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Abstract. We investigate some basic questions concerning the relationship between the restricted

Grassmannian and the theory of Banach Lie-Poisson spaces. By using universal central extensions

of Lie algebras, we find that the restricted Grassmannian is symplectomorphic to symplectic leaves in
certain Banach Lie-Poisson spaces, and the underlying Banach space can be chosen to be even a Hilbert

space. Smoothness of numerous adjoint and coadjoint orbits of the restricted unitary group is also

established. Several pathological properties of the restricted algebra are pointed out.
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1. Introduction

The present paper is devoted to an investigation of the relationship between the restricted Grassman-
nian and the recently initiated theory of Banach Lie-Poisson spaces.

The restricted Grassmannian (whose definition is recalled after Proposition 2.11 below) is a quite re-
markable infinite-dimensional Kähler manifold that plays an important role in many areas of mathematics
and physics. There are many interesting objects related to the restricted Grassmannian, such as: loop
groups (see Proposition 8.3.3 in [PS90]), the coadjoint orbits Diff+(S1)/S1 and Diff+(S1)/PSU(1, 1) of
the group of orientation-preserving diffeomorphisms of the circle (Proposition 6.8.2 in [PS90] and Propo-
sition 5.3 in [Se81]). It is related to the integrable system defined by the KP hierarchy (see [SW85]) and
to the fermionic second quantization (see [Wu01]). On the other hand, the notion of a Banach Lie-Poisson
space was recently introduced in [OR03] and is an infinite-dimensional version of the Lie-Poisson spaces,
that is, the Poisson manifolds provided by dual spaces of finite-dimensional Lie algebras (see for instance
[OrR04] for the finite-dimensional theory). This new class of infinite-dimensional linear Poisson manifolds
is remarkable in several respects: it includes all the preduals of W ∗-algebras, thus establishing a bridge
between Poisson geometry and the theory of operator algebras, and hence it provides links with algebraic
quantum theories; it interacts in a fruitful way with the theory of extensions of Lie algebras (see [OR04]);
and finally, there exist large classes of Banach Lie-Poisson spaces which share with the finite-dimensional
Poisson manifolds the fundamental property that the characteristic distribution is integrable, the corre-
sponding integral manifolds being in addition Poisson submanifolds which are symplectic and, in several
important situations, are even Kähler manifolds (see [BR05]).

We have mentioned here two types of infinite-dimensional Kähler manifolds: the restricted Grassman-
nians and certain symplectic leaves in infinite-dimensional Lie-Poisson spaces introduced in [OR03]. This
brings us to the first question addressed in the present paper:

Question 1.1. Is the restricted Grassmannian a symplectic leaf in a Banach Lie-Poisson space?

The main result of our paper is essentially affirmative and the precise answer is given in Section 5.
Specifically, we shall employ the method of central extensions to construct a certain Banach Lie-Poisson
space ũ2 whose characteristic distribution is integrable (Theorem 5.1) and one of the integral manifolds of
this distribution is symplectomorphic to the connected component Gr0res of the restricted Grassmannian
(Theorem 5.3). Using a similar method, we realize the restricted Grassmannian as a symplectic leaf in
yet another Banach Lie-Poisson space, which is the predual to a 1-dimensional central extension of the
restricted Lie algebra ures. See Section 2 for a detailed discussion of the Poisson geometry of this new
Banach Lie-Poisson space (ũres)∗.
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This second construction is closely related to another area where the theory of restricted groups
interacts with the theory initiated in [OR03]. Specifically, we also address the following question on the
predual (ures)∗ of the restricted Lie algebra:

Question 1.2. Does the real Banach space (ures)∗ have a natural structure of Banach Lie-Poisson space
and is its characteristic distribution integrable?

By the very construction of the Banach Lie-Poisson space (ũres)∗, the predual (ures)∗ appears as a
Poisson submanifold of (ũres)∗ and carries a natural structure of Banach Lie-Poisson space. Nonetheless,
the answer to the second part of Question 1.2 turns out to be much more difficult to give than the
one to Question 1.1 inasmuch as the restricted algebra Bres (see Notation 1.3 below) is a dual Banach ∗-
algebra with many pathological properties (summarized in Section 6): its unitary group is unbounded, its
natural predual is not spanned by its positive cone, and a conjugation theorem for its maximal Abelian
∗-subalgebras fails to be true. Despite these unpleasant properties, we show that the characteristic
distribution of (ures)∗ has numerous smooth integral manifolds, which are, in particular, smooth coadjoint
orbits of the restricted unitary group Ures (see Section 3). For the sake of completeness, a short section
of the paper (Section 4) is devoted to investigating smoothness of adjoint orbits of Ures.

Notation 1.3. We conclude this Introduction by setting up some notation to be used throughout the
paper. In the following, H will denote a separable complex Hilbert space, endowed with a decomposition
H = H+ ⊕ H− into the orthogonal sum of two closed infinite-dimensional subspaces. The orthogonal
projection onto H± will be denoted by p±. The Banach ideal of trace class operators on H will be denoted
by S1(H) and S2(H) will denote the Hilbert ideal of Hilbert-Schmidt operators on H. We let B(H) be
the algebra of all bounded linear operators on H. We shall also need the Banach-Lie group of unitary
operators on H,

U(H) = {u ∈ B(H) | u∗u = uu∗ = id},

whose Lie algebra is

u(H) = {a ∈ B(H) | a∗ = −a}.

Now let us define the following skew-Hermitian element:

d := i(p+ − p−) ∈ u(H).

The restricted Banach algebra and the restricted unitary group are respectively defined as follows:

Bres = {a ∈ B(H) | [d, a] ∈ S2(H)} = {a ∈ B(H) | ‖a‖res := ‖a‖+ ‖[d, a]‖2 < ∞}, and
Ures = {u ∈ U(H) | [d, u] ∈ S2(H)} = U(H) ∩ Bres.

The Lie algebra of Ures is the following Banach Lie algebra:

ures = {a ∈ u(H) | [d, a] ∈ S2(H)} = u(H) ∩ Bres.

Let us define the following Banach Lie algebra:

(ures)∗ = {ρ ∈ u(H) | [d, ρ] ∈ S2(H), p±ρ|H± ∈ S1(H±)}.

A connected Banach Lie group with Lie algebra (ures)∗ is

U1,2 = {a ∈ U(H) | a− id ∈ S2(H), p±a|H± ∈ id + S1(H±)}.

The group U1 and its Lie algebra u1 are defined as follows:

U1 = {a ∈ U(H) | a− id ∈ S1(H)}, and
u1 = u(H) ∩S1(H).

Finally, the Hilbert-Lie group U2 and its Lie algebra u2 are defined by :

U2 = {a ∈ U(H) | a− id ∈ S2(H)}, and
u2 = u(H) ∩S2(H).
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2. The Banach Lie-Poisson space associated to the universal central extension of ures

In this section we construct a Banach Lie-Poisson space (ũres)∗ whose dual is the universal central
extension of the restricted algebra ures. (See [Ne02b] for the definition of universal central extension and
Proposition 2.4 below for the justification of this fact.) The Poisson structure of (ũres)∗ is defined by
(2.8) in Proposition 2.5. Let us first justify the suggestive notation (ures)∗.

Proposition 2.1. The Lie algebra (ures)∗ is a predual of the unitary restricted algebra ures, the duality
pairing 〈· , ·〉 being given by

(2.1) 〈· , ·〉 : (ures)∗ × ures → R, (b, c) 7→ Tr (bc).

Proof. Consider two arbitrary elements

a =
(

a++ a+−
−a∗+− a−−

)
∈ ures and ρ =

(
ρ++ −ρ∗−+

ρ−+ ρ−−

)
∈ (ures)∗.

Then

(2.2) aρ =
(

a++ρ++ + a+−ρ−+ −a++ρ∗−+ + a+−ρ−−
−a∗+−ρ++ + a−−ρ−+ a∗+−ρ∗−+ + a−−ρ−−

)
,

hence

(2.3) Tr (aρ) = Tr (a++ρ++) + 2<Tr (a+−ρ−+) + Tr (a−−ρ−−),

where Rz denotes the real part of the complex number z. Recall that the bilinear functional

B(H±)×S1(H±) → C, (b, c) 7→ Tr (bc),

induces a topological isomorphism of complex Banach spaces (S1(H±))∗ ' B(H±). It follows that the
trace induces a topological isomorphism of real Banach spaces

(2.4) (u(H±) ∩S1(H±))∗ ' u(H±).

