Appendix 6

Algebraic properties of Hopf \(G \)-coalgebras

by Alexis Virelizier

Let \(G \) be a group. The notion of a (ribbon) Hopf \(G \)-coalgebra was first introduced by Turaev [Tu4], as the prototype algebraic structure whose category of representations is a (ribbon) \(G \)-category (see Section VIII.1). Recall from Chapter VII that ribbon \(G \)-categories give rise to invariants of 3-dimensional \(G \)-manifolds and to 3-dimensional HQFTs with target \(K(G,1) \). Moreover, Hopf \(G \)-coalgebras may be used directly (without involving their representations) to construct further topological invariants of 3-dimensional \(G \)-manifolds, see Appendix 7.

Here we review the algebraic properties of Hopf \(G \)-coalgebras and provide examples. Most of the results are given without proof, see [Vir1]–[Vir4] for details.

In Section 1, we study the algebraic properties of Hopf \(G \)-coalgebras, in particular the existence of integrals, the order of the antipode (a generalization of the Radford \(S^4 \)-formula), and the (co)semisimplicity (a generalization of the Maschke theorem).

In Section 2, we focus on quasitriangular and ribbon Hopf \(G \)-coalgebras. In particular, we construct \(G \)-traces for ribbon Hopf \(G \)-coalgebras, which are used to construct invariants of 3-dimensional \(G \)-manifolds in Appendix 7.

In Section 3, we give a method for constructing a quasitriangular Hopf \(G \)-coalgebra starting from a Hopf algebra endowed with an action of \(G \) by Hopf automorphisms. This leads to non-trivial examples of quasitriangular Hopf \(G \)-coalgebras for all finite \(G \) and for some infinite \(G \) such as \(\text{GL}_n(K) \). In particular, we define graded quantum groups.

Throughout this appendix, \(G \) is a group (with neutral element 1) and \(K \) is a field. All algebras are supposed to be over \(K \), associative, and unital. The tensor product \(\otimes = \otimes_K \) of \(K \)-vector spaces is always taken over \(K \). If \(U \) and \(V \) are \(K \)-vector spaces, then \(\sigma_{U,V} : U \otimes V \rightarrow V \otimes U \) denotes the flip defined by \(\sigma_{U,V}(u \otimes v) = v \otimes u \) for all \(u \in U \) and \(v \in V \).

6.1 Hopf \(G \)-coalgebras

1.1 Hopf \(G \)-coalgebras. We recall, for completeness, the definition of a Hopf \(G \)-coalgebra from Section VIII.1, but with a minor change: we do not suppose the antipode to be bijective.

A Hopf \(G \)-coalgebra (over \(K \)) is a family \(H = \{H_a\}_{a \in G} \) of \(K \)-algebras endowed with a family \(\Delta = \{\Delta_{\alpha,\beta} : H_{a\beta} \rightarrow H_a \otimes H_\beta\}_{a,\beta \in G} \) of algebra homomorphisms...
(the \textit{comultiplication}), an algebra homomorphism \(\varepsilon : H_1 \to K \) (the \textit{counit}), and a family \(S = \{ S_{\alpha} : H_\alpha \to H_{\alpha^{-1}} \}_{\alpha \in G} \) of \(K \)-linear maps (the \textit{antipode}) such that, for all \(\alpha, \beta, \gamma \in G \),
\[
\begin{align*}
(\Delta_{\alpha, \beta} \otimes \text{id}_{H_\gamma}) \Delta_{\alpha, \beta, \gamma} &= (\text{id}_{H_\alpha} \otimes \Delta_{\beta, \gamma}) \Delta_{\alpha, \beta, \gamma}, \\
(\text{id}_{H_\alpha} \otimes \varepsilon) \Delta_{\alpha, 1} &= \text{id}_{H_\alpha} = (\varepsilon \otimes \text{id}_{H_\alpha}) \Delta_{1, \alpha}, \\
m_{\alpha}(S_{\alpha^{-1}} \otimes \text{id}_{H_\alpha}) \Delta_{\alpha^{-1}, \alpha} &= \varepsilon 1_\alpha = m_\alpha(\varepsilon \otimes S_{\alpha^{-1}}) \Delta_{\alpha^{-1}, \alpha},
\end{align*}
\]
where \(m_\alpha : H_\alpha \otimes H_\alpha \to H_\alpha \) and \(1_\alpha \in H_\alpha \) denote multiplication in \(H_\alpha \) and the unit element of \(H_\alpha \).

When \(G = 1 \), one recovers the usual notion of a Hopf algebra. In particular, \(H_1 \) is a Hopf algebra.

Remark that the notion of a Hopf \(G \)-coalgebra is not self-dual (the dual notion obtained by reversing the arrows in the definition may be called a Hopf \(G \)-algebra).

If \(H = \{ H_{\alpha} \}_{\alpha \in G} \) is a Hopf \(G \)-coalgebra, then the set \(\{ \alpha \in G \mid H_\alpha \neq 0 \} \) is a subgroup of \(G \). Also, if \(G' \) is a subgroup of \(G \), then \(H = \{ H_{\alpha} \}_{\alpha \in G'} \) is a Hopf \(G' \)-coalgebra.

The antipode \(S \) of a Hopf \(G \)-coalgebra \(H = \{ H_{\alpha} \}_{\alpha \in G} \) is anti-multiplicative (in the sense that each \(S_{\alpha} : H_\alpha \to H_{\alpha^{-1}} \) is an anti-homomorphism of algebras) and anti-comultiplicative in the sense that \(\Delta_{\beta^{-1}, \alpha^{-1}} S_{\alpha \beta} = \delta_{H_\alpha, 1} H_{\beta^{-1}} (S_\alpha \otimes S_{\beta}) \Delta_{\alpha, \beta} \) for all \(\alpha, \beta \in G \) and \(\varepsilon S_1 = \varepsilon \); see [Vir2], Lemma 1.1.

A Hopf \(G \)-coalgebra \(H = \{ H_{\alpha} \}_{\alpha \in G} \) is said to be of \textit{finite type} if, for all \(\alpha \in G \), \(H_\alpha \) is finite-dimensional (over \(K \)). Note that the direct sum \(\bigoplus_{\alpha \in G} H_\alpha \) is finite-dimensional if and only if \(H \) is of finite type and \(H_\alpha = 0 \) for all but a finite number of \(\alpha \in G \).

The antipode \(S = \{ S_\alpha \}_{\alpha \in G} \) of \(H = \{ H_{\alpha} \}_{\alpha \in G} \) is said to be \textit{bijective} if each \(S_\alpha \) is bijective. Unlike in Section VIII.1, we do not suppose that the antipode of a Hopf \(G \)-coalgebra is bijective. As for Hopf algebras, the antipode of a Hopf \(G \)-coalgebra \(H \) is necessarily bijective if \(H \) is of finite type (see Section 1.5) or \(H \) is quasitriangular (see Section 2.4).

\section*{1.2 The case of finite \(G \).}

Suppose that \(G \) is a finite group. Recall that the Hopf algebra \(K^G \) of functions on \(G \) has a basis \(\{ e_\alpha : G \to K \}_{\alpha \in G} \) defined by \(e_\alpha(\beta) = \delta_{\alpha, \beta} \) where \(\delta_{\alpha, \alpha} = 1 \) and \(\delta_{\alpha, \beta} = 0 \) if \(\alpha \neq \beta \). The structure maps of \(K^G \) are given by
\[
\begin{align*}
e_\alpha e_\beta &= \delta_{\alpha, \beta} e_\alpha, \quad 1_{K^G} = \sum_{\alpha \in G} e_\alpha, \quad \Delta(e_\alpha) = \sum_{\beta \gamma = \alpha} e_\beta \otimes e_\gamma, \quad \varepsilon(e_\alpha) = \delta_{\alpha, 1},
\end{align*}
\]
and \(S(e_\alpha) = e_{\alpha^{-1}} \). A \textit{central prolongation} of \(K^G \) is a Hopf algebra \(A \) endowed with a morphism of Hopf algebras \(K^G \to A \), called the \textit{central map}, which carries \(K^G \) into the center of \(A \).
Since G is finite, any Hopf G-coalgebra $H = \{H_\alpha\}_{\alpha \in G}$ gives rise to a Hopf algebra $\tilde{H} = \bigoplus_{\alpha \in G} H_\alpha$ with structure maps given by

$$\tilde{\Delta}|_{H_\alpha} = \sum_{\beta \gamma = \alpha} \Delta_{\beta, \gamma}, \quad \tilde{\varepsilon}|_{H_\alpha} = \delta_{\alpha, 1} \varepsilon, \quad \tilde{m}|_{H_\alpha \otimes H_\beta} = \delta_{\alpha, \beta} m_\alpha, \quad \tilde{1} = \sum_{\alpha \in G} 1_\alpha,$$

and $\tilde{S} = \sum_{\alpha \in G} S_\alpha$. The K-linear map $K^G \to \tilde{H}$ defined by $e_\alpha \mapsto 1_\alpha$ gives rise to a morphism of Hopf algebras which carries K^G into the center of \tilde{H}. Hence \tilde{H} is a central prolongation of K^G.

