 0, ψ2(x) = ‖X‖tr, A2 = I, b2 = 0

If f = 0, dual is always (constrained) quadratic.

Solving the dual

“Proximal gradient descent”, aka “forward-backward” algorithm. Handles
smooth + nonsmooth (Fukushima and Mine, 1981).

• Gradient projection step for minimizing smooth g:

λk+1 ← argmin
λ∈K∗

g(λk) + 〈∇g(λk), λ− λk〉+
L

2
‖λ− λk‖2

• Generalized gradient projection for minimizing g + h (h nonsmooth)

λk+1 ← argmin
λ

g(λk) + 〈∇g(λk), λ− λk〉+
L

2
‖λ− λk‖2 + h(λ)

• Solution is proximity operator of h. Often known.
• Ex. h = χC , then proximity operator is just projection onto C
• Ex. h = ‖x‖1, then proximity operator is shrinkage

• Works with backtracking and Nesterov acceleration (Nesterov,
Beck/Teboulle 2005)

Generic algorithm (Nesterov’s style)

Auslender-Teboulle version, no backtracking

minx f(x) + ψ(Āx+ b̄), h
def
= ψ∗

Algorithm 1 Generic algorithm for the conic standard form

Require: λ0, x0 ∈ Rn, µ > 0, step sizes {tk}
1: θ0 ← 1, v0 ← λ0
2: for k = 0, 1, 2, . . . do
3: νk ← (1− θk)vk + θkλk
4: xk ← argminx f(x) + µ/2‖x− x0‖2 − 〈ĀT (νk), x〉
5: λk+1 ← argminλ h(λ) + θk

2tk
‖λ− λk‖2 + 〈Ā(xk) + b̄, λ〉

6: vk+1 ← (1− θk)vk + θkλk+1

7: θk+1 ← 2/(1 + (1 + 4/θ2k)1/2)
8: end for

x is primal

λ, ν, v are dual, θ is scalar

Algorithm for Matrix Completion

Matrix completion, style 1

Algorithm 2 Algorithm for nuclear-norm minimization (`2 constraint)

4: Xk ← SoftThresholdSingVal(X0 − µ−1AT (νk), µ−1)
5: λk+1 ← Shrink(λk − θ−1k tk(b−A(Xk)), θ−1k tkε)

SoftThreshold(x, τ) = sgn(x) ·max{|x| − τ, 0}

SoftThresholdSingVal(X, t) = U · SoftThreshold(Σ, t) · V T ,

Shrink(z, t) , max{1− t/‖z‖2, 0} · z =

{
0, ‖z‖2 ≤ t,
(1− t/‖z‖2) · z, ‖z‖2 > t.

Significantly extends SVT

Other new algorithms

Algorithm 3 Algorithm excerpt for Dantzig

4: xk ← SoftThreshold(x0 − µ−1ATAνk, µ−1).
5: λk+1 ← SoftThreshold(λk − θ−1k tkA

T (b−Axk), θ−1k tkδ)

Algorithm 4 Algorithm excerpt for LASSO

4: xk ← SoftThreshold(x0 − µ−1AT νk, µ−1)
5: λk+1 ← Shrink(λk − θ−1k tk(b−Axk), θ−1k tkε)

Algorithm 5 Algorithm excerpt for TV minimization

4: xk ← x0 + µ−1(<(D∗ν
(1)
k)−A∗ν(2)k)

5:
λ
(1)
k+1 ← CTrunc(λ

(1)
k − θ

−1
k t

(1)
k Dxk, θ

−1
k t

(1)
k)

λ
(2)
k+1 ← Shrink(λ

(2)
k − θ

−1
k t

(2)
k (b−Axk), θ−1k t

(2)
k ε)

Conic Programs

min
x
〈c, x〉 such that x ≥K 0, Ax = b

K = Rn+ =⇒ LP
K = {(x, t) ∈ Rn+1 : ||x||2 ≤ t} =⇒ SOCP
K = Sn+ =⇒ SDP

Dual, before smoothing

max
ν,λ
−〈b, ν〉 such that λ ≥K∗ 0, λ = c+A∗ν

Dual, after smoothing

max
ν,λ
−〈b, ν〉− 1

2µ
‖c−λ+A∗ν‖2+〈c−λ+A∗ν, x0〉 such that λ ≥K∗ 0.

TFOCS ideas: extras

Software is modular. Easy to add constraints, change solver. . .