Indeed, the C-linearity of the trace implies that for b ∈ B(H±) the following conditions are equivalent:(
∀c ∈ u(H±) ∩S1(H±)

)
Tr (bc) = 0 ⇐⇒

(
∀c ∈ S1(H±)

)
Tr (bc) = 0.

Moreover the condition (
∀c ∈ u(H±) ∩S1(H±)

)
Tr (bc) ∈ R

implies (
∀c ∈ u(H±) ∩S1(H±)

)
Tr (b + b∗)c = 0,

hence b belongs to u(H±). On the other hand, the duality pairing of complex Hilbert spaces

S2(H−,H+)×S2(H+,H−) → C, (b, c) 7→ Tr (bc),

induces a duality pairing of the underlying real Hilbert spaces by

(2.5) S2(H−,H+)×S2(H+,H−) → R, (b, c) 7→ <Tr (bc).

In view of formula (2.3), we conclude that the trace induces a topological isomorphism of real Banach
spaces

((ures)∗)∗ ' ures.

That is, (ures)∗ is indeed a predual to ures, the duality pairing being induced by (2.4) and (2.5). �

Definition 2.2. We define the Banach Lie algebra ũres as the central extension of ures with continuous
two-cocycle s given by

(2.6) s(A,B) := Tr (A[d,B]),

for all A,B ∈ ures. That is, ũres is the Banach algebra ures⊕R endowed with the bracket [·, ·]d defined by

(2.7) [(A, a), (B, b)]d = ([A,B],−s(A,B)) .
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Remark 2.3. Note that by the very definition of ures, one has [d, ures] ⊂ (ures)∗. It follows from
the duality pairing (2.1), that s is well-defined by (2.6). To see that s defines a two-cocycle on ures,
let us remark that s is (2i)-times the Schwinger term of [Wu01]. It follows from Corollary II.12 in the
aforementioned work that s defines a non-trivial element in the second continuous Lie algebra cohomology
space H2(ures, R). The corresponding U(1)-extension of the unitary restricted group Ures is isomorphic
to the U(1)-extensions U∼res and Ûres of Ures constructed in [Wu01].

Proposition 2.4. The cohomology class [s] is a generator of the continuous Lie algebra cohomology
space H2(ures, R).

Proof. According to Proposition I.11 in [Ne02a], the second continuous Lie algebra cohomology space
H2(Bres, C) of the restricted Lie algebra Bres is 1-dimensional. Note that a continuous R-valued 2-cocycle
v on ures extends by C-linearity to a continuous C-valued 2-cocycle vC on the complex Lie algebra Bres.
The cocycle vC is a coboundary if and only if there exists a continuous linear map α : Bres → C such that
vC(x, y) = α ([x, y]) for every x, y ∈ Bres. But since vC restricts to the R-valued 2-cocycle v on ures, this is
the case if and only if there exists β := <α : ures → R such that v(x, y) = β ([x, y]) for every x, y ∈ ures. It
follows that the extension vC is a coboundary on Bres if and only if v is a coboundary on ures. Consequently,
there is a natural linear injection of H2(ures, R) into H2(Bres, C). Since s defines a non-trivial element
in H2(ures, R) (see Remark 2.3) and dimCH2(Bres, C) = 1, it follows that dimRH2(ures, R) = 1 and thus
H2(ures, R) is generated by s. �

Proposition 2.5. The Banach space (ũres)∗ is a Banach Lie-Poisson space for the Poisson bracket

(2.8) {f, g}d(µ, γ) := 〈µ, [Dµf(µ), Dµg(µ)]〉 − γs(Dµf,Dµg)

where f, g ∈ C∞((ũres)∗), (µ, γ) is an arbitrary element in (ũres)∗, and Dµ denotes the partial Fréchet
derivative with respect to µ ∈ (ures)∗.

The pairing in equation (2.8) is the duality pairing defined by (2.1). We will denote by 〈· , ·〉d the
duality pairing between (ũres)∗ = (ures)∗ ⊕ R and ũres = ures ⊕ R given by

〈(µ, γ), (A, a)〉d = 〈µ, A〉+ γa.

Proof of Proposition 2.5. By Theorem 4.2 in [OR03], the Banach space (ũres)∗ is a Banach Lie-Poisson
space if and only if its dual ũres is a Banach Lie algebra satisfying ad∗x(ũres)∗ ⊂ (ũres)∗ ⊂ (ũres)∗ for all
x ∈ ũres. The fact that ũres is a Banach Lie algebra follows directly from the continuity of s and from
the 2-cocycle identity which implies the Jacobi identity of [·, ·]d. To see that the coadjoint action of ũres

preserves the predual (ũres)∗, note that for every (A, a), (B, b) ∈ ũres and every (µ, γ) ∈ (ũres)∗, one has

〈−ad∗(A,a)(µ, γ), (B, b)〉d :=〈(µ, γ), ad(A,a)(B, b)〉d = 〈(µ, γ), [(A, a), (B, b)]d〉d
=〈(µ, γ), ([A,B],−s(A,B))〉d = Tr µ[A,B]− γTrA[d, B]

=Trµ[A,B] + γTr [d, A]B = 〈(−ad∗(A)(µ) + γ[d, A], 0), (B, b)〉d.
Since

(2.9) [(ures)∗, ures] ⊆ (ures)∗,

and

(2.10) [d, ures] ⊂ (ures)∗,

we conclude that −ad∗(A)(µ) + γ[d, A] belongs to (ures)∗ for every A ∈ ures. Hence the predual (ũres)∗ is
preserved by the coadjoint action. Referring again to Theorem 4.2 in [OR03], it follows that the Poisson
bracket of f , g ∈ C∞((ũres)∗) is given by

{f, g}d(µ, γ) = 〈(µ, γ), [Df(µ, γ), Dg(µ, γ)]〉d.
Denoting respectively by Dµ and Dγ the partial Fréchet derivatives with respect to µ ∈ (ures)∗ and γ ∈ R,
one has

{f, g}d(µ, γ) = 〈(µ, γ), [(Dµf,Dγf) , (Dµg,Dγg)]d〉d
= 〈(µ, γ), ([Dµf,Dµg],−s(Dµf,Dµg))〉d
= 〈µ, [Dµf,Dµg]〉 − γs(Dµf,Dµg),

and this ends the proof. �
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Remark 2.6. By Theorem 4.2 in [OR03], it follows that the Hamiltonian vector field associated to a
smooth function h on (ures)∗ is given by

(2.11) Xh(µ, γ) = −ad∗(Dµh,Dγh)(µ, γ) =
(
−ad∗Dµhµ− γ[Dµh, d], 0

)
.

Remark 2.7. Note that, for each γ ∈ R, (ures)∗⊕{γ} is a Poisson submanifold of (ũres)∗ for the following
Poisson bracket on the first factor

{f, g}d,γ(µ) := 〈µ, [Dµf(µ), Dµg(µ)]〉 − γs(Dµf,Dµg).

Remark 2.8. The central extension (ũres)∗ of the Banach Lie-Poisson space (ures)∗ is a particular example
of the extensions of Banach Lie-Poisson spaces constructed in [OR04]. Indeed formula (2.8) for the bracket
of two functions on (ũres)∗ can be alternatively deduced from the general formula (5.6) in Theorem 5.2
of [OR04], with c = R, a = (ures)∗, ϕ = 0 and ω = −s. The pairing in the second term of the right
hand side of (5.6), Theorem 5.2, [OR04], is, in this special case, just the pairing between the real line
and its dual given by multiplication of real numbers (the element c ∈ c is γ), and the bracket of partial
derivatives of the functions f and g with respect to c vanishes since R is commutative.

Proposition 2.9. The unitary group Ures acts on the Poisson manifold (ures)∗ ⊕{γ} ⊂ (ũres)∗ by affine
coadjoint action as follows. For g ∈ Ures,

g · (µ, γ) :=
(
Ad∗(g−1)(µ)− γσ(g), γ

)
where µ ∈ (ures)∗, γ ∈ R, and where

σ : Ures → (ures)∗,

g 7→ gdg−1 − d.