The correspondence assigning to every Hopf G-coalgebra $H = \{H_\alpha\}_{\alpha \in G}$ the central prolongation $K^G \to \tilde{H}$ is bijective. Given a Hopf algebra $(A, m, 1, \Delta, \varepsilon, S)$ which is a central prolongation of K^G, set $H_\alpha = A\{1\}_\alpha$, where $1_\alpha \in A$ is the image of $e_\alpha \in K^G$ under the central map $K^G \to A$. Then the family $\{H_\alpha\}_{\alpha \in G}$ is a Hopf G-coalgebra with structure maps given by

$$m_\alpha = 1_\alpha \cdot m|_{H_\alpha \otimes H_\alpha}, \quad \Delta_{\alpha, \beta} = (1_\alpha \otimes 1_\beta) \cdot \Delta|_{H_\alpha \otimes H_\beta}, \quad \varepsilon = \varepsilon|_{H_1}, \quad S_\alpha = 1_{\alpha^{-1}} \cdot S|_{H_\alpha}.$$

1.3 Integrals

Recall that a left (resp. right) integral for a Hopf algebra $(A, \Delta, \varepsilon, S)$ is an element $\Lambda \in A$ such that $x\Lambda = \varepsilon(x)\Lambda$ (resp. $\Lambda x = \varepsilon(x)\Lambda$) for all $x \in A$. A left (resp. right) integral for the dual Hopf algebra A^* is a K-linear form $\lambda \in A^*$ such that $(\text{id}_A \otimes \lambda)\Delta(x) = \lambda(x)1_A$ (resp. $(\lambda \otimes \text{id}_A)\Delta(x) = \lambda(x)1_A$) for all $x \in A$.

A left (resp. right) G-integral for a Hopf G-coalgebra $H = \{H_\alpha\}_{\alpha \in G}$ is a family of K-linear forms $\lambda = (\lambda_\alpha)_{\alpha \in G} \in \Pi_{\alpha \in G} H_\alpha^*$ such that

$$(\text{id}_{H_\alpha} \otimes \lambda_\beta)\Delta_{\alpha, \beta}(x) = \lambda_{\alpha \beta}(x)1_\alpha \quad \text{(resp.} \quad (\lambda_\alpha \otimes \text{id}_{H_\beta})\Delta_{\alpha, \beta}(x) = \lambda_{\alpha \beta}(x)1_\beta)$$

for all $\alpha, \beta \in G$ and $x \in H_{\alpha \beta}$. Note that λ_1 is a usual left (resp. right) integral for the Hopf algebra H_1^*.

A G-integral $\lambda = (\lambda_\alpha)_{\alpha \in G}$ is said to be non-zero if $\lambda_\beta \neq 0$ for some $\beta \in G$. Given a non-zero G-integral $\lambda = (\lambda_\alpha)_{\alpha \in G}$, we have $\lambda_\alpha \neq 0$ for all $\alpha \in G$ such that $H_\alpha \neq 0$. In particular $\lambda_1 \neq 0$.

It is known that the K-vector space of left (resp. right) integrals for a finite-dimensional Hopf algebra is one-dimensional. This extends to Hopf G-coalgebras as follows.

Theorem A ([Vir2], Theorem 3.6). *Let H be a Hopf G-coalgebra of finite type. Then the vector space of left (resp. right) G-integrals for H is one-dimensional.*

The proof of this theorem is based on the fact that a Hopf G-comodule has a canonical decomposition generalizing the fundamental decomposition theorem in the theory of Hopf modules.
1.4 Grouplike elements. A family \(g = (g_\alpha)_{\alpha \in G} \in \prod_{\alpha \in G} H_\alpha \) such that \(\Delta_{\alpha,\beta}(g_\alpha g_\beta) = g_\alpha \otimes g_\beta \) for all \(\alpha, \beta \in G \) and \(\varepsilon(g_1) = 1_k \) is called a G-grouplike element of a Hopf \(G \)-coalgebra \(H = \{H_\alpha\}_{\alpha \in G} \). Note that \(g_1 \) is then a grouplike element of the Hopf algebra \(H_1 \) in the usual sense of the word.

One easily checks that the set \(\text{Gr}(H) \) of G-grouplike elements of \(H \) is a group with respect to coordinate-wise multiplication in the product monoid \(\prod_{\alpha \in G} H_\alpha \). If \(g = (g_\alpha)_{\alpha \in G} \in \text{Gr}(H) \), then \(g^{-1} = (S_{\alpha^{-1}}(g_{\alpha^{-1}}))_{\alpha \in G} \). The group \(\text{Hom}(G, K^*) \) of homomorphisms \(G \to K^* \) acts on \(\text{Gr}(H) \) by \(\phi g = (\phi(\alpha)g_\alpha)_{\alpha \in G} \) for arbitrary \(\phi \in \text{Hom}(G, K^*) \) and \(g = (g_\alpha)_{\alpha \in G} \in \text{Gr}(H) \).

1.5 The distinguished G-grouplike element. Throughout this subsection, \(H = \{H_\alpha\}_{\alpha \in G} \) is a Hopf \(G \)-coalgebra of finite type with antipode \(S = \{S_\alpha\}_{\alpha \in G} \). Using Theorem A, one verifies that there is a unique G-grouplike element \(g = (g_\alpha)_{\alpha \in G} \) of \(H \), called the distinguished group-like element of \(H \), such that \((\text{id}_{H_\alpha} \otimes \lambda_\beta)\Delta_{\alpha,\beta} = \lambda_{\alpha\beta} g_\alpha \) for any right \(G \)-integral \(\lambda = (\lambda_\alpha)_{\alpha \in G} \) and all \(\alpha, \beta \in G \). Note that \(g_1 \) is the distinguished grouplike element of \(H_1 \).

Since \(H_1 \) is a finite-dimensional Hopf algebra, there exists a unique algebra morphism \(\nu: H_1 \to K \) such that if \(\Lambda \) is a left integral for \(H_1 \), then \(\Lambda x = \nu(x)\Lambda \) for all \(x \in H_1 \). This morphism is a group-like element of the Hopf algebra \(H_1^* \), called the distinguished group-like element of \(H_1^* \). It is invertible in \(H_1^* \) and its inverse \(\nu^{-1} \) is also an algebra morphism. Moreover, if \(\Lambda \) is a right integral for \(H_1 \), then \(x\Lambda = \nu^{-1}(x)\Lambda \) for all \(x \in H_1 \).

For all \(\alpha \in G \), we define a left and a right \(H_1^* \)-action on \(H_\alpha \) by setting, for all \(f \in H_1^* \) and \(a \in H_\alpha \),

\[
 f \rightarrow a = (\text{id}_{H_\alpha} \otimes f)\Delta_{\alpha,1}(a) \quad \text{and} \quad a \leftarrow f = (f \otimes \text{id}_{H_\alpha})\Delta_{1,\alpha}(a).
\]

The next assertion generalizes Theorem 3 of [Rad4]. This is a key result in the theory of Hopf \(G \)-coalgebras. It is used in particular to prove the existence of traces (see Section 2.8).

Theorem B ([Vir2], Theorem 4.2). Let \(\lambda = (\lambda_\alpha)_{\alpha \in G} \) be a right \(G \)-integral for \(H \). Then, for all \(\alpha \in G \) and \(x, y \in H_\alpha \),

(a) \(\lambda_\alpha(xy) = \lambda_\alpha(S_{\alpha^{-1}}S_\alpha(y \leftarrow \nu)x) \);

(b) \(\lambda_\alpha(xy) = \lambda_\alpha(y S_{\alpha^{-1}}S_\alpha(v^{-1} \leftrightarrow g_\alpha^{-1}xg_\alpha)) \);

(c) \(\lambda_{\alpha^{-1}}(S_\alpha(x)) = \lambda_\alpha(g_\alpha x) \).

As a corollary we obtain a generalization of the celebrated Radford \(S^4 \)-formula to Hopf \(G \)-coalgebras:

Corollary C ([Vir2], Lemma 4.6). Let \(H = \{H_\alpha\}_{\alpha \in G} \) be a Hopf \(G \)-coalgebra of finite type. Then for all \(\alpha \in G \) and \(x \in H_\alpha \),

\[
 (S_{\alpha^{-1}}S_\alpha)^2(x) = g_\alpha (\nu \leftrightarrow x \leftarrow \nu^{-1})g_\alpha^{-1}.
\]
This formula implies in particular that the antipode S of H is bijective (i.e., each S_a is bijective).