(Important) details

• 6 first-order methods (GRA + 5 accelerated methods)

• Efficient step size procedures (based on Tseng’s convergence
analysis): no Lipschitz constant needed. Key idea: if L updated, θ
must be updated as well

• Easy testing and benchmarking

• Efficient use of linear operator structure: crucial when backtracking
occurs

minimize gsmooth(ATλ) + h(λ)

• Accelerated continuation: remove effect of µ

• Exact perturbation

• Restart strategies to ensure optimal performance

Conjugate Gradient
Advantage of modularity: easy to try new solvers, line search.
CG, (L-)BFGS, SESOP . . .

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

number of calls to A and A∗

‖x
k
−–

x
?
‖

tfocs (GRA)
tfocs (AT)
tfocs w/ restart
tfocs with CG

Ex: Non-linear CG (Polak-Ribiere), noiseless basis pursuit, N = 2048.

Standard continuation

Want perturbation small

minimize f(x) + 1
2µ‖x− x0‖

2

subject to A(x) + b ∈ K

Problem: L ∝ 1/µ

Algorithm 6 Standard continuation

Require: Y0, µ0 > 0, β ≤ 1
1: for j = 0, 1, 2, . . . do

2: Xj+1 ← argmin
A(x)+b∈K

f(x) +
µj
2
‖x− Yj‖22

3: Yj+1 ← Xj+1 (or Yj+1 ← Y0)
4: µj+1 ← βµj
5: end for

FPC: Hale, Yin, and Zhang (’08)

Moreau-Yosida regularization

Moreau envelope h(Y) = min
x∈C

f(x) +
µ

2
‖x− Y ‖22

Moreau proximity operator XY = argmin
x∈C

f(x) +
µ

2
‖x− Y ‖22

Theorem
h is continuously differentiable with gradient

∇h(Y) = µ(Y −XY)

The gradient is Lipschitz continuous with constant L = µ

Minimizing h by gradient descent → proximal point algorithm (PPA)
(Martinet, Rockafellar, 70s)

Accelerated continuation (Nesterov style)

If proximal-point algorithm is gradient descent, then why not accelerate?

Algorithm 7 Accelerated continuation

Require: Y0, µ0 > 0
1: X0 ← Y0
2: for j = 0, 1, 2, . . . do

3: Xj+1 ← argmin
A(x)+b∈K

f(x) +
µj
2
‖x− Yj‖22

4: Yj+1 ← Xj+1 + j
j+3 (Xj+1 −Xj)

5: (optional) increase or decrease µj
6: end for

Keep µj ≡ µ so subproblems quick to solve

Warm-start subproblems

For small µ, typically 5 iterations

Simple vs. accelerated continuation: LASSO example

5 10 15 20 25 30
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

outer iteration

er
ro

r

Regular continuation (fixed µ)
Accelerated continuation (fixed µ)

‖xk − x?‖/‖x0 − x?‖ vs. outer iteration count

Effect of perturbation

Nice surprise:

Linear programs (ex. Dantzig, Basis Pursuit) have exact penalty

Theorem (Exact penalty)

• Arbitrary LP with objective 〈c, x〉 and with optimal solution

• Perturbed LP with objective 〈c, x〉+ 1
2µ‖x− x0‖

2
2

There is µ0 > 0 s.t. for 0 < µ ≤ µ0, any solution to perturbed problem is
a solution to LP

• Special case (BP): Yin (’10)

• More general result: Friedlander and Tseng (’07)

• Combine with continuation =⇒ finite termination
Known since Bertsekas ’75, Polyak and Tretjakov ’74, Mangasarian
’79

Illustration
Exact penalty for Dantzig Selector (since linear program)

10
−2

10
−1

10
0

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

µ

E
rr

or

Parameters

Lipschitz Gradient

f(y) ≤ f(x) + 〈y − x,∇f(x)〉+
L

2
‖x− y‖22

Strong Convexity

f(y) ≥ f(x) + 〈y − x,∇f(x)〉+
mf

2
‖x− y‖22

If ∇2f exists, equivalent to

mfI � ∇2f � LI

Goal: user needs no knowledge of mf and L

• For L, trick: backtracking line search

• For mf , trick: restart

Linesearch

Tentative new point yk+1 using stepsize 1/Lk must satisfy:

f(yk+1) ≤ f(yk) + 〈yk+1 − yk,∇f(yk)〉+
Lk
2
‖yk+1 − yk‖22

Problem: suffers from cancellation issues in finite precision. To see this:
Let yk+1 − yk = εh where ‖h‖ = 1. As k →∞, ε→ 0. Then

f(yk+1) ≤ f(yk) + ε 〈h,∇f(yk)〉+
ε2Lk

2

If 〈h,∇f(yk)〉 � ε, this term dominates the ε2Lk term.