Proof. Let us verify that for every g ∈ Ures we have g d g−1−d ∈ (ures)∗. Consider the block decomposition
of g with respect to the direct sum H = H+ ⊕H−

g =
(

g++ g+−
g−+ g−−

)
∈ Ures.

One has

(2.12)
(

g++ g+−
g−+ g−−

) (
i 0
0 −i

) (
g∗++ g∗−+

g∗+− g∗−−

)
=

(
ig++g∗++ − ig+−g∗+− ig++g∗−+ − ig+−g∗−−
ig−+g∗++ − ig−−g∗+− ig−+g∗−+ − ig−−g∗−−.

)
Since g±∓ belongs to S2(H∓,H±), the off-diagonal blocks of the right hand side are in S2(H±,H∓).
Further, since(

g++ g+−
g−+ g−−

) (
g∗++ g∗−+

g∗+− g∗−−

)
=

(
g++g∗++ + g+−g∗+− g++g∗−+ + g+−g∗−−
g−+g∗++ + g−−g∗+− g−+g∗−+ + g−−g∗−−

)
=

(
id 0
0 id

)
,

and since S2 ·S2 ⊂ S1, one has

g++g∗++ = id− g+−g∗+− ∈ id + S1(H+)

and
g−−g∗−− = id− g−+g∗−+ ∈ id + S1(H−).

Consequently,
g++g∗++ − g+−g∗+− ∈ id + S1(H+)

and
g−+g∗−+ − g−−g∗−− ∈ −id + S1(H−).

Moreover, it is clear that the result of the multiplication (2.12) is skew-symmetric. Hence for all g ∈ Ures

we have g d g−1 − d ∈ (ures)∗.
Denoting by Aff ((ures)∗) the affine group of transformations of (ures)∗, it remains to show that

(Ad∗, γσ) : Ures → Aff((ures)∗) = GL((ures)∗) o (ures)∗

g 7→ (Ad∗(g−1), γσ(g))
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is a group homomorphism. For this, we have to check that γσ(g1g2) = Ad∗(g−1
1 )γσ(g2) + γσ(g1) for all

g1, g2 in U1,2 (see [Ne00]). In fact

σ(g1g2) = g1g2 d g−1
2 g−1

1 − d = g1

(
g2 d g−1

2 − d
)
g−1
1 + (g1 d g−1

1 − d)

= Ad∗(g−1
1 ) (σ(g2)) + σ(g1),

and this ends the proof. �

Proposition 2.10. The isotropy group of (0, γ) ∈ (ures)∗ ⊕ {γ} for the Ures-affine coadjoint action is a
Lie subgroup of Ures.

Proof. An element X in the Lie algebra ures of Ures induces by infinitesimal affine coadjoint action on
(ures)∗ ⊕ {γ} the following vector field

X · (µ, γ) :=
d

dt
[exp(tX) · (µ, γ)]t=0

=
( d

dt
[Ad∗(exp(−tX))(µ)− γσ(exp(tX))]t=0 , 0

)
=(−ad∗X(µ)− γ[X, d], 0) .

By definition, the Lie algebra of the isotropy group of (µ, γ) is

u(µ,γ) := {X ∈ ures | −ad∗(X)(µ) + γ[X, d] = 0}
The proposition is trivial when µ and γ vanish. For µ = 0 and γ 6= 0, the Lie algebra u(0,γ) consist of
all elements of ures which commute with d. Hence, for γ 6= 0, u(0,γ) = u(H+) ⊕ u(H−). A topological
complement to u(0,γ) in ures is m := u(H) ∩ (S2(H+,H−)⊕S2(H−,H+)). �

Proposition 2.11. The smooth affine coadjoint orbits of Ures are tangent to the characteristic distribu-
tion of the Poisson manifold (ũres)∗.

Proof. By the proof of Proposition 2.10, the image of the differential of the orbit map is

ures · (µ, γ) =
{(
−ad∗X(µ)− γ[X, d], 0

)
| X ∈ ures

}
.

By Remark 2.6, the characteristic space at (µ, γ) ∈ (ũres)∗ is

P (µ, γ) = {Xh(µ) =
(
−ad∗Dµhµ− γ[Dµh, d], 0

)
| h ∈ C∞((ures)∗)} = {(−ad∗Xµ− γ[X, d], 0) | X ∈ ures} .

Thus the assertion follows. �

The restricted Grassmannian Grres is defined as the set of subspaces W of the Hilbert space H such
that the orthogonal projection from W to H+ (respectively to H−) is a Fredholm operator (respectively
a Hilbert-Schmidt operator). It follows from Propositions 7.1.2 and 7.1.3 in [PS90] that Grres is a Hilbert
manifold and a homogeneous space under the natural action of Ures. According to Proposition II.2 in
[Wu01], the connected components of Ures are the sets

Uk
res =

{(
U++ U+−
U−+ U−−

)
∈ Ures | index(U++) = k

}
for k ∈ Z.

The pairwise disjoint sets

Grk
res = {W ∈ Grres | index(p+|W : W → H+) = k} , k ∈ Z

are the images of the connected components of Ures by the continuous projection Ures → Grres =
Ures/ (U(H+)×U(H−)), and thus they are the connected components of Grres. In particular, the con-
nected component of Grres containing H+ is Gr0res. The Kähler structure of the restricted Grassmannian
is defined in [PS90], Section 7.8. According to the convention in [PS90], the Kähler form ωGr of Grres is
the Ures-invariant 2-form whose value at H+ is given by

(2.13) ωGr(X, Y ) = 2=Tr (X∗Y ),

where X, Y ∈ S2(H+,H−) ' TH+Grres and Iz denotes the imaginary part of z ∈ C.. Equivalently, ωGr

is the quotient of the following real-valued anti-symmetric bilinear form ΩGr on ures which vanishes on
u(H+)⊕ u(H−) and is invariant under the U(H+)×U(H−)-action (see Corollary III.8 in [Wu01]) :

(2.14) ΩGr(A,B) = −2s(A,B)
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where A and B belongs to ures. In this correspondence, an element A =
(

A++ A∗−+

A−+ A−−

)
in ures is identified

with the vector X = A−+ in S2(H+,H−) ' TH+(Grres).

Proposition 2.12. For every γ 6= 0, the connected components of the Ures-affine coadjoint orbit O(0,γ)

of (0, γ) ∈ (ures)∗ ⊕ {γ} are strong symplectic leaves in the Banach Lie-Poisson space (ũres)∗.

Proof. This follows from the general results given in Theorems 7.3, 7.4 and 7.5 in [OR03], from the above
Propositions 2.5, 2.9, 2.10, 2.11, and from the fact that the characteristic subspace P (0, γ) is the space
m := u(H) ∩ (S2(H+,H−)⊕S2(H−,H+)), which is closed in (ũres)∗ (we identify the subspace m in
(ures)∗ with the subspace m⊕ {0} in (ũres)∗). �

Theorem 2.13. The connected components of the restricted Grassmannian are strong symplectic leaves
in the Banach Lie-Poisson space (ũres)∗. More precisely, for every γ 6= 0, the Ures-affine coadjoint orbit
O(0,γ) of (0, γ) ∈ (ures)∗ ⊕ {γ} is isomorphic to the restricted Grassmannian Grres via the application

Φγ : Grres → O(0,γ)

W 7→ 2iγ(pW − p+),

where pW denotes the orthogonal projection on W . The pull-back by Φγ of the symplectic form on O(0,γ)

is (γ/2)-times the symplectic form ωGr on Grres.

Proof. An element ρ of the affine coadjoint orbit O(0,γ) of (0, γ) is of the form

ρ = γ(g d g−1 − d) = 2iγ(g p+ g−1 − p+),

for some g ∈ Ures. By Corollary III.4 ii) in [Wu01], Φγ is bijective for γ 6= 0. Since the manifold
structure of the orbit O(0,γ) is induced by the identification O(0,γ) = Ures/ (U(H+)×U(H−)), it follows
from Corollary III.4 i) in [Wu01] that Φγ is a diffeomorphism. The symplectic form ωO on O(0,γ) is the
Ures-invariant symplectic form whose value at (0, γ) ∈ O(0,γ) is the given by

ωO (0, γ) (Xf (0, γ), Xg(0, γ)) = {f , g}d(0 , γ),

where f and g are any smooth function on (ures)∗. Using formula (2.11) and (2.8), it then follows that

ωO (0, γ) (γ[Dµf, d] , γ[Dµg, d]) = −γs(Dµf ,Dµg).