1.6 The order of the antipode. It is known that the order of the antipode of a finite-dimensional Hopf algebra is finite ([Rad1], Theorem 1) and divides four times the dimension of the algebra ([NZ], Proposition 3.1). We apply this result to study a Hopf G-coalgebra of finite type $H = \{H_a\}_{a \in G}$ with antipode $S = \{S_a\}_{a \in G}$. Let a be an element of G of finite order d. Denote by $\langle a \rangle$ the subgroup of G generated by a. By considering the finite-dimensional Hopf algebra $\bigoplus_{\beta \in \langle a \rangle} H_\beta$ (determined by the Hopf $\langle a \rangle$-coalgebra $\{H_\beta\}_{\beta \in \langle a \rangle}$, see Section 1.2), we obtain that the order of $S_a^{-1}S_a$ divides $2d \dim H_1$; see [Vir2], Corollary 4.5.

1.7 Semisimplicity. A Hopf G-coalgebra $H = \{H_a\}_{a \in G}$ is said to be semisimple if each algebra H_a is semisimple. For H to be semisimple it is necessary that H_1 be finite-dimensional (since an infinite-dimensional Hopf algebra over a field is not semisimple, see [Sw], Corollary 2.7). When H is of finite type, H is semisimple if and only if H_1 is semisimple, see [Vir2], Lemma 5.1.

1.8 Cosemisimplicity. The notion of a comodule over a coalgebra may be extended to the setting of Hopf G-coalgebras. A right G-comodule over a Hopf G-coalgebra $H = \{H_a\}_{a \in G}$ is a family $M = \{M_a\}_{a \in G}$ of K-vector spaces endowed with a family of K-linear maps $\rho = \{\rho_{a, \beta}: M_a \to M_\beta \otimes H_\alpha\}_{a, \beta \in G}$ such that

$$(\rho_{a, \beta} \otimes \text{id}_{H_\gamma})\rho_{a, \gamma, \beta} = (\text{id}_{M_a} \otimes \Delta_{\beta, \gamma})\rho_{a, \beta, \gamma}$$

and

$$(\text{id}_{M_a} \otimes \varepsilon)\rho_{a, 1} = \text{id}_{M_a}$$

for all $a, \beta, \gamma \in G$. A G-subcomodule of M is a family $N = \{N_a\}_{a \in G}$, where N_a is a K-subspace of M_a such that $\rho_{a, \beta}(N_\beta) \subseteq N_a \otimes H_\beta$ for all $a, \beta \in G$. The sums and direct sums for families of G-subcomodules of a right G-comodule are defined in the obvious way.

A right G-comodule $M = \{M_a\}_{a \in G}$ is said to be simple if it is non-zero (i.e., $M_a \neq 0$ for some $a \in G$) and if it has no G-subcomodules other than itself and the trivial one $0 = \{0\}_{a \in G}$. A right G-comodule which is a direct sum of a family of simple G-subcomodules is said to be cosemisimple. Note that all G-subcomodules and all quotients of a cosemisimple right G-comodule are cosemisimple.

A Hopf G-coalgebra is cosemisimple if it is cosemisimple as a right G-comodule over itself (with comultiplication as comodule map). By [Vir2], a Hopf G-coalgebra
H = \{H_\alpha\}_{\alpha \in G} is cosemisimple if and only if every reduced right G-comodule over H is cosemisimple.

We state a Hopf G-coalgebra version of the dual Maschke theorem.

Theorem D ([Vir2], Theorem 5.4). A Hopf G-coalgebra H = \{H_\alpha\}_{\alpha \in G} is cosemisimple if and only if there exists a right G-integral \(\lambda = (\lambda_\alpha)_{\alpha \in G} \) for H such that \(\lambda_\alpha(1_\alpha) = 1_K \) for some \(\alpha \in G \) (and then \(\lambda_\alpha(1_\alpha) = 1_K \) for all \(\alpha \in G \) with \(H_\alpha \neq 0 \)).

As corollaries, we obtain that a Hopf G-coalgebra H = \{H_\alpha\}_{\alpha \in G} of finite type is cosemisimple if and only if the Hopf algebra \(H_1 \) is cosemisimple, and that the distinguished G-grouplike element of a cosemisimple Hopf G-coalgebra of finite type is trivial.

1.9 Involutory Hopf G-coalgebras. A Hopf G-coalgebra \(H = \{H_\alpha\}_{\alpha \in \pi} \) is involutory if its antipode \(S = \{S_\alpha\}_{\alpha \in \pi} \) satisfies the identity \(S_\alpha^{-1} S_\alpha = \text{id}_{H_\alpha} \) for all \(\alpha \in \pi \).

Involutory Hopf G-coalgebras of finite type have special properties. For example, each of their G-integrals \(\lambda = (\lambda_\alpha)_{\alpha \in G} \) is two sided, S-invariant (\(\lambda_\alpha^{-1} S_\alpha = \lambda_\alpha \) for all \(\alpha \in G \)), and symmetric (\(\lambda_\alpha(xy) = \lambda_\alpha(yx) \) for all \(\alpha \in G \) and \(x, y \in H_\alpha \)). Also if the ground field K of H is of characteristic 0, then \(\dim H_\alpha = \dim H_1 \) whenever \(H_\alpha \neq 0 \).

Finally, if \(H = \{H_\alpha\}_{\alpha \in G} \) is an involutory Hopf G-coalgebra of finite type over a field whose characteristic does not divide \(\dim H_1 \), then \(H \) is semisimple and cosemisimple; see [Vir4], Lemma 3.

6.2 Quasitriangular Hopf G-coalgebras

2.1 Crossed Hopf G-coalgebras. A Hopf G-coalgebra \(H = \{H_\alpha\}_{\alpha \in G} \) is crossed if it is endowed with a crossing, that is, a family of algebra isomorphisms \(\varphi = \{\varphi_\beta : H_\alpha \to H_{\beta \alpha^{-1}}\}_{\alpha, \beta \in G} \) such that

\[
(\varphi_\beta \otimes \varphi_\delta) \Delta_{\alpha, \gamma} = \Delta_{\beta \alpha \gamma^{-1}, \beta \gamma^{-1}} \varphi_\gamma. \quad \varepsilon \varphi_\beta = \varepsilon, \quad \text{and} \quad \varphi_{\alpha \beta} = \varphi_\alpha \varphi_\beta
\]

for all \(\alpha, \beta, \gamma \in G \). One easily verifies that a crossing preserves the antipode, that is, \(\varphi_\beta S_\alpha = S_{\beta \alpha^{-1}} \varphi_\beta \) for all \(\alpha, \beta \in G \). Therefore this definition of a crossed Hopf G-coalgebra is equivalent to the one in Chapter VIII.

A crossing \(\varphi \) in \(H \) yields a group homomorphism \(\varphi : G \to \text{Aut}_{\text{hopf}}(H_1) \) and determines thus an action of G on \(H_1 \) by Hopf algebra automorphisms. Here for a Hopf algebra A, we denote \(\text{Aut}_{\text{hopf}}(A) \) the group of Hopf automorphisms of A.

If G is an abelian group, then any Hopf G-coalgebra admits a trivial crossing \(\varphi_\beta = \text{id} \) for all \(\beta \in G \).

When G is a finite group, the notion of a crossing can be described in terms of central prolongations of \(K^G \) (see Section 1.2): a crossing of a central prolongation \(A \)

1A right G-comodule \(M = \{M_\alpha\}_{\alpha \in G} \) over H is reduced if \(M_\alpha = 0 \) whenever \(H_\alpha = 0 \).
of K^G is a group homomorphism $\varphi : G \to \text{Aut}_\text{Hopf}(A)$ such that $\varphi_\beta(1_a) = 1_{\beta a \beta^{-1}}$ for all $\alpha, \beta \in G$, where 1_α is the image of $e_\alpha \in K^G$ under the central map $K^G \to A$.

2.2 The distinguished character. Let $H = \{H_\alpha\}_{\alpha \in G}$ be a crossed Hopf G-coalgebra of finite type with crossing φ. Using the uniqueness of G-integrals (see Theorem A), one can show the existence of a unique group homomorphism $\hat{\varphi} : G \to K^*$, called the distinguished character of H, such that $\lambda_{\beta \varphi^{-1}} \varphi_{\beta} = \hat{\varphi}(\beta) \lambda_\alpha$ for any left or right G-integral $\lambda = (\lambda_\alpha)_{\alpha \in G}$ for H and all $\alpha, \beta \in G$.