Solution: instead, check this (equivalent) condition

〈yk+1 − yk,∇f(yk+1)−∇f(yk)〉 ≤ Lk
2
‖yk+1 − yk‖22

Since ∇f is Lipschitz, ‖∇f(yk+1)−∇f(yk)‖ ≤ Lε, so both sides of the
inequality are O(ε2). Cost of ∇f is often similar to cost of f .

Linesearch subtleties

Linesearch test:

〈yk+1 − yk,∇f(yk+1)−∇f(yk)〉 ≤ Lk
2
‖yk+1 − yk‖22

Often, f has structure f(x) = g(Ax), so ∇f(x) = A∗∇g(Ax).
Algorithm is aware of this and computes

〈Ayk+1 −Ayk,∇g(Ayk+1)−∇g(Ayk)〉 ≤ Lk
2
‖yk+1 − yk‖22

so Ayk+1 and Ayk can be re-used.

If Lk changes, convergence rate bound is improved if weight parameter θ
is also updated:

θk+1 =
2

1 +
√

1 + 4Lk+1/(Lkθ2k)
.

Restart
Problem: accelerated schemes don’t automatically take advantage of
strong convexity.

i.e. mf unknown =⇒ no linear convergence

0 500 1000 1500 2000 2500 3000

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

er
ro

r

GRA, backtracking
AT, backtracking
AT, restart every 5
AT, restart every 10
AT, restart every 50
AT, restart every 100
N83, using m

Restart
Convergence of accelerated method:

f(xk)− f? ≤ L

k2
‖x? − x0‖2

If f is strongly convex with parameter mf ,

‖xk − x?‖2 ≤
2L

mf

1

k2
‖x? − x0‖2

With restart, x0 is xk of a previous sequence. Do this j times.

‖xjk − x?‖ ≤

(√
2L

mf

1

k

)j
‖x? − x̂0‖

This is linear convergence with rate ρ =
(√

2L
mf

1
k

)1/k
.

kopt = e

√
2L

mf

See PARNES paper (Gu, Lim, Wu 2009), Nesterov 2007, and also
Nemirovskii-Yudin (80s).
Goes back to Powell (1977) for non-linear CG.

Restart: sensitivity

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Restart value

N
um

be
r

of
 it

er
at

io
ns

 to
 r

ea
ch

 d
es

ire
d

ac
cu

ra
cy

Sensitivity of restart, no backtracking

low accuracy
med accuracy
high accuracy

Restart: improvements

“No Regress” feature, since accelerated methods are non-monotone

0 500 1000 1500 2000 2500 3000

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k

(f
k
−−

f
?
)/

f
?

Error fk−− f?

GRA
AT, no restart
AT, restart 10
AT, restart 50
AT, restart 100
AT, no regress
N83, using m

Comparison with Chambolle/Pock

min
x

f(x) + ψ(Ax− b), max
λ

ψ∗(λ) + f∗(−A∗λ) + 〈λ, b〉, L ≡ ‖A‖.

TFOCS. Uzawa applied to perturbed problem. Pick t ≤ µ/L2.

xk+1 = argmin
x

f(x)− 〈 λ̄, Ax− b〉+
µ

2
‖x− x0‖2

λk+1 = argmin
λ

ψ∗(λ)− 〈Axk+1, λ〉+
1

2t
‖λ− λk‖2

λ̄ = λk+1 + θk(λk+1 − λk) (e.g. simple Nesterov; other choices possible)

Chambolle/Pock. Arrow-Hurwicz if θ = 0. Gradient descent on primal-dual
simultaneously. Pick τσ < 1/L2.

λk+1 = argmin
λ

ψ∗(λ)− 〈Ax̄, λ〉+
1

2σ
‖λ− λk‖2

xk+1 = argmin
x

f(x)− 〈λk+1, Ax− b〉+
1

2τ
‖x− xk‖2

x̄ = xk+1 + θk(xk+1 − xk) (acceleration sometimes possible)

Comparison with Chambolle/Pock (2)
Analogous to dual-IPM and primal-dual IPM. Merits to both algorithms.
TFOCS

/ Best choice for µ? Requires outer iteration, stopping criteria

• Accelerated outer iteration (à Nesterov)

• Accelerated inner iteration (always accelerated)

• Finite convergence of outer iteration for LP

• Inner iteration is standard: benefits from line search, so t chosen
automatically

• For some problems, can use CG, L-BFGS, etc. on inner iteration

Overall, TFOCS will solve the inner problem faster, but it has to solve several
inner problems.
Chambolle/Pock

/ How to choose τ and σ? Linesearch possible?