Hence for every A,B ∈ ures, one has :

ωO (0, γ) (γ[A, d] , γ[B, d]) = −γs(A ,B) =
γ

2
ΩGr(A,B).

It follows that the real-valued anti-symmetric bilinear form on ures corresponding to the symplectic form
ωO on O(0,γ) = Ures/ (U(H+)×U(H−)) equals γ

2 ΩGr (where the latter identification is given by the orbit
map), and this ends the proof. �

Remark 2.14. We refer to the paper [OR04] for additional information on the relationship between the
Banach Lie-Poisson spaces and the theory of Lie algebra extensions.

3. Coadjoint orbits of the restricted unitary group

This section includes some partial answers to Question 1.2. The main difficulty is to show that the
isotropy group of an element in the predual (ures)∗ is a Lie subgroup of Ures, or equivalently that its
Lie algebra is complemented in ures. Using the averaging method developed in [Ba90] and [BP05] for
constructing closed complements, we will be able to show that the Ures-coadjoint orbit of every element
ρ ∈ (ures)∗ which commutes with d is a smooth manifold and that its connected components are symplectic
leaves of the characteristic distribution (see Proposition 3.3). It follows that the same conclusion holds
for every element ρ ∈ (ures)∗ which is Ures-conjugate to an element commuting to d, or equivalently to
a diagonal operator with respect to a Hilbert basis compatible with the eigenspaces of d. Nevertheless,
the set of elements with the latter property is far from being equal to the whole (ures)∗. Recall that in
finite dimensions, every element in the Lie algebra u(n) of the unitary group U(n) is U(n)-conjugate to a
diagonal matrix, or, in other words, U(n) acts transitively on the set of Cartan subalgebras of u(n). This
is no longer true in the infinite-dimensional case (see subsection 6.3). It is a difficult question to decide
whether a given operator ρ in (ures)∗ or ures has the good property of being Ures-conjugate to a diagonal
operator. In Propositions 3.5 and 3.6, we give some concrete criteria to check that property.
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Conjecture 3.1. The real Banach space (ures)∗ has a natural structure of Banach Lie-Poisson space and
its characteristic distribution is integrable.

Remark 3.2. It is clear that
(ures)∗ ↪→ ures

with a continuous inclusion map. On the other hand, it follows at once by the multiplication formula (2.2)
that

(3.1) [(ures)∗, ures] ⊆ (ures)∗,

which implies that the predual (ures)∗ is left invariant by the coadjoint representation of the Banach Lie
algebra ures. Now the results of [OR03] imply the following two facts:

• The predual Banach space (ures)∗ has a natural structure of Banach Lie-Poisson space.
• If ρ ∈ (ures)∗ has the property that the corresponding isotropy group

Ures,ρ := {u ∈ Ures | uρu−1 = ρ}

is a Banach Lie subgroup of Ures, then the coadjoint orbit Oρ is an integral manifold of the
characteristic distribution of (ures)∗. Moreover, Oρ is a weakly symplectic manifold when equipped
with the orbit symplectic structure.

Thus, the desired conclusion will follow as soon as we prove that the isotropy group Ures,ρ of any ρ ∈ (ures)∗
is a Banach Lie subgroup of Ures.

The Lie algebra of Ures,ρ is given by

ures,ρ = {a ∈ ures | aρ = ρa} = {a ∈ ures | (∀t ∈ R) αt(a) = a},

where
α : R → B(ures), α(t)b := αt(b) := exp(tρ) · b · exp(−tρ).

It is clear that α is a group homomorphism. Moreover, since ρ ∈ (ures)∗ ⊆ ures and the adjoint action of
the Banach Lie group Ures is continuous, it follows that α : R → B(ures) is norm continuous.

On the other hand, it follows by (3.1) that

(3.2) (∀t ∈ R) αt((ures)∗) ⊆ (ures)∗,

since ρ ∈ (ures)∗. Then the concrete form of the duality pairing between (ures)∗ and ures (see (2.3)) shows
that

(3.3) (∀t ∈ R) (αt|(ures)∗)
∗ = α−t,

and in particular each operator αt : ures → ures is weak∗ continuous.
Now a complement to ures,ρ in ures can be constructed by the averaging technique over the amenable

group (R,+) provided one has sup
t∈R

‖αt‖ < ∞. (Some references for the aforementioned averaging tech-

nique are [Ba90], the proof of Proposition 3.4 in [BR05], and [BP05].)
Additionally we note that since for every operator T : X → Y between the Banach spaces X and Y

the norm of T equals the norm of its dual T ∗, it is enough to estimate uniformly the norm of αt restricted
to the predual (ures)∗. This restriction is an adjoint action of the group corresponding to the predual.

Proposition 3.3. If ρ ∈ (ures)∗ and [d, ρ] = 0, then the coadjoint isotropy group of ρ is a Banach Lie
subgroup of Ures and the connected components of the corresponding Ures-coadjoint orbit Oρ are smooth
leaves of the characteristic distribution of (ures)∗.

Proof. According to Remark 3.2 it suffices to show that sup
t∈R

‖αt‖ < ∞. The hypothesis [d, ρ] = 0 shows

that ρ preserves H+ and H−, that is

ρ =
(

ρ++ 0
0 ρ−−

)
∈ (ures)∗.

An element b ∈ (ures)∗ with block decomposition with respect to the direct sum H = H+ ⊕H−

b =
(

b++ b+−
b−+ b−−

)
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is the sum of an element

b1 =
(

b++ 0
0 b−−

)
in the Lie algebra u0 := u1 ∩ (u(H+)× u(H−)) and an element

b2 =
(

0 b+−
b−+ 0

)
in the topological complement m = u(H) ∩ (S2(H+,H−)⊕S2(H−,H+)) of u0 in (ures)∗. Accordingly,

‖αt(b)‖(ures)∗ = ‖ exp(tρ)b exp(−tρ)‖(ures)∗

= ‖ exp(tρ)b1 exp(−tρ) + exp(tρ)b2 exp(−tρ)‖(ures)∗

= ‖ead(tρ)(b1) + ead(tρ)(b2)‖(ures)∗ .

Since ad(tρ) preserves both u0 and m, it follows that

ead(tρ)(b1) ∈ u0 and ead(tρ)(b2) ∈ m.

By the very definition of the norm ‖ · ‖(ures)∗ , one has

‖αt(b)‖(ures)∗ = ‖ead(tρ)(b1)‖1 + ‖ead(tρ)(b2)‖2,

where ‖ · ‖1 (respectively ‖ · ‖2) is the usual norm in S1 (respectively S2). Since the conjugation by a
unitary element preserves both ‖·‖1 and ‖·‖2, it follows that αt acts by isometries on (ures)∗, in particular
sup
t∈R

‖αt‖ < ∞. �

Remark 3.4. The calculation in the proof of Proposition 3.3 actually shows that for every u ∈ Ures

satisfying [d, u] = 0 we have ‖ubu−1‖res = ‖b‖res whenever b ∈ Bres. In fact

‖ubu−1‖res = ‖ubu−1‖+ ‖[d, ubu−1]‖2 = ‖b‖+ ‖u[d, b]u−1‖2 = ‖b‖+ ‖[d, b]‖2 = ‖b‖res
where the second equality follows since [d, u] = 0.

Corollary 3.5. If ρ ∈ (ures)∗ is a finite-rank operator, then the coadjoint isotropy group of ρ is a Banach
Lie subgroup of Ures and the corresponding Ures-coadjoint orbit Oρ is a smooth leaf of the characteristic
distribution of (ures)∗.