Lemma E ([Vir2], Lemma 6.3). For any $\beta \in G$,

(a) If Λ is a left or right integral for H_1, then $\varphi_\beta(\Lambda) = \hat{\varphi}(\beta) \Lambda$.
(b) If v is the distinguished grouplike element of H_1^*, then $v \varphi_\beta = v$.
(c) If $g = (g_\alpha)_{\alpha \in G}$ is the distinguished G-grouplike element of H, then $\varphi_\beta(g_\alpha) = g_{\beta \varphi^{-1}} \beta^{-1}$ for all $\alpha \in G$.

2.3 Quasitriangular Hopf G-coalgebras. Following Chapter VIII, we call a crossed Hopf G-coalgebra $(H = \{H_\alpha\}_{\alpha \in G}, \varphi)$ quasitriangular if it is endowed with an R-matrix, that is, a family $R = \{R_{\alpha, \beta}\} \in H_\alpha \otimes H_\beta$ of invertible elements such that, for all $\alpha, \beta, \gamma \in G$ and $x \in H_{\alpha \beta}$,

$$R_{\alpha, \beta} \cdot \Delta_{\alpha, \beta}(x) = \sigma_{\beta, \alpha}(\varphi_\gamma^{-1} \otimes \text{id}_{H_\gamma}) \Delta_{\alpha \varphi^{-1}, \alpha}(x) \cdot R_{\alpha, \beta},$$

$$(\text{id}_{H_\alpha} \otimes \Delta_{\beta, \gamma})(R_{\alpha, \beta}) = (R_{\alpha, \gamma})_{\beta \varphi} \cdot (R_{\beta, \gamma})_{\alpha \varphi^{-1}},$$

$$(\Delta_{\alpha, \beta} \otimes \text{id}_{H_\gamma})(R_{\alpha, \beta}) = [(\text{id}_{H_\alpha} \otimes \varphi^{-1})(R_{\alpha, \beta \varphi^{-1}})]_{\beta \varphi} \cdot (R_{\beta, \gamma})_{\alpha \varphi^{-1}},$$

$$(\varphi_\gamma \otimes \varphi_\beta)(R_{\alpha, \gamma}) = R_{\beta \varphi^{-1}, \gamma \varphi^{-1}} \cdot \Delta_{\alpha, \beta}.\gamma.$$ Here $\sigma_{\beta, \alpha}$ denotes the flip $H_\beta \otimes H_\alpha \to H_\alpha \otimes H_\beta$ and, for K-vector spaces P, Q and $r = \sum_j p_j \otimes q_j \in P \otimes Q$, we set

$$r_{\alpha \varphi^{-1}} = r \otimes 1_{\gamma} \in P \otimes Q \otimes H_\gamma, \quad r_{\alpha \varphi^{-1}} = 1_{\alpha \varphi^{-1}} \otimes r \in H_\alpha \otimes P \otimes Q,$$

and $r_{\alpha \varphi^{-1}} = \sum_j p_j \otimes 1_{\gamma} \otimes q_j \in P \otimes H_\gamma \otimes Q$. Note that $R_{1, 1}$ is an R-matrix for the Hopf algebra H_1 is the usual sense of the word.

When G is abelian and φ is the trivial crossing, we recover the definition of a quasitriangular G-colored Hopf algebra due to Ohtsuki [Oh1].

An R-matrix for a crossed Hopf G-coalgebra provides a solution of the G-colored Yang–Baxter equation

$$(R_{\beta, \gamma})_{\alpha \varphi^{-1}} \cdot (R_{\alpha, \beta})_{\varphi} \cdot (R_{\beta, \gamma})_{\alpha \varphi^{-1}} = (R_{\alpha, \beta})_{\varphi} \cdot [(\text{id}_{H_\alpha} \otimes \varphi^{-1})(R_{\alpha, \beta \varphi^{-1}})]_{\beta \varphi} \cdot (R_{\beta, \gamma})_{\alpha \varphi^{-1}},$$

where φ_α denotes the distinguished character of H.
and satisfies the following identities (see [Vir2], Lemma 6.4): for all $\alpha, \beta, \gamma \in G$,
\[
(e \otimes \text{id}_{H_\alpha})(R_{1,\alpha}) = 1_\alpha = (\text{id}_{H_\alpha} \otimes e)(R_{\alpha,1}),
\]
\[
(S_{\alpha^{-1}} \varphi_\alpha \otimes \text{id}_{H_\alpha})(R_{\alpha^{-1},\beta}) = R_{\alpha,\beta}^{-1} \quad \text{and} \quad (\text{id}_{H_\alpha} \otimes S_{\beta})(R_{\alpha,\beta}^{-1}) = R_{\alpha,\beta}^{-1},
\]
\[
(S_{\alpha} \otimes S_{\beta})(R_{\alpha,\beta}) = (\varphi_\alpha \otimes \text{id}_{H_{\beta^{-1}}})(R_{\alpha,\beta^{-1}}^{-1}).
\]

2.4 The Drinfeld element. The Drinfeld element of a quasitriangular Hopf G-coalgebra $H = \{H_\alpha\}_{\alpha \in G}$ is the family $u = (u_\alpha)_{\alpha \in G} \in \Pi_{\alpha \in G} H_\alpha$, where

\[
u_\alpha = m_\alpha(S_{\alpha^{-1}} \varphi_\alpha \otimes \text{id}_{H_\alpha}) \sigma_{\alpha,\alpha^{-1}}(R_{\alpha,\alpha^{-1}}).
\]

Observe that u_1 is the Drinfeld element of the quasitriangular Hopf algebra H_1 (see [Drin2]). By [Vir2], Lemma 6.5, each u_α is invertible in H_α and

\[
u_\alpha^{-1} = m_\alpha(\text{id}_{H_\alpha} \otimes S_{\alpha^{-1}} \varphi_\alpha) \sigma_{\alpha,\alpha}(R_{\alpha,\alpha}).
\]

Moreover, for any $\alpha \in G$ and $x \in H$,
\[
S_{\alpha^{-1}} \varphi_\alpha(x) = u_\alpha \varphi_\alpha(x) u_\alpha^{-1},
\]
where φ is the crossing in H. This implies that the antipode of H is bijective.

Note also the identities $e(u_1) = 1$, $\psi_\beta(u_\alpha) = u_\beta \varphi_{\alpha \beta^{-1}}$, and
\[
\Delta_{\alpha,\beta}(u_{\alpha \beta}) = [\sigma_{\beta,\alpha}(\text{id}_{H_\beta} \otimes \varphi_\alpha)(R_{\beta,\alpha}) \cdot R_{\alpha,\beta}]^{-1} \cdot (u_\alpha \otimes u_\beta).
\]

2.5 Ribbon Hopf G-coalgebras. Following Chapter VIII, we call a quasitriangular Hopf G-coalgebra $H = \{H_\alpha\}_{\alpha \in G}$ ribbon if it is endowed with a twist, that is, a family of invertible elements $\theta = \{\theta_\alpha \in H_\alpha\}_{\alpha \in G}$ such that for all $\alpha, \beta \in G$ and $x \in H_\alpha$,

\[
\varphi_\alpha(x) = \theta_{\alpha^{-1}} x \theta_\alpha, \quad S_\alpha(\theta_\alpha) = \theta_\alpha^{-1}, \quad \psi_\beta(\theta_\alpha) = \theta_{\beta \alpha \beta^{-1}},
\]
\[
\Delta_{\alpha,\beta}(\theta_{\alpha \beta}) = (\theta_\alpha \otimes \theta_\beta) \cdot \sigma_{\beta,\alpha}(\text{id}_{H_\beta} \otimes \varphi_\alpha)(R_{\beta,\alpha}) \cdot R_{\alpha,\beta}.
\]

Note that θ_1 is a twist of the quasitriangular Hopf algebra H_1, and so $e(\theta_1) = 1$. If $\alpha \in G$ has a finite order d, then δ_{α}^d is a central element of H_α. In particular, δ_1 is central in H_1.

