On the classification of infinite-dimensional irreducible Hermitian-symmetric affine coadjoint orbits

Alice Barbara TUMPACH

Abstract

In the finite-dimensional setting, every Hermitian-symmetric space of compact type is a coadjoint orbit of a finite-dimensional Lie group. It is natural to ask whether every infinite-dimensional Hermitian-symmetric space of compact type, which is a particular example of an Hilbert manifold, is transitively acted upon by a Hilbert Lie group of isometries. In this paper we give the classification of infinite-dimensional irreducible Hermitian-symmetric affine coadjoint orbits of compact type using the notion of simple roots of non-compact type. The key step is, given an infinite-dimensional symmetric pair \((g, k)\), where \(g\) is a simple \(L^*\)-algebra of compact type and \(k\) a subalgebra of \(g\), to construct an increasing sequence of finite-dimensional subalgebras \(g_n\) of \(g\) together with an increasing sequence of finite-dimensional subalgebras \(k_n\) of \(k\) such that \(g = \bigcup g_n\), \(k = \bigcup k_n\), and such that the pairs \((g_n, k_n)\) are symmetric. Comparing with the classification of Hermitian-symmetric spaces given by W. Kaup, it follows that any Hermitian-symmetric space of compact or non-compact type is an affine-coadjoint orbit of an Hilbert Lie group.

Mathematics Subject Classification (1991) : 58B20, 22E65.

1 Introduction

The topic of the present paper belongs to the theory of infinite-dimensional Hermitian-symmetric spaces, which are particular examples of symmetric spaces modelled on Banach spaces. The reader will find in [24] the fundamentals of the theory.

The classification of Hermitian-symmetric spaces of arbitrary dimension has been carried out by W. Kaup in [11] using the notion of Jordan triple systems developed in [10], and the equivalence between the category of simply connected, symmetric, complex Banach manifolds with base point and the category of Hermitian Jordan triple systems proved as the Main Theorem in [9]. A Hermitian-symmetric space \(M\) is defined to be a connected complex Banach manifold with a Hermitian structure such that each point in \(M\) is an isolated fixed point of an involutive holomorphic isometry of \(M\). By Theorem (4.2) in [11] and the discussion that follows, every Hermitian-symmetric space is the orthogonal product \(M = M_+ \times M_0 \times M_-\) where \(M_0\) is the quotient of a Hilbert space by a discrete subgroup, and \(M_+\) (resp. \(M_-\)) is a simply-connected Hermitian-symmetric space of compact (resp. non-compact) type. By Theorem (3.9) and the discussion following Theorem (4.2) in [11], every Hermitian-symmetric space of compact (resp. non-compact) type is the orthogonal product of (possibly an infinite number of) irreducible Hermitian-symmetric spaces of compact (resp. non-compact) type. The category of irreducible Hermitian-symmetric spaces of compact type is equivalent to the category of irreducible Hermitian-symmetric spaces of non-compact type ([11]). It is therefore sufficient to classify either the irreducible Hermitian-symmetric spaces of compact type or the irreducible Hermitian-symmetric spaces of non-compact type.

In this paper, we are interested in the classification of irreducible infinite-dimensional Hermitian-symmetric affine coadjoint orbits of compact or non-compact type. In order to state the corresponding results, let us first introduce some notation. For any complex Hilbert space \(F\) endowed with a distinguished basis \(\{f_j\}_{j \in J}\), \(F^\mathbb{R}\) will denote the real Hilbert space with basis \(\{f_j\}_{j \in J}\) and \(F^\mathbb{R}\) the real
Every irreducible infinite-dimensional Hermitian-symmetric affine coadjoint orbit of a
1.1
the Grassmannian
gives as a Corollary the classification of every irreducible infinite-dimensional Hermitian-
the Grassmannian
generated by the
x
operator
with respect to the first variable, and
the
\{e_i\}_i \in \mathbb{Z}_-\{0\}. The Hermitian scalar product on \(\mathcal{H}\) will be denoted by \(\langle \cdot , \cdot \rangle_{\mathcal{H}}\) and will be \(\mathbb{C}\)-skew-linear with respect to the first variable, and \(\mathbb{C}\)-linear with respect to the second variable. For a bounded operator \(x\) on \(\mathcal{H}\), denote by \(x^T\) the transpose of \(x\) defined by \(\langle x^T e_i , e_j \rangle_{\mathcal{H}} = \langle e_j , e_i \rangle_{\mathcal{H}}\), and by \(x^*\) the adjoint of \(x\) defined by \(\langle xe_i , e_j \rangle_{\mathcal{H}} = \langle e_j , xe_i \rangle_{\mathcal{H}}\). The closed infinite-dimensional subspace of \(\mathcal{H}\) generated by the \(e_n\)'s for \(n > 0\) will be called \(\mathcal{H}_+\), and its orthogonal complement \(\mathcal{H}_-\). For \(0 < p < +\infty\), the \(p\)-dimensional subspace of \(\mathcal{H}\) generated by