Proof. The set of finite-rank operators F is a dense subset of the predual (ures)∗. For every skew-
symmetric finite-rank operator F there exists a unitary operator u ∈ 1 + F , such that uFu−1 leaves
both H− and H+ invariant. (This follows since any two finite-rank operators are contained in a certain
finite-dimensional Lie algebra of finite-rank operators; see for instance Lemma 1 in Chapter I of [dlH72]
or Proposition 3.1 in [St75].) Note that u ∈ Ures, and the isotropy groups of the elements F and uFu−1

are conjugated by the element u. Hence the isotropy group at any finite-rank operator is a Banach-Lie
subgroup of Ures, and this shows that the conclusion of Proposition 3.3 is satisfied if we replace the
hypothesis [d, ρ] = 0 by the condition that ρ is a finite-rank operator. �

Corollary 3.6. Assume that ρ ∈ (ures)∗ and that there exist an orthonormal basis {en}n≥1 and the real
numbers t ∈ (0, 1) and s ∈ (0, 3(1− t)/100] such that the following conditions are satisfied:

(i) We have {en | n ≥ 1} ⊆ H+ ∪H−.
(ii) The matrix (ρmn)m,n≥1 of ρ with respect to the basis {en}n≥1 has the properties

|ρm+1,n+1| ≤ t|ρm,n| whenever m,n ≥ 1,

and

|ρm,n|2 ≤
s2

(mn)2
|ρmmρnn| whenever m,n ≥ 1 and m 6= n.

Then the coadjoint isotropy group of ρ is a Banach-Lie subgroup of Ures and the corresponding Ures-
coadjoint orbit Oρ is a smooth leaf of the characteristic distribution of (ures)∗.

Proof. It follows at once by Theorem 1 in [Hk85] that there exists an operator a = −a∗ ∈ S2(H) such that
the operator uρu−1 is diagonal with respect to the basis {en}n≥1, where u = exp a. In particular we have
u ∈ U2 ⊆ Ures and [d, uρu−1] = 0, so that we can use Proposition 3.3 to get the desired conclusion. �
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Remark 3.7. Let ρ ∈ B(H). In addition to the applications of Proposition 3.3 in the proofs of Corollaries
3.5 and 3.6, we note that each of the following two conditions is equivalent to the existence of an unitary
operator u ∈ Ures such that [d, uρu−1] = 0:

(i) There exists p ∈ B(H) such that p = p∗ = p2, p− p+ ∈ S2(H), and ρp = pρ.
(ii) There exists an element W ∈ Grres such that ρ(W) ⊆ W.

In fact, our assertion concerning (i) follows at once since

{p ∈ B(H) | p = p∗ = p2 and p− p+ ∈ S2(H)} = {up+u−1 | u ∈ Ures}
according to Lemma 3.1 in [Ca85].

On the other hand, the assertion on condition (ii) holds since by Proposition 7.1.3 in [PS90] we have

Grres = {u(H+) | u ∈ Ures}
and, in addition, if p ∈ B(H) is the orthogonal projection onto some closed subspace W ⊆ H then
ρ(W) ⊆ W if and only if [p, ρ] = 0.

4. Some smooth adjoint orbits of the restricted unitary group

For the sake of completeness, we are going to investigate in this section the smoothness of adjoint
orbits of the restricted unitary group. In particular, we shall find sufficiently many smooth adjoint orbits
of Ures to fill an open subset of the Lie algebra ures (Proposition 4.2 below).

Lemma 4.1. Assume that the element

ρ =
(

ρ++ ρ+−
ρ−+ ρ−−

)
∈ ures

satisfies the conditions

(4.1) σ(ρ++) ∩ σ(ρ−−) = ∅,

and

(4.2) ‖ρ+−‖2 <
1
2
dist(σ(ρ++), σ(ρ−−)).

Then there exists u ∈ Ures such that [d, u−1ρu] = 0.

Proof. The hypotheses (4.1) and (4.2) imply that there exists a Hilbert-Schmidt operator k : H+ → H−
satisfying the operator Riccati equation

kρ+−k + kρ++ − ρ−−k = ρ−+.

(This result was obtained in [Mo95]; see also Theorem 4.6 and Remark 4.7 in [ALT01], as well as
[AMM03].) Then the operator

g =
(

idH+ k∗

k −idH−

)
is invertible and has the properties [d, g] ∈ S2(H), g = g∗, [d, g2] = 0 and

(4.3) [d, g−1ρg] = 0

(see Subsection 2.3 in [ALT01]). Now let g = us be the polar decomposition of the invertible operator
g ∈ B(H), where u ∈ B(H) is unitary and s = (g∗g)1/2.

On the other hand, since d∗ = −d, it follows that the commutant {d}′ is a von Neumann algebra
of operators on H. Thus, since g = g∗ and g∗g = g2 ∈ {d}′, it is straightforward to deduce that
(g∗g)1/2 ∈ {d}′, that is, [d, s] = 0. Now recall that [d, g] ∈ S2(H) to deduce that the unitary operator
u = gs−1 satisfies [d, u] ∈ S2(H), that is, u ∈ Ures.

Moreover by (4.3) we have

0 = [d, g−1ρg] = [d, s−1u−1ρus] = s−1[d, u−1ρu]s,

where the latter equality follows since we have seen that [d, s] = 0. Now we get [d, u−1ρu] = 0, as
desired. �

Proposition 4.2. There exists an open Ures-invariant neighborhood V of d ∈ ures such that V is a union
of smooth adjoint orbits of the Banach Lie group Ures.
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Proof. Denote by V0 the set of all elements

ρ =
(

ρ++ ρ+−
ρ−+ ρ−−

)
∈ ures

satisfying conditions
σ(ρ±±) ⊆ {y ∈ iR | |y ∓ i| < 1/3}

and
‖ρ±‖2 <

2
3
.

It is clear that V0 is an open neighborhood of d ∈ ures. We are going to show that the set

V :=
⋃

u∈Ures

AdUres(u)V0 ⊆ ures

has the desired properties.
Indeed, V is clearly invariant under the adjoint action of Ures, it is a union of open sets, and one

of these open sets contains d. Moreover, it follows by Lemma 4.1 along with the construction of V
that for every ρ ∈ V there exists u ∈ Ures such that [d, u−1ρu] = 0. Next denote ρ̃ = u−1ρu, so that
exp(tρ) = u exp(tρ̃)u−1 for all t ∈ R. Then for all t ∈ R and b ∈ ures it follows by means of Remark 3.4
that

‖ exp(tρ) · b · exp(−tρ)‖res = ‖u exp(tρ̃) · u−1 · b · u · exp(−tρ̃) · u−1‖res
≤ ‖u‖res · ‖ exp(tρ̃) · u−1 · b · u · exp(−tρ̃)‖res · ‖u−1‖res
= ‖u‖res · ‖u−1bu‖res · ‖u−1‖res
≤ ‖u‖2res · ‖u−1‖2res · ‖b‖res.

Consequently the 1-parameter group

α : R → B(ures), αt(b) = exp(tρ) · b · exp(−tρ)

satisfies
sup
t∈R

‖αt‖ ≤ ‖u‖2res · ‖u−1‖2res.

Now the arguments in Remark 3.2 show that the adjoint isotropy group of ρ is a Lie subgroup of Ures,
and thus the adjoint orbit of ρ is smooth. �

Corollary 4.3. There exists an open U1,2-invariant open neighborhood V of d ∈ ures = u∗1,2 such that V
is a union of smooth coadjoint orbits of the Banach-Lie group U1,2.

Proof. Apply Proposition 4.2 along with the fact that U1,2 ↪→ Ures and the adjoint action of Ures restricts
to the coadjoint action of U1,2. �

5. The Banach Lie-Poisson space associated to the central extension of u2

Denote by ũ2 := u2 ⊕ R the central extension of u2 defined by the restriction of s to u2 × u2, where
s is the two-cocycle defined in (2.6). The natural isomorphism (ũ2)∗ ' ũ2 implies that ũ2 is a Banach
Lie-Poisson space, for the Poisson bracket given by

{f, g}d(µ, γ) := 〈µ, [Dµf(µ), Dµg(µ)]〉 − γs(Dµf,Dµg)

where f, g ∈ C∞(ũ2), (µ, γ) is an arbitrary element in ũ2, and Dµ denotes the partial Fréchet derivative
with respect to µ ∈ u2.

Theorem 5.1. The characteristic distribution of the Banach Lie-Poisson space ũ2 is integrable.