Example. Let G be a group and $c : G \times G \to K^*$ be a bicharacter of G, that is, $c(\alpha, \beta \gamma) = c(\alpha, \beta)c(\alpha, \gamma)$ and $c(\alpha \beta, \gamma) = c(\alpha, \gamma)c(\beta, \gamma)$ for all $\alpha, \beta, \gamma \in G$. Consider the following crossed Hopf algebra K^c: for all $\alpha, \beta \in G$, we have $K^c_\alpha = K$ as an algebra and
\[
\Delta_{\alpha,\beta}(1_K) = 1_K \otimes 1_K, \quad e(1_K) = 1_K, \quad S_\alpha(1_K) = 1_K, \quad \psi_\beta(1_K) = 1_K.
\]
Then K^c is a ribbon Hopf G-coalgebra of finite type with R-matrix and twist given by $R_{\alpha,\beta} = c(\alpha, \beta) 1_K \otimes 1_K$ and $\theta_\alpha = c(\alpha, \alpha)$. The Drinfeld elements of K^c are computed by $u_\alpha = c(\alpha, \alpha)^{-1}$.
2.6 The spherical G-grouplike element. Let $H = \{H_\alpha\}_{\alpha \in G}$ be a ribbon Hopf G-coalgebra with Drinfeld element $u = (u_\alpha)_{\alpha \in G}$. For any $\alpha \in G$, set

$$w_\alpha = \theta_\alpha u_\alpha = u_\alpha \theta_\alpha \in H_\alpha.$$

Then $w = (w_\alpha)_{\alpha \in G}$ is a G-grouplike element, called the spherical G-grouplike element of H. It satisfies the identities

$$\varphi_\beta(w_\alpha) = w_{\beta \alpha^{-1}}, \quad S_\alpha(u_\alpha) = w_{\alpha^{-1}} u_{\alpha^{-1}} w_{\alpha^{-1}}, \quad \text{and} \quad S_{\alpha^{-1}} S_\alpha(x) = w_{\alpha} x w_{\alpha}^{-1}$$

for all $\alpha, \beta \in G$ and $x \in H_\alpha$. Conversely, any G-grouplike element $w = (w_\alpha)_{\alpha \in G}$ of a quasitriangular Hopf G-coalgebra $H = \{H_\alpha\}_{\alpha \in G}$ which satisfies these identities gives rise to a twist $\theta = (\theta_\alpha)_{\alpha \in G}$ in H by $\theta_\alpha = w_{\alpha} u_{\alpha^{-1}} = u_{\alpha^{-1}} w_{\alpha}$.

2.7 Further G-grouplike elements. Let $H = \{H_\alpha\}_{\alpha \in G}$ be a quasitriangular Hopf G-coalgebra of finite type. Set

$$\ell_\alpha = S_{\alpha^{-1}}(u_{\alpha^{-1}})^{-1} u_{\alpha} S_{\alpha^{-1}}(u_{\alpha^{-1}})^{-1} \in H_\alpha,$$

where $u = (u_\alpha)_{\alpha \in G}$ is the Drinfeld element of H. The properties of u ensure that $\ell = (\ell_\alpha)_{\alpha \in G}$ is a G-grouplike element of H. Let ν be the distinguished grouplike element of H^*_1 and $\hat{\varphi}$ be the distinguished character of H (see Sections 1.5 and 2.2). Denoting $R = \{R_{\alpha, \beta} \in H_\alpha \otimes H_{\beta^{-1}}\}_{\alpha, \beta \in G}$ the R-matrix of H, set

$$h_\alpha = (\text{id}_{H_\alpha} \otimes \nu)(R_{\alpha, 1}) \in H_\alpha.$$

Theorem F ([Vir2], Theorem 6.9). The family $h = (h_\alpha)_{\alpha \in G}$ is a G-grouplike element of H. The distinguished G-grouplike element $(g_\alpha)_{\alpha \in G}$ of H is computed by $g_\alpha = \hat{\varphi}(\alpha)^{-1} \ell_\alpha h_\alpha$ for all $\alpha \in G$.

For ribbon H, we obtain as a corollary that $g_\alpha = \hat{\varphi}(\alpha)^{-1} w_\alpha^2 h_\alpha$ for all $\alpha \in G$, where $w = (w_\alpha)_{\alpha \in G}$ is the spherical G-grouplike element of H.

2.8 Traces. Let $H = \{H_\alpha\}_{\alpha \in G}$ be a crossed Hopf G-coalgebra. A G-trace for H is a family of K-linear forms $\text{tr} = (\text{tr}_\alpha)_{\alpha \in G} \in \Pi_{\alpha \in G} H_{\alpha}^*$ such that

$$\text{tr}_\alpha(x y) = \text{tr}_\alpha(y x), \quad \text{tr}_{\alpha^{-1}}(S_\alpha(x)) = \text{tr}_\alpha(x), \quad \text{and} \quad \text{tr}_{\beta \alpha^{-1}}(\varphi_\beta(x)) = \text{tr}_\alpha(x)$$

for all $\alpha, \beta \in G$ and $x, y \in H_\alpha$. Note that tr_1 is a usual trace for the Hopf algebra H_1, which is invariant under the action φ of G.

A Hopf G-coalgebra $H = \{H_\alpha\}_{\alpha \in G}$ is unimodular if the Hopf algebra H_1 is unimodular (that is the spaces of left and right integrals for H_1 coincide). If H_1 is finite-dimensional, then H is unimodular if and only if $\nu = \epsilon$, where ν is the distinguished grouplike element of H^*_1. For example, any finite type semisimple Hopf G-coalgebra is unimodular.
6.3 The twisted double construction

Consider in more detail a unimodular ribbon Hopf G-coalgebra $H = \{H_\alpha\}_{\alpha \in G}$ of finite type. Let $\lambda = (\lambda_\alpha)_{\alpha \in G}$ be a non-zero right G-integral for H, $w = (w_\alpha)_{\alpha \in G}$ be the spherical G-grouplike element of H, and φ be the distinguished character of H.

Using Theorems B and F, we obtain that the G-traces for H are parameterized by families $z = (z_\alpha)_{\alpha \in G}$ such that $z_\alpha \in H_\alpha$ is central, $S_\alpha(z_\alpha) = \varphi(\alpha)^{-1} z_{\alpha^{-1}}$, and $\varphi_\beta(z_\alpha) = \varphi(\beta) z_{\alpha \beta^{-1}}$ for all $\alpha, \beta \in G$. The G-trace corresponding to such a family z is given by $\text{tr}_z(x) = \lambda_\alpha(w_\alpha z_\alpha x)$. We point out two such families.

Let Λ be a left integral for H_1 such that $\lambda_1(\Lambda) = 1$. Set $z_1 = \Lambda$ and $z_\alpha = 0$ if $\alpha \neq 1$. The resulting family $(z_\alpha)_{\alpha \in G} satisfies all the conditions above since H is unimodular (and so Λ is central and $S_1(\Lambda) = \Lambda$) and by Lemma E (a). The corresponding G-trace is given by $\text{tr}_1 = \varepsilon$ and $\text{tr}_\alpha = 0$ for all $\alpha \neq 1$.

If $\varphi(\alpha) = 1$ for all $\alpha \in G$, then another possible choice of a family z is $z_\alpha = 1_\alpha$ for all α. Note that $\varphi = 1$ if H is semisimple or cosemisimple or if $\lambda_1(\theta_1) \neq 0$, where $\theta = \{\theta_\alpha\}_{\alpha \in G}$ is the twist of H. We obtain the following assertion.

Theorem G ([Vir2], Theorem 7.4). Suppose under the assumptions above that at least one of the following four conditions is satisfied: H is semisimple, or H is cosemisimple, or $\lambda_1(\theta_1) \neq 0$, or $\varphi_\beta|_{H_1} = \text{id}_{H_1}$ for all $\beta \in G$. Then the family of K-linear maps $\text{tr} = (\text{tr}_\alpha)_{\alpha \in G}$, defined by $\text{tr}_z(x) = \lambda_\alpha(w_\alpha x)$ for all $x \in H_\alpha$, is a G-trace for H.

6.3 The twisted double construction

Starting from a crossed Hopf G-coalgebra $H = \{H_\alpha\}_{\alpha \in G}$, Zunino [Zu1] constructed a double $Z(H) = \{Z(H)_\alpha\}_{\alpha \in G}$ of H which is a quasitriangular Hopf G-coalgebra containing H as a Hopf G-subcoalgebra. As a vector space, $Z(H)_\alpha = H_\alpha \otimes (\bigoplus_{\beta \in G} H_\beta^*)$. Generally speaking, $Z(H)$ is not of finite type: the components $Z(H)_\alpha$ may be infinite-dimensional.

In this section we provide a method, called the twisted double construction, for deriving quasitriangular Hopf G-coalgebras of finite type from finite-dimensional Hopf algebras endowed with action of G by Hopf automorphisms (cf. Section 2.1). We also give an h-adic version of this construction. This will lead us to non-trivial examples of quasitriangular Hopf G-coalgebras for any finite group G and for infinite groups G such as $GL_n(K)$. In particular, we define the (h-adic) graded quantum groups.

3.1 Hopf pairings. Recall that a Hopf pairing between two Hopf algebras A and B (over K) is a bilinear pairing $\sigma: A \times B \to K$ such that, for all $a, a' \in A$ and $b, b' \in B$,

\[\sigma(a, b b') = \sigma(a a', b) \sigma(a, b'), \quad \sigma(a, 1) = \varepsilon(a), \]

\[\sigma(a a', b) = \sigma(a, b_2) \sigma(a', b_1), \quad \sigma(1, b) = \varepsilon(b). \]

Such a pairing always preserves the antipode: $\sigma(S(a), S(b)) = \sigma(a, b)$ for all $a \in A$ and $b \in B$.
A Hopf pairing $\sigma : A \times B \to K$ determines two annihilator ideals $I_A = \{a \in A \mid \sigma(a, b) = 0 \text{ for all } b \in B\}$ and $I_B = \{b \in B \mid \sigma(a, b) = 0 \text{ for all } a \in A\}$. It is easy to check that I_A and I_B are Hopf ideals of A and B, respectively. The pairing σ is non-degenerate iff $I_A = I_B = 0$. Any Hopf pairing $\sigma : A \times B \to K$ induces a non-degenerate Hopf pairing $\tilde{\sigma} : A/I_A \times B/I_B \to K$.