• No outer iteration

• For accelerated version, line search not possible yet: less established
framework

• Sometimes accelerated, i.e. if f or ψ∗ is strongly convex (i.e. f∗ or ψ has
Lipschitz gradient)

Comparison with Chambolle/Pock (3)

Dantzig Selector with weighted norm

min
x
‖W ∗x‖1 such that ‖AT (Ax− b)‖∞ ≤ δ

Numerical test with W ∗ an over-sampled DCT transform, and signal x
superposition of sine waves.
At solution, W ∗x is not sparse, which makes problem harder to solve

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−4

10
−3

10
−2

10
−1

10
0

Iterations

R
el
a
ti
ve

er
ro

r
‖x

k
−

x
?
‖/
‖x

?
‖

Chambolle-Pock algorithm

σ = 1τ
σ = 100τ
σ = 10000τ
σ = 100000τ
σ = 1000000τ
σ = 10000000τ
σ = 100000000τ

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−4

10
−3

10
−2

10
−1

10
0

Iterations

R
el
a
ti
ve

er
ro

r
‖x

k
−

x
?
‖/
‖x

?
‖

TFOCS algorithm

µ = 1
µ = 10
µ = 100

Algorithms perform similarly. Knowing correct value of σ/τ is quite helpful.

Convergence rates

min
Y

min
x
f(x) +

µ

2
‖x− Y ‖2︸ ︷︷ ︸

φ(Y)

• Inner iterations: objective converges in O(1/k2) (
g(λk)→ g? ≡ φ(Y))

• Outer iterations: if via proximal point method, locally linear, or
globally O(1/j). If via accelerated proximal point method, O(1/j2).

• How to combine the two? One method: Liu/Sun/Toh 2009

• Or, result of Güler 1990s, on inexact accelerated proximal point
method. Need primal variables of inner iterates to converge.

• via Fadili/Peyré 2011, ‖xk − x?‖2 ≤ g? − g(λk)
• Want µ large for inner solve, µ small for outer solve.
• If f smooth and (Yk) bounded, then O(ε−5/4) iterations to reach
ε-solution.

Software release

• Paper

• User guide

• Software (MATLAB)
• solvers
• many simple examples
• a few real-world examples
• continuation wrappers
• compatible with SPOT

• Parameters: any µ > 0

http://tfocs.stanford.edu

http://tfocs.stanford.edu

Example in TFOCS

Basis Pursuit Denoising BPε, analysis

min
x
‖Wx‖1 such that ‖Ax− b‖2 ≤ ε

prox = { prox_l2(epsilon), proj_linf };

linear = { A, -b; W, 0 };

x = tfocs_SCD([], linear, prox, mu, x0 };

Easy to add constraints, e.g. x ≥ 0

prox = { prox_l2(epsilon), proj_linf, proj_Rplus };

linear = { A, -b; W, 0; 1, 0 };

Of course, this is also builtin. . .

x = solver_sBPDN_W(A,W,b,epsilon,mu)

No Lipschitz constant or step size needed!

Open problems
Optimization

• Compare the new general first-order methods: TFOCS, Chen-Teboulle,

Combettes-Pesquet, Briceño-Arias–Combettes (2011), Chambolle-Pock (and

He-Yuan/Condat/Vũ extensions)
• Complexity analysis of TFOCS in general case, stopping criteria
• Convergence rate of other algorithms

• First-order CVX. Modular, robust (no parameters), fast.

• Improve speed of constrained first-order methods
• Performance on non-sparse problems is still slow
• Scaling issues are significant
• For unconstrained problems, non-linear CG and L-BFGS are fantastic. For constrained

problems, we have nothing
• Preconditioned truncated-Newton methods

• Adapt to current computing paradigms
• Multicore processors
• Giant datasets with distributed memory
• Stochastic approaches, error tolerance

• Specific techniques for matrix variables
• Randomized SVDs: require error tolerance
• Keep iterates low-rank

Signal processing

• New measurement schemes: easy calibration

• Exploit unconventional prior information (beyond sparsity)

• Non-linear measurements