Proof. In order to prove that the characteristic distribution is integrable, it suffices to check that all of
the affine coadjoint isotropy groups are Lie subgroups of the Hilbert Lie group U2. For this purpose we
note that, for arbitrary (µ, γ) ∈ ũ2, the corresponding isotropy group of the affine coadjoint action of U2

on ũ2 is
(U2)(µ,γ) = {g ∈ U2 | µ = gµg−1 − γgdg−1 + γd},

according to the explicit expression of the affine coadjoint action in Proposition 2.9. The previous equality
implies that

(U2)(µ,γ) = {g ∈ C1 + S2(H) | g∗g = gg∗ = 1 and µ = gµg−1 − γgdg−1 + γd},
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and now it is clear that (U2)(µ,γ) is an algebraic subgroup of degree ≤ 2 of the group of invertible elements
in the unital Banach algebra C1+S2(H). Then the Harris-Kaup theorem (see for instance Theorem 4.13
in [Be06]) implies that (U2)(µ,γ) is a Lie group with respect to the topology inherited from C1 + S2(H).
In particular, this topology coincides with the one inherited from U2. Since U2 is a Hilbert Lie group,
hence the Lie algebra of (U2)(µ,γ) has a complement in the Lie algebra of U2, it then follows that (U2)(µ,γ)

is a Banach Lie subgroup of U2, and this concludes the proof. (Compare Remark 3.2.) �

The transitivity of the action of the Lie group U2 on the connected component Gr0res of the restricted
Grassmannian has been established in Theorem 3.5 in [Ca85], and Proposition V.7 in [Ne02a]. That the
action of the subgroup U1,2 of U2 on Gr0res is transitive has been proved in section 1.3.4 of [Tu05] with the
help of the canonical basis defined in section 7.3 of [PS90] and associated to any element of the restricted
Grassmannian. Below we give a shorter and geometrical proof of the latter fact.

Proposition 5.2. The connected component Gr0res of the restricted Grassmannian is a homogeneous
space under the unitary group U1,2 ⊂ U2.

Proof. The restricted Grassmannian is a symmetric space of the restricted unitary group Ures. It follows
from the description of geodesics in Proposition 8.8 in [Ar03] (see also [ON83] and [CE75] or its infinite-
dimensional version as given in Example 3.9 in [Ne02c], or Proposition 1.9 in [Tu06]) that each geodesic
of Grres starting at W ∈ Gr0res is given by

(5.1) β(t) = (exp tX) · H+, X ∈ mW ,

where mW is the orthogonal in ures to the Lie algebra of the isotropy group of W . For W = H+ we have
m = u(H) ∩ (S2(H+,H−)⊕S2(H−,H+)), and for W = g · H+ with g ∈ Ures, we have mW = g m g−1.
Note that for X ∈ m, exp tX belongs to U1,2 ⊂ U2. Since the Hopf-Rinow Theorem is no longer true
in the infinite dimensional case, it is not clear whether every two elements in the complete connected
manifold Gr0res can be joined by a geodesic. Nevertheless Theorem B in [Ek78] asserts that, for every
W ∈ Gr0res, the set of elements which can be joined to W by a unique minimal geodesic contains a dense
Gδ set. Moreover from the properties of the Riemannian exponential map, there exists a neighborhood
V of H+ in Gr0res such that every element in V can be joined to H+ be a (minimal) geodesic. Hence an
arbitrary element W ∈ Gr0res can be joined to an element W ′ ∈ V by a geodesic

β1(t) = (exp tX1) ·W ′, X1 ∈ mW ′ , t ∈ [0 , 1],

and W ′ can be joined to H+ by a geodesic

β2(t) = (exp tX2) · H+, X2 ∈ m, t ∈ [0 , 1].

Consequently
W = β1(1) = (expX1) ·W ′ = (expX1)(expX2) · H+.

But X1 belongs to mW ′ = exp(X2)m exp(−X2), hence

W = (expX2 expX3) · H+

where X3 = Ad (exp(−X2)) (X1) belongs to m. Since expX3 and exp X2 are elements of the unitary
group U1,2, it follows that their product belongs to U1,2. Thus U1,2 acts transitively on Gr0res. �

Theorem 5.3. The connected component Gr0res of the restricted Grassmannian is a strong symplectic
leaf in the Banach Lie-Poisson space ũ2. More precisely, for every γ 6= 0, the U2-affine coadjoint orbit
Õ(0,γ) of (0, γ) ∈ ũ2 is diffeomorphic to Gr0res via the application

ΦγGr0res → O(0,γ)

W 7→ 2iγ(pW − p+),

where pW denotes the orthogonal projection on W . The pull-back by Φγ of the symplectic form on Õ(0,γ)

is (γ/2)-times the symplectic form ωGr on Gr0res.

Proof. The assertion follows by the method of proof of Theorem 2.13, since Gr0res is transitively acted
upon by the group U2 according to Proposition 5.2. �



THE RESTRICTED GRASSMANNIAN, BANACH LIE-POISSON SPACES, AND COADJOINT ORBITS 13

Next we shall investigate the existence of invariant complex structures on certain covering spaces of
the symplectic leaves of ũ2 (Corollary 5.6 below). To this end we need two facts holding in a more general
setting. In connection with the first of these statements, we note that invariant complex structures on
certain homogeneous spaces related to derivations of L∗-algebras have been previously obtained by a
different method in Theorem IV.5 in [Ne00].

Proposition 5.4. Let X be a real Hilbert Lie algebra with a scalar product denoted by (· | ·). Assume
that there exists a connected Hilbert Lie group UX whose Lie algebra is X; we write L(UX) = X.

Now let D : X → X be a bounded linear derivation such that

(5.2) (∀x, y ∈ X) (Dx | y) = −(x | Dy).

Consider the closed subalgebra h0 := Ker D of X and define

H0 := 〈expUX
(h0)〉,

that is, the subgroup of UX generated by the image of h0 by the exponential map.
If it happens that H0 is a Lie subgroup of UX, then the smooth homogeneous space UX/H0 has an

invariant complex structure.

Proof. Denote L := XC, that is, the complex Hilbert-Lie algebra which is the complexification of X and
is endowed with the complex scalar product (· | ·) extending the scalar product of X. We denote the
complex linear extension of D to L again by D.

Then D∗ = −D as operators on the complex Hilbert space L, so that −iD ∈ B(L) is a self-adjoint
operator. Let us denote its spectral measure by δ 7→ E(δ). Thus E(·) is a spectral measure on R and we
have

D = i
∫
R

tdE(t).

Also denote S = (−∞, 0], which is a closed subsemigroup of R, and

k := RanE(−S) = RanE([0,∞)) ⊆ L.

Then k is a closed subspace of L since it is the range of an idempotent continuous map. In addition, since
D is a derivation of the Hilbert Lie algebra X and S is a closed semigroup, it follows by Proposition 6.4
in [Be06] that k is a complex subalgebra of L with the following properties:

(i) [h0, k] ⊆ k,
(ii) k ∩ k = h0 + ih0 (= KerD), and
(iii) k + k = L.

Moreover, for every y ∈ h0 and all x ∈ X we have

D[y, x] = [Dy, x] + [y, Dx] = [y, Dx]

since Dy = 0. Therefore, we have D ◦ adXy = adXy ◦D for each y ∈ h0. According to the definition of
H0, it then follows that for arbitrary h ∈ H0 we have AdUX

h ◦D = D ◦ AdUX
h on X. Then the latter

equality holds throughout L, and it then follows that the operator AdUX
h : L → L commutes with every

value of the spectral measure E(·). In particular we have AdUX
(h) ◦E(−S) = E(−S) ◦AdUX

(h), whence
(i’) (∀h ∈ H0) AdUX

(h)k ⊆ k.
Now Theorem 6.1 in [Be06] shows that the smooth homogeneous space UX/H has an invariant complex
structure. �

Proposition 5.5. Let H be an infinite-dimensional complex Hilbert space and let a ∈ B(H) such that
a∗ = −a. Denote by

D = adu2 a : u2 → u2, x 7→ [a, x]
the derivation of the compact L∗-algebra u2 defined by a, and denote

h0 := KerD = {x ∈ u2 | [a, x] = 0}.
Next denote

H := {u ∈ U2 | uau−1 = a}
and in addition define

H0 := 〈exp(h0)〉.
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That is, H0 is the subgroup of U2 generated by the image of h0 by the exponential map. Then the following
assertions hold:

(j) Both H and H0 are Lie subgroups of U2.
(jj) The subgroup H0 is the connected component of 1 ∈ H.
(jjj) The natural map

U2/H0 → U2/H, uH0 7→ uH,

is an U2-equivariant smooth covering map.