3.2 The twisted double.

Let $\sigma : A \times B \to K$ be a Hopf pairing between two Hopf algebras A and B, and let $\phi : A \to A$ be a Hopf algebra endomorphism of A. Set

$$D(A, B; \sigma, \phi) = A \otimes B$$

as a K-vector space. We provide $D(A, B; \sigma, \phi)$ with a structure of an algebra with unit $1_A \otimes 1_B$ and multiplication

$$(a \otimes b) \cdot (a' \otimes b') = \sigma(\phi(a''(1)), S(b''(1))) \sigma(a''(3), b''(3)) a''(2) \otimes b''(2) b'$$

for any $a, a' \in A$ and $b, b' \in B$.

Note that if ϕ and ϕ' are different Hopf algebra endomorphisms of A, then the algebras $D(A, B; \sigma, \phi)$ and $D(A, B; \sigma, \phi')$ are in general not isomorphic (see Remark in Section 3.4 below).

Theorem H ([Vir3], Theorem 2.6). Let $\sigma : A \times B \to K$ be a Hopf pairing between Hopf algebras A and B, and let ϕ be an action of G on A by Hopf algebra automorphisms, that is, ϕ is a group homomorphism $G \to \text{Aut}_{\text{Hopf}}(A)$. Then the family of algebras

$$D(A, B; \sigma, \phi) = \{D(A, B; \sigma, \phi_a)\}_{a \in G}$$

has a structure of a Hopf G-coalgebra given by

$$\Delta_{a, \beta}(a \otimes b) = (\phi_\beta(a''(1)) \otimes b''(1)) \otimes (a''(2) \otimes b''(2)),$$

$$\epsilon(a \otimes b) = \epsilon_A(a) \epsilon_B(b),$$

$$S_a(a \otimes b) = \sigma(\phi_\alpha(a''(1)), b''(1)) \sigma(a''(3), S(b''(3))) \phi_\alpha S(a''(2)) \otimes S(b''(2))$$

for all $a \in A, b \in B$ and $\alpha, \beta \in G$. Furthermore, if σ is non-degenerate and A, B are finite dimensional, then the Hopf G-coalgebra $D(A, B; \sigma, \phi)$ is quasitriangular with crossing ψ and R-matrix $R = \{R_{a, \beta}\}_{a, \beta \in G}$ given by

$$\psi_\beta(a \otimes b) = \phi_\beta(a) \otimes \phi_\beta^*(b) \quad \text{and} \quad R_{a, \beta} = \sum_i (e_i \otimes 1_B) \otimes (1_A \otimes f_i).$$

where $\phi^* : G \to \text{Aut}_{\text{Hopf}}(B)$ is the unique action such that $\sigma(\phi_\beta, \phi^*_\beta) = \sigma$ for all $\beta \in G$, and $(e_i)_i$ and $(f_i)_i$ are dual bases of A and B with respect to σ.

Corollary I. Let A be a finite-dimensional Hopf algebra and ϕ be an action of G on A by Hopf algebra automorphisms. Then the duality bracket $(\cdot, \cdot)_{A \otimes A^*}$ is a non-degenerate Hopf pairing between A and A^{cop} and $D(A, A^{\text{cop}}; (\cdot, \cdot)_{A \otimes A^*})$ is a quasitriangular Hopf G-coalgebra.
Note that the group of Hopf automorphisms of a finite-dimensional semisimple Hopf algebra A over a field of characteristic 0 is finite (see [Rad2]). To obtain quasitriangular Hopf G-coalgebras with infinite G using the twisted double method, one has to start from non-semisimple Hopf algebras or from Hopf algebras over fields of non-zero characteristic.

In the next three sections, we use Theorem H to give examples of quasitriangular Hopf G-coalgebras.

3.3 Example: finite G

Let G be a finite group. In this section, we describe the ribbon Hopf G-coalgebras obtained by the twisted double construction from the group algebra $K[G]$. The standard Hopf algebra structure on $K[G]$ is given by $\Delta(g) = g \otimes g$, $\varepsilon(g) = 1$, and $S(g) = g^{-1}$ for all $g \in G$. The dual of $K[G]$ is the Hopf algebra $F(G) = K^G$ of functions $G \to K$ with structure maps and basis $(e_g : G \to K)_{g \in G}$ described in Section 2.1. Let $\phi : G \to \text{Aut}_{\text{Hopf}}(K[G])$ be the homomorphism defined by $\phi_{\alpha}(h) = \alpha h a^{-1}$ for $\alpha \in G, h \in K[G]$. Corollary I yields a quasitriangular Hopf G-coalgebra

$$D_G(G) = D(K[G], F(G)^{\text{cop}}, (\cdot)_K[G] \times F(G), \phi).$$

Let us describe $D_G(G) = \{D_\alpha(G)\}_{\alpha \in G}$ more precisely. For $\alpha \in G$, the algebra $D_\alpha(G)$ is equal to $K[G] \otimes F(G)$ as a K-vector space, has unit $1_{D_\alpha(G)} = \sum_{g \in G} 1 \otimes e_g$ and multiplication

$$(g \otimes e_h) \cdot (g' \otimes e_{h'}) = \delta_{ag'\alpha^{-1},1g'g} e_{g'g} \otimes e_{h'}$$

for all $g, g', h, h' \in G$. The structure maps of $D_G(G)$ are

$$\Delta_{\alpha,\beta}(g \otimes e_h) = \sum_{x,y = h} \beta g \beta^{-1} \otimes e_y \otimes g \otimes e_x, \quad \varepsilon(g \otimes e_h) = \delta_{h,1},$$

$$S_{\alpha}(g \otimes e_h) = \alpha g^{-1} \otimes e_{ag\alpha^{-1}g^{-1}h^{-1}}, \quad \varphi_{\alpha}(g \otimes e_h) = \alpha g \alpha^{-1} \otimes e_{a\alpha h},$$

for all $\alpha, \beta, g, h \in G$. The crossed Hopf G-coalgebra $D_G(G)$ is quasitriangular and furthermore ribbon with R-matrix and twist

$$R_{\alpha,\beta} = \sum_{g,h \in G} g \otimes e_h \otimes 1 \otimes e_g$$

and

$$\theta_{\alpha} = \sum_{g \in G} \alpha^{-1} g \alpha \otimes e_g$$

for all $\alpha, \beta \in G$. The spherical G-grouplike element of $D_G(G)$ is $w = (1_{D_\alpha(G)})_{\alpha \in G}$. The family $\lambda = (\lambda_{\alpha})_{\alpha \in G}$, defined by $\lambda_{\alpha}(g \otimes e_h) = \delta_{h,1}$, is a two-sided G-integral for $D_G(G)$.

3.4 An example of a quasitriangular Hopf $GL_n(K)$-coalgebra

In this section, K is a field of characteristic $\neq 2$ and n is a positive integer. Let A be the K-algebra with generators g, x_1, \ldots, x_n subject to the relations

$$g^2 = 1, \quad x_i^2 = 0, \quad gx_i = -x_ig, \quad x_i x_j = -x_j x_i.$$
The algebra A is 2^{n+1}-dimensional and has a Hopf algebra structure given by

$$
\Delta(g) = g \otimes g, \quad \varepsilon(g) = 1, \quad \Delta(x_i) = x_i \otimes g + 1 \otimes x_i, \quad \varepsilon(x_i) = 0, \quad S(g) = g,
$$

and $S(x_i) = gx_i$ for all i. The group of Hopf automorphisms of A is isomorphic to the group $GL_n(K)$ of invertible $n \times n$-matrices with coefficients in K (see [Rad2]). An explicit isomorphism $\phi: GL_n(K) \rightarrow \text{Aut}_H(A)$ carries any $\alpha = (\alpha_{i,j}) \in GL_n(K)$ to the automorphism ϕ_α of A given by

$$
\phi_\alpha(g) = g \quad \text{and} \quad \phi_\alpha(x_i) = \sum_{k=1}^n \alpha_{k,i} x_k.
$$

