Homological stability and non-stability for configuration spaces on closed manifolds
Topologie
Unordered configuration spaces of points (or particles) on connected manifolds are basic objects that appear in many different areas within topology. When the manifold M is non-compact, a theorem of McDuff and Segal states that these spaces are homologically stable, with integral coefficients, as the number of points goes to infinity. When M is closed, however, these spaces are in general homologically *unstable* - one can see this already in the degree-1 homology of configuration spaces on the 2-sphere. Moreover, there are natural "stabilisation" maps between configuration spaces in the non-compact case, which do not exist when M is closed.
I will describe some joint work with Federico Cantero, in which we prove several results that show that configuration spaces on closed manifolds nevertheless exhibit some more subtle kinds of stable behaviour. For example, we prove homological stability for odd-dimensional M after inverting 2 in the coefficients, and for even-dimensional M (with *non-vanishing* Euler characteristic) we prove that the mod-p homology of the configuration spaces is eventually periodic, with an explicit upper bound for the period. We also construct so-called "replication maps" between configuration spaces (when M has *vanishing* Euler characteristic), which induce homology isomorphisms in a stable range after inverting certain primes.
This builds on and improves previous work of several others, including O. Randal-Williams and [M. Bendersky - J. Miller]. The periodicity result is very similar to a theorem of R. Nagpal, although we have different estimates for the period. Very recently, the upper bound for the period has been improved in work of [A. Kupers - J. Miller], who also recover our result for odd-dimensional M with coefficients in Z[1/2] and give a more explicit description of the corresponding isomorphisms. There is also very recent work of [S. Galatius - O. Randal-Williams], who prove analogous "stability and non-stability" results for classifying spaces of diffeomorphism groups of high-dimensional closed manifolds. If time permits, I will also briefly describe some of this subsequent work, as well as new directions to explore.
- Accueil
- Annuaire
- Equipes
- Evènements
- Congrès
- Invités
- Séminaires, Groupes de Travail et Colloquium
- Séminaires
- Analyse Complexe et Equations Différentielles
- Analyse Fonctionnelle
- Analyse Numérique et Equations Aux Dérivées Partielles
- Arithmétique
- Formes Automorphes
- Géométrie Algébrique
- Géométrie des espaces singuliers
- Géométrie Dynamique
- Histoire des Mathématiques
- Physique Mathématique
- Probabilités et Statistique
- Singularités et Applications
- Théorie Analytique et Analyse Harmonique
- Topologie
- Colloquium
- Groupes de Travail
- Analyse harmonique et théorie analytique
- Autour des fractales
- Calcul de Malliavin et processus fractionnaires
- Déformations des singularités de surfaces
- Equations aux dérivées partielles
- Extraction du signal
- Fondements mathématiques du deep learning
- Géométrie Non-Archimédienne
- Géométrie Stochastique
- Idéaux de Hodge
- Leçons d'Analyse
- Matrices Aléatoires
- Probabilités
- Statistique et Grande Dimension
- Systèmes Dynamiques
- Topologie
- W-algèbres
- Doctorants et Post-doctorants
- Séminaires
- Soutenances
- Anciens Séminaires et Groupes de Travail
- Formation par la Recherche
- Laboratoire
- Liens utiles
- Projets
- Recrutements
- Services