Proof. Consider the Banach algebra A := C1 + S2(H) and denote by ϕ : A → C the continuous linear
functional uniquely defined by the conditions ϕ(1) = 1 and Kerϕ = S2(H). Then we have

H = {u ∈ A× | u∗u = uu∗ = 1 and ϕ(u) = 1}
hence H is a Lie subgroup of A× by the Harris-Kaup theorem (see for instance Theorem 4.13 in [Be06]),
and in addition the Lie algebra of H is

L(H) = {x ∈ A | x∗ = −x and xa = ax} = h0.

On the other hand, H0 has the structure of connected Lie group such that the inclusion map H0 ↪→ U2

is an immersion and L(H0) = h0. (See for instance Theorem 3.5 in [Be06] and its proof.) Since H0 ⊆ H
and L(H0) = L(H) = h0, it then follows that H0 is the connected component of 1 ∈ H. This can be seen
directly by Lie theoretic methods; specifically, one just has to use the fact that the exponential map of
any Banach Lie group is a local diffeomorphism at 0. An alternative approach is to use the proof of Lie’s
second theorem by means of the Frobenius theorem (see for instance Theorem 5.4 in Chapter VI of [La01]).
According to that proof, the connected group H0 is the integral manifold through 1 corresponding to
a smooth left-invariant integrable distribution on U2 whose fiber at 1 is (the complemented closed Lie
subalgebra) h0. Now recall the universality property of the integral leaves of integrable distributions
according to Theorem 4.2 in Chapter VI of [La01] or, more generally, Theorem 4(iii) in [Nu92], which
implies that the inclusion map H0 ↪→ H is smooth. Then the wished-for property that H0 is open in H
follows since H0 and H have the same tangent space at 1 ∈ H0 ⊆ H.

By either of these methods it follows that H0 is an open subgroup of the Lie subgroup H of U2, and
then H0 is in turn a Lie subgroup of U2. Thus assertions (j) and (jj) are proved. Assertion (jjj) follows
since the natural map U2/H0 → U2/H is clearly an U2-equivariant map whose tangent map at every
point is an isomorphism. �

Corollary 5.6. Every symplectic leaf of the Hilbert Lie-Poisson space ũ2 is transitively acted on by U2

by means of the affine coadjoint action and is U2-equivariantly covered by some complex homogeneous
space of U2.

Proof. Let (µ, γ) ∈ ũ2 arbitrary and denote a := µ − γd ∈ B(H). With the notation of Proposition 5.5,
it is clear that H is equal to the isotropy group of the affine coadjoint action of U2. Thus the symplectic
leaf Õ(µ,γ) through (µ, γ) is U2-equivariantly diffeomorphic to U2/H. Now the conclusion follows since
U2/H is U2-equivariantly covered by the complex homogeneous space U2/H0, according to Propositions
5.4 and 5.5. �

Remark 5.7. It follows by Corollary 5.6 that every simply connected symplectic leaf of the Banach
Lie-Poisson space ũ2 has an U2-invariant complex structure. For instance, this is the case for the con-
nected component Gr0res of the restricted Grassmannian viewed as a symplectic leaf of ũ2 by means of
Theorem 5.3.

6. Some pathological properties of the restricted algebras

6.1. Unbounded unitary groups in the restricted algebra. We are going to point out a property
that provides a good illustration for the difference between the Banach ∗-algebra Bres and a C∗-algebra
(Proposition 6.2 below).

Lemma 6.1. Let a ∈ B(H−,H+) and assume that a = v|a| and a∗ = w|a∗| are the polar decompositions
of a and a∗, where |a| ∈ B(H−) and |a∗| ∈ B(H+), while v : H− → H+ and w : H+ → H− are partial
isometries. Next, denote

ρ =
(

0 a
−a∗ 0

)
∈ B(H).
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Then

exp ρ =
(

cos |a∗| v sin |a|
−w sin |a∗| cos |a|

)
.

Proof. We have

ρ2 =
(
−aa∗ 0

0 −a∗a

)
= −

(
|a∗|2 0

0 |a|2
)

hence

(∀n ≥ 0) ρ2n = (−1)n

(
|a∗|2n 0

0 |a|2n

)
.

This implies that for every n ≥ 0 we have

ρ2n+1 = ρ · ρ2n = (−1)n

(
0 v|a|

−w|a∗| 0

) (
|a∗|2n 0

0 |a|2n

)
= (−1)n

(
0 v|a|2n+1

−w|a∗|2n+1 0

)
.

Consequently

exp ρ =
∞∑

n=0

(
1

(2n)!
ρ2n +

1
(2n + 1)!

ρ2n+1

)
=

(
cos |a∗| v sin |a|

−w sin |a∗| cos |a|

)
which concludes the proof. �

Proposition 6.2. All of the unitary groups (1+F)∩U(H), U1,2, and Ures are unbounded subsets of the
unital associative Banach algebra Bres.

Proof. We have
(1 + F) ∩U(H) ⊆ U1,2 ⊆ Ures

so it suffices to show that

(6.1) sup{‖u‖res | u ∈ (1 + F) ∩U(H)} = ∞.

To this end let n ≥ 1 be an arbitrary positive integer, pick a projection qn = q∗n = q2
n ∈ B(H−) with

dim(Ran qn) = n and define an := vn((π/2)qn) = (π/2)vn ∈ B(H−,H+), where vn : H− → H+ is an
arbitrary partial isometry such that v∗nvn = qn. Then |an| = (π/2)qn, so that sin |an| = qn and then
‖(sin |an|)‖2 =

√
dim(Ran qn) =

√
n. Now Lemma 6.1 shows that the element

ρn =
(

0 an

−a∗n 0

)
∈ u(H) ∩ F

satisfies
‖ exp(ρn)‖res ≥ ‖(sin |an|)‖2 =

√
n.

Now the desired conclusion (6.1) follows since exp(ρn) ∈ (1 + F) ∩U(H) and n ≥ 1 is arbitrary. �

6.2. The predual of the restricted algebra is not spanned by its positive cone. It is well known
that every self-adjoint normal functional in the predual of a W ∗-algebra can be written as the difference
of two positive normal functionals. It is also well known and easy to see that a similar property holds
for the preduals of numerous operator ideals. More precisely, if J and B are Banach operator ideals such
that the trace pairing

(B, J) → C, (T, S) 7→ Tr (TS)
is well defined and induces a topological isomorphism of the topological dual B∗ onto J, then for every
T = T ∗ ∈ B there exist T1, T2 ∈ B such that T1 ≥ 0, T2 ≥ 0 and T = T1 − T2. In fact, we can take
T1 = (|T | + T )/2 and T2 = (|T | − T )/2, and we have T1, T2 ∈ B since |T | ∈ B. (The latter property
follows since if T = W |T | is the polar decomposition of T , then |T | = W ∗T ∈ B.)

We shall see in Proposition 6.4 below that the predual (ures)∗ of the restricted Lie algebra fails to have
the similar property of being spanned by its elements ρ with iρ ≥ 0. In fact, the linear span of these
elements turns out to be the proper subspace u1 of (ures)∗.

Lemma 6.3. Let H± be two complex separable Hilbert spaces, H = H+ ⊕ H−, 0 ≤ a± ∈ B(H±), and
t ∈ B(H−,H+). Also denote

a =
(

a+ t
t∗ a−

)
∈ B(H).

Then the following assertions hold:
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(i) We have a ≥ 0 if and only if the inequality

(6.2) |〈ξ, tη〉|2 ≤ 〈ξ, a+ξ〉 · 〈η, a−η〉

holds for all ξ ∈ H+ and η ∈ H−.
(ii) If a ≥ 0 and in addition a± ∈ S1(H±) and t ∈ S2(H−,H+), then

(6.3) ‖t‖2 ≤ (Tr a)/
√

2.

Proof. For assertion (i) see Exercise 3.2 at the end of Chapter 3 in [Pa02].
Next, let {ξi}i≥1 and {ηj}j≥1 be orthonormal bases in the Hilbert spaces H+ and H−, respectively.

Then (6.2) shows that
(∀i, j ≥ 1) |〈ξi, tηj〉|2 ≤ 〈ξi, a+ξi〉 · 〈ηj , a−ηj〉.