We apply Corollary I to these A and ϕ. Observing that $A^* \cong A$ as Hopf algebras, we can quotient the resulting quasitriangular Hopf $GL_n(K)$-coalgebra to eliminate one copy of the generator g (which appears twice), see [Vir3], Proposition 4.1. This gives a quasitriangular Hopf $GL_n(K)$-coalgebra $H = \{H_\alpha\}_{\alpha \in GL_n(K)}$. We give here a direct description of H. For $\alpha = (\alpha_{i,j}) \in GL_n(K)$, let H_α be the K-algebra generated $g, x_1, \ldots, x_n, y_1, \ldots, y_n$, subject to the relations

$$
\begin{align*}
g^2 &= 1, \quad x_i^2 = \cdots = x_n^2 = 0, \quad gx_i = -x_i g, \quad x_ix_j = -x_j x_i, \\
y_1^2 &= \cdots = y_n^2 = 0, \quad gy_i = -y_i g, \quad y_iy_j = -y_j y_i, \\
x_iy_j - y_j x_i &= (\alpha_{j,i} - \delta_{i,j}) g,
\end{align*}
$$

where $1 \leq i, j \leq n$. The family $\{H_\alpha\}_{\alpha \in GL_n(K)}$ has the following structure of a crossed Hopf $GL_n(K)$-coalgebra:

$$
\begin{align*}
\Delta_{\alpha,\beta}(g) &= g \otimes g, \quad \varepsilon(g) = 1, \quad S_{\alpha}(g) = g, \\
\Delta_{\alpha,\beta}(x_i) &= 1 \otimes x_i + \sum_{k=1}^n \beta_{k,i} x_k \otimes g, \quad \varepsilon(x_i) = 0, \quad S_{\alpha}(x_i) = \sum_{k=1}^n \alpha_{k,i} g x_k, \\
\Delta_{\alpha,\beta}(y_i) &= y_i \otimes 1 + g \otimes y_i, \quad \varepsilon(y_i) = 0, \quad S_{\alpha}(y_i) = -gy_i, \\
\varphi_{\alpha}(g) &= g, \quad \varphi_{\alpha}(x_i) = \sum_{k=1}^n \alpha_{k,i} x_k, \quad \varphi_{\alpha}(y_i) = \sum_{k=1}^n \alpha_{i,k} y_k,
\end{align*}
$$

where $\alpha = (\alpha_{i,j}), \beta = (\beta_{i,j})$ run over $GL_n(K)$, $(\alpha_{i,j}) = \alpha^{-1}$, and $1 \leq i \leq n$. The crossed Hopf $GL_n(K)$-coalgebra H is quasitriangular with R-matrix

$$
R_{\alpha,\beta} = \frac{1}{2} \sum_{S \subseteq \{1, \ldots, n\}} x_S \otimes y_S + x_S \otimes gy_S + gx_S \otimes y_S - gx_S \otimes gy_S
$$

for all $\alpha, \beta \in GL_n(K)$. Here $x_0 = 1, y_0 = 1$, and for a nonempty subset S of $\{1, \ldots, n\}$, we set $x_S = x_{i_1} \cdots x_{i_k}$ and $y_S = y_{i_1} \cdots y_{i_k}$, where $i_1 < \cdots < i_k$ are the elements of S.

Remark. Generally speaking, for distinct \(\alpha, \beta \in \text{GL}_n(K) \), the algebras \(\mathcal{H}_\alpha \) and \(\mathcal{H}_\beta \) are not isomorphic. For example, \(\mathcal{H}_\alpha \not\cong \mathcal{H}_1 \) for any \(\alpha \in \text{GL}_n(K) \) \(\setminus \{1\} \). It suffices to prove that

\[
\mathcal{H}_\alpha / [\mathcal{H}_\alpha, \mathcal{H}_\alpha] \not\cong \mathcal{H}_1 / [\mathcal{H}_1, \mathcal{H}_1].
\]

Indeed, \(\mathcal{H}_\alpha / [\mathcal{H}_\alpha, \mathcal{H}_\alpha] = 0 \) since \(g = \frac{1}{a_{i,j}-a_{i,j}}(x_i y_j - y_j x_i) \in [\mathcal{H}_\alpha, \mathcal{H}_\alpha] \) (for some \(1 \leq i, j \leq n \) such that \(a_{i,j} \neq \delta_{i,j} \)) and so \(1 = g^2 \in [\mathcal{H}_\alpha, \mathcal{H}_\alpha] \). In \(\mathcal{H}_1 / [\mathcal{H}_1, \mathcal{H}_1] \), we have \(x_k = x_k g^2 = 0 \) (since \(x_k g = g x_k = -x_k g \) and so \(x_k g = 0 \)) and likewise \(y_k = 0 \). Hence \(\mathcal{H}_1 / [\mathcal{H}_1, \mathcal{H}_1] = K \langle g \mid g^2 = 1 \rangle \neq 0 \).

3.5 Graded quantum groups.

Let \(\mathfrak{g} \) be a finite-dimensional complex simple Lie algebra of rank \(l \) with Cartan matrix \((a_{i,j}) \). Let \(\{d_i\}_{i=1}^l \) be coprime integers such that the matrix \((d_i a_{i,j}) \) is symmetric. Let \(q \) be a fixed non-zero complex number and \(q_i = q^{d_i} \) for \(i = 1, 2, \ldots, l \). We suppose that \(q_i^2 \neq 1 \) for all \(i \).

Recall that the (usual) quantum group \(U_q(\mathfrak{g}) \) can be obtained as a quotient of the quantum double of \(U_q(\mathfrak{b}_+) \), where \(\mathfrak{b}_+ \) is the (positive) Borel subalgebra of \(\mathfrak{g} \) (the quotient is needed to eliminate the second copy of the Cartan subalgebra). Applying Theorem H to the Hopf algebra \(U_q(\mathfrak{b}_+) \) endowed with an action of \((\mathbb{C}^*)^l \) by Hopf automorphisms, we obtain the “graded quantum group” introduced in [Vir3], Proposition 5.1. It can be directly described as follows.

Set \(G = (\mathbb{C}^*)^l \). For \(\alpha = (\alpha_1, \ldots, \alpha_l) \in G \), let \(U^G_q(\mathfrak{g}) \) be the \(\mathbb{C} \)-algebra generated by \(K_i^{\pm 1}, E_i, F_i, 1 \leq i \leq l \), subject to the following defining relations:

\[
K_i K_j = K_j K_i, \quad K_i K_i^{-1} = K_i^{-1} K_i = 1, \\
K_i E_j = q_i^{a_{i,j}} E_j K_i, \\
K_i F_j = q_i^{-a_{i,j}} F_j K_i, \\
E_i F_j - F_j E_i = \delta_{i,j} (a_{i,j} K_i - K_i^{-1}), \\
\sum_{r=0}^{1-a_{i,j}} (-1)^r \binom{1-a_{i,j}}{r} q_i^{1-a_{i,j}-r} E_i^{1-a_{i,j}-r} E_i = 0 \quad \text{if } i \neq j, \\
\sum_{r=0}^{1-a_{i,j}} (-1)^r \binom{1-a_{i,j}}{r} q_i^{1-a_{i,j}-r} F_i^{1-a_{i,j}-r} F_i = 0 \quad \text{if } i \neq j.
\]

The family \(U^G_q(\mathfrak{g}) = \{U^\alpha_q(\mathfrak{g})\}_{\alpha \in G} \) has a structure of a crossed Hopf \(G \)-coalgebra given, for \(\alpha = (\alpha_1, \ldots, \alpha_l) \in G, \beta = (\beta_1, \ldots, \beta_l) \in G \) and \(1 \leq i \leq l \), by:

\[
\Delta_{\alpha, \beta}(K_i) = K_i \otimes K_i, \\
\Delta_{\alpha, \beta}(E_i) = \beta_i E_i \otimes K_i + 1 \otimes E_i, \\
\Delta_{\alpha, \beta}(F_i) = F_i \otimes 1 + K_i^{-1} \otimes F_i.
\]
\[\varepsilon(K_1) = 1, \quad \varepsilon(E_i) = \varepsilon(F_i) = 0, \]
\[S_a(K_1) = K_i^{-1}, \quad S_a(E_i) = -\alpha_i E_i K_i^{-1}, \quad S_a(F_i) = -K_i F_i, \]
\[\varphi_a(K_1) = K_i, \quad \varphi_a(E_i) = \alpha_i E_i, \quad \varphi_a(F_i) = \alpha_i^{-1} F_i. \]

Note that \((U_q^1(\mathfrak{g}), \Delta_{1,1}, \varepsilon, S_1)\) is the usual quantum group \(U_q(\mathfrak{g})\).

To give a rigorous treatment of \(R\)-matrices for the graded quantum groups, we need \(h\)-adic versions of Hopf \(G\)-coalgebras and of graded quantum groups. This is the content of the next two sections.

3.6 The \(h\)-adic case

In this section, we develop an \(h\)-adic variant of Hopf \(G\)-coalgebras. Roughly speaking, \(h\)-adic Hopf \(G\)-coalgebras are obtained by taking the ring \(\mathbb{C}[h]\) of formal power series as the ground ring and requiring that the algebras (resp. the tensor products) are complete (resp. completed) in the \(h\)-adic topology.

Recall that if \(V\) is a (left) module over \(\mathbb{C}[h]\), then the topology on \(V\) for which the sets \(\{v^n h^n | n \in \mathbb{N}\}\) form a base for neighborhoods of \(v \in V\) is called the \(h\)-adic topology. For \(\mathbb{C}[h]\)-modules \(V\) and \(W\), denote by \(V \hat{\otimes} W\) the completion of \(V \otimes \mathbb{C}[h]\) \(W\) in the \(h\)-adic topology.

If \(V\) is a complex vector space, then the set \(V[h]\) of all formal power series \(\sum_{n=0}^{\infty} v_n h^n\) with coefficients \(v_n \in V\) is a \(\mathbb{C}[h]\)-module called a topologically free module. Topologically free modules are exactly \(\mathbb{C}[h]\)-modules which are complete, separated, and torsion-free. Furthermore, \(V[h] \hat{\otimes} W[h] = (V \otimes W)[h]\) for any complex vector spaces \(V\) and \(W\).

An \(h\)-adic algebra \(A\) is a \(\mathbb{C}[h]\)-module complete in the \(h\)-adic topology and endowed with a \(\mathbb{C}[h]\)-linear map \(m: A \hat{\otimes} A \to A\) and an element \(1 \in A\) such that \(m(id_A \hat{\otimes} m) = m(m \hat{\otimes} id_A)\) and \(m(id_A \hat{\otimes} 1) = id_A = m(1 \hat{\otimes} id_A)\).

By an \(h\)-adic Hopf \(G\)-coalgebra, we mean a family \(H = \{H_{a}\}_{a \in G}\) of \(h\)-adic algebras endowed with \(h\)-adic algebra homomorphisms \(\Delta_{a,\beta}: H_{a} \hat{\otimes} H_{\beta} \to H_{a \beta}\) \((a, \beta \in G)\), \(\varepsilon: A \to \mathbb{C}[h]\), and with \(\mathbb{C}[h]\)-linear maps \(S_{a}: H_{a} \to H_{a^{-1}}\) \((a \in G)\) satisfying formulas of Section 1.1. It is understood that the algebraic tensor product \(\otimes\) is replaced everywhere by its \(h\)-adic completions \(\hat{\otimes}\).

The notions of crossed, quasitriangular, and ribbon \(h\)-adic Hopf \(G\)-coalgebras can be defined similarly following Sections 2.1 and 2.3.

Theorem H carries over to the \(h\)-adic Hopf algebras. The key modifications are that \(\sigma: A \hat{\otimes} B \to \mathbb{C}[h]\) must be \(\mathbb{C}[h]\)-linear and \(D(A, B; \sigma, \phi) = A \hat{\otimes} B\).

Theorem J. Let \(\sigma: A \hat{\otimes} B \to \mathbb{C}[h]\) be an \(h\)-adic Hopf pairing between two \(h\)-adic Hopf algebras \(A\) and \(B\). Let \(\phi: G \to Aut_{Hopf}(A)\) be an action of \(G\) on \(A\) by \(h\)-adic Hopf automorphisms. Then the family \(D(A, B; \sigma, \phi) = \{D(A, B; \sigma, \phi_a)\}_{a \in G}\) is an \(h\)-adic Hopf \(G\)-coalgebra. Assume furthermore that \(A\) and \(B\) are topologically free, \(\sigma\) is non-degenerate, and \(\mathbb{R}_{\alpha, \beta} = \sum_i (e_i \otimes 1_B) \otimes (1_A \otimes f_i)\) belongs to the \(h\)-adic completion \(D(A, B; \sigma, \phi_a) \otimes D(A, B; \sigma, \phi_B)\), where \((e_i)\) and \((f_i)\) are bases of \(A\) and \(B\) dual with respect to \(\sigma\). Then \(D(A, B; \sigma, \phi)\) is quasitriangular with \(R\)-matrix \(R = \{\mathbb{R}_{\alpha, \beta}\}_{a, \beta \in G}\).
The condition on $R_{\alpha, \beta}$ in the second part of the theorem means the following. Since A and B are topologically free, $A = V[[h]]$ and $B = W[[h]]$ for some complex vector spaces V and W. Then

$$D(A, B; \sigma, \phi_\alpha) \otimes D(A, B; \sigma, \phi_\beta) = (V \otimes W \otimes V \otimes W)[[h]].$$

We require that $R_{\alpha, \beta} = \sum_i (e_i \otimes 1_B) \otimes (1_A \otimes f_i)$ can be expanded as $\sum_{n=0}^{\infty} r_n h^n$ for some $r_n \in V \otimes W \otimes V \otimes W$.

In the next section, we use Theorem J to define h-adic graded quantum groups.

3.7 h-adic graded quantum groups.

Let \mathfrak{g} be a finite-dimensional complex simple Lie algebra of rank l with Cartan matrix $(a_{i,j})$. Let $\{d_i\}_{i=1}^l$ be coprime integers such that the matrix $(d_i, a_{i,j})$ is symmetric. Applying Theorem J to the h-adic Hopf algebras $U_h(b_+)$ and $\tilde{U}_h(b_-) = \mathbb{C}[[h]]1 + hU_h(b_-)$, we obtain (after appropriate quotienting) quasitriangular "h-adic graded quantum groups" (see [Vir3], Proposition 6.1). We give here a direct description of these quantum groups.

Let $G = \mathbb{C}[[h]]^l$ with group operation being addition. For $\alpha = (\alpha_1, \ldots, \alpha_l) \in G$, let $U^G_h(\mathfrak{g})$ be the h-adic algebra generated by the elements $H_i, E_i, F_i, 1 \leq i \leq l$, subject to the following defining relations:

$$[H_i, H_j] = 0,$$
$$[H_i, E_j] = a_{ij} E_j,$$
$$[H_i, F_j] = -a_{ij} F_j,$$
$$[E_i, F_j] = \delta_{ij} \frac{e^{d_i h} e^{d_j H_i} - e^{d_j h} e^{d_i h}}{e^{d_i h} - e^{d_j h}},$$
$$\sum_{r=0}^{1-a_{i,j}} (-1)^r \left[\sum_{r=0}^{1-a_{i,j}} \right] e^{d_i h} E_i^{1-a_{i,j}} F_i^{1-a_{i,j}} E_i^r F_i^r = 0 \quad (i \neq j).$$

The family $U^G_h(\mathfrak{g}) = \{U^G_h(\mathfrak{g})\}_{\alpha \in G}$ has a structure of a crossed h-adic Hopf G-coalgebra given, for $\alpha = (\alpha_1, \ldots, \alpha_l), \beta = (\beta_1, \ldots, \beta_l) \in G$ and $1 \leq i \leq l$, by

$$\Delta_{\alpha, \beta}(H_i) = H_i \otimes 1 + 1 \otimes H_i, \quad \varepsilon(H_i) = 0,$$
$$\Delta_{\alpha, \beta}(E_i) = e^{d_i h} \beta_i E_i \otimes e^{d_i h} H_i + 1 \otimes E_i, \quad \varepsilon(E_i) = 0,$$
$$\Delta_{\alpha, \beta}(F_i) = F_i \otimes 1 + e^{-d_i h} H_i \otimes F_i, \quad \varepsilon(F_i) = 0,$$
$$S_{\alpha}(H_i) = -H_i, \quad S_{\alpha}(E_i) = -e^{d_i h} \alpha_i E_i e^{-d_i h} H_i, \quad S_{\alpha}(F_i) = -e^{d_i h} H_i F_i,$$
$$\phi_{\alpha}(H_i) = H_i, \quad \phi_{\alpha}(E_i) = e^{d_i h} \alpha_i E_i, \quad \phi_{\alpha}(F_i) = e^{-d_i h} \alpha_i F_i.$$
Furthermore, $U_h^G(g)$ is quasitriangular by Theorem J (the conditions of this theorem are satisfied by $A = U_h(b_+)$ and $B = \tilde{U}_h(b_-)$). For example, for $g = sl_2$ and $G = \mathbb{C}[[h]]$, the R-matrix of $U_h^G(sl_2)$ is given by

$$R_{\alpha,\beta} = e^{h (H \otimes H)/2} \sum_{n=0}^{\infty} R_n(h) \ E^n \otimes F^n \in U_h^\alpha(sl_2) \otimes U_h^\beta(sl_2)$$

for all $\alpha, \beta \in \mathbb{C}[[h]]$, where $R_n(h) = q^{n(n+1)/2} \frac{(1-q^{-2})^n}{[n]_q!}$ and $q = e^h$.