Now recall that (‖t‖2)2 =
∑

i,j≥1

|〈ξi, tηj〉|2, Tr a+ =
∑
i≥1

〈ξi, a+ξi〉, and Tr a− =
∑
j≥1

〈ηj , a−ηj〉. Thus, adding

the above inequalities, we get

(‖t‖2)2 ≤ (Tr a+) · (Tr a−) ≤ (Tr a+ + Tr a−)2/2 = (Tr a)2/2

and assertion (ii) follows. �

Proposition 6.4. The following assertions hold:

(i) If a ∈ (ures)∗ and ia ≥ 0, then a ∈ S1(H) and ‖a‖1 ≤ ‖a‖(ures)∗ ≤ (1 +
√

2)‖a‖1.
(ii) If ρ ∈ (ures)∗ \ u1 then there exist no ρ1, ρ2 ∈ (ures)∗ such that iρ1 ≥ 0, iρ2 ≥ 0, and ρ = ρ1 − ρ2.

Proof. (i) Let a ∈ (ures)∗ such that ia ≥ 0, and denote ia =:
(

a+ t
t∗ a−

)
. Then

‖a‖1 = ‖ia‖1 = Tr (ia) = Tr a+ + Tr a− = ‖a+‖1 + ‖a−‖1
≤ ‖ia‖(ures)∗ = ‖a+‖1 + ‖a−‖1 + 2‖t‖2
≤ ‖a+‖1 + ‖a−‖1 +

√
2 · Tr (ia) = (1 +

√
2)‖ia‖1 = (1 +

√
2)‖a‖1,

where the second inequality follows by Lemma 6.2(ii). Consequently, for all a ∈ (ures)∗ with ia ≥ 0 we
have ‖a‖1 ≤ ‖a‖(ures)∗ ≤ (1 +

√
2)‖a‖1.

(ii) Let ρ ∈ (ures)∗ \u1 and assume that there exist elements ρ1, ρ2 ∈ (ures)∗ such that iρ1 ≥ 0, iρ2 ≥ 0,
and ρ = ρ1 − ρ2. Then iρ1, iρ2 ∈ S1(H) according to the assertion (i), which we have already proved.
Consequently, ρ1, ρ2 ∈ u1, whence ρ = ρ1 − ρ2 ∈ u1. This is a contradiction with the assumption on ρ,
which concludes the proof. �

6.3. The Cartan subalgebras of ures are not Ures-conjugate. For a (finite-dimensional) compact
connected semi-simple Lie subgroup G of the unitary group U(n), every element X of the Lie algebra g of
G is conjugate to a diagonal element by an element of G. This can be seen as follows (see [He62] chap. V
theorem 6.4 for more general results). Take a diagonal element H ∈ g such that the one-parameter
subgroup exp tH is dense in the torus whose Lie algebra is the set of diagonal matrices belonging to g.
On G, consider the continuous function g 7→ B (H,Ad(g)(X)), where B denotes the Killing form of G.
By compactness, this function takes a minimum at some g0, and for every element Y in g one has

d

dt
B (H,Ad(exp tY )Ad(g0)(X))|t=0 = 0,

i.e B (H, [Y,Ad(g0)(X)]) = 0. Since the Killing form is Ad(G)-invariant, one has

B (H, [Y, Ad(g0)(X)]) = B ([Ad(g0)(X),H], Y ) .

The non-degeneracy of the Killing form then implies that [Ad(g0)(X),H] = 0. But H has been chosen
such that the centralizer of H is the set of diagonal matrices belonging to g. Consequently Ad(g0)(X) is
a diagonal element in g. It follows that the maximal Abelian subalgebras, called Cartan subalgebras, of
g are conjugate under G. Naturally this proof does not work anymore for an infinite-dimensional group
since the argument to minimize the corresponding function is missing. In fact, we will show below that
the Cartan subalgebras of ures are not Ures-conjugate, in general.
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We note that a related fact follows from results in the paper [BS96]. Specifically, let ρ0 ∈ (ures)∗ such
that [d, ρ0] = 0, Ker ρ0 = {0}, and each eigenvalue of ρ0 has multiplicity 1. Next denote by Oρ0 the
coadjoint Ures-orbit of ρ0, let ρ ∈ (ures)∗, and define

fρ : Oρ0 → (0,∞), fρ(b) = ‖ρ− b‖2.
If the function fρ happens to have a critical point ρ1 ∈ Oρ0 , then [ρ1, ρ] = 0 according to [BS96]. Since
ρ1 ∈ Oρ0 , there exists u ∈ Ures such that ρ1 = uρ0u

−1, and then [ρ0, u
−1ρu] = 0. The latter equality

implies that u−1ρu commutes with all of the spectral projections of ρ0. Hence [d, u−1ρu] = 0 in view
of the spectral assumptions on ρ0, and then Proposition 3.3 applied to u−1ρu shows that the coadjoint
isotropy group of ρ is a Banach-Lie subgroup of Ures and the corresponding Ures-coadjoint orbit Oρ is a
smooth leaf of the characteristic distribution of (ures)∗.

Proposition 6.5. The unitary group Ures does not act transitively on the set of Cartan subalgebras of
its Lie algebra.

Proof. Endow the Hilbert spaceH with an orthonormal basis B = {en | n ∈ Z∗}, such that {en | n ∈ −N∗}
is an orthonormal basis of H+ and {en | n ∈ N∗} an orthonormal basis of H−. The set D of skew-
Hermitian bounded diagonal operators with respect to B form a Cartan subalgebra of ures. Now consider
the following subset of the set of anti-diagonal elements in ures :

J = {J ∈ ures | J(en) ∈ Re−n ∀n ∈ Z∗}.
Since the coefficients J−k,k, k ∈ Z∗, of J ∈ J satisfy J−k,k = −Jk,−k, it follows from an easy computation
that J is Abelian. An element B = (Bi,j) ∈ ures commutes with every element J = (Ji,j) in J if and
only if

(6.4) ([B, J ]i,−k) = (Bi,kJk,−k − Ji,−iB−i,−k)

vanishes for every J ∈ J . This implies the following conditions:

Bi,k = 0 for i /∈ {k,−k};
Bk,k = B−k,−k for k ∈ Z∗;

B−k,k = −Bk,−k for k ∈ Z∗.

It follows that the maximal Abelian subalgebra C of ures which contains J is J +D+, where

D+ = {D = (Di,j) ∈ D | D−k,−k = Dk,k ∀k ∈ Z∗}.
Let us prove by contradiction that the Cartan subalgebras C and D are not conjugate under Ures. Suppose
that there exists a unitary operator

g =
(

g++ g+−
g−+ g−−

)
∈ Ures

such that gJ g−1 = D. Consider an element

J =
(

0 J+−
J−+ 0

)
∈ J

which is a Hilbert-Schmidt operator that is not trace class. One has

gJg−1 =
(

g++ g+−
g−+ g−−

) (
0 J+−

J−+ 0

) (
g∗++ g∗−+

g∗+− g∗−−

)
=

(
g+−J−+g∗++ + g++J+−g∗+− g+−J−+g∗−+ + g++J+−g∗−−
g−−J−+g∗++ + g−+J+−g∗+− g−−J−+g∗−+ + g−+J+−g∗−−

)
.

By hypothesis, gJg−1 is a diagonal operator

D =
(

D++ 0
0 D−−

)
with D++ = g+−J−+g∗++ + g++J+−g∗+− and D−− = g−−J−+g∗−+ + g−+J+−g∗−−. Now, since g belongs
to Ures, g+− and g−+ are Hilbert-Schmidt. Since J belongs to S2(H), J+− and J−+ are Hilbert-Schmidt
as well. From the relation S2 ·S2 ⊂ S1, it follows that D++ and D−− are trace class, hence D belongs to
S1(H). But this implies that J = g−1Dg is also trace class, since S1(H) is an ideal of B(H). This leads
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to a contradiction by the choice of J ∈ J . It follows that elements in J \S1(H) are not Ures-conjugate
to diagonal elements. Consequently, the Cartan subalgebra C and D are not Ures-conjugate. �

Remark 6.6. Since every skew-Hermitian operator is conjugate to a diagonal operator by a unitary
operator, the set of conjugacy classes of Cartan subalgebras in ures is in bijection with U(H)/Ures and
is infinite. The conjugacy classes of Cartan subalgebras are related to the conjugacy classes of maximal
tori. An infinite number of conjugacy classes of maximal tori has already been encountered in the case of
some groups of contactomorphisms (see [Le01]). Examples of maximal tori of different dimensions were
provided in [HT03] in some groups of symplectomorphisms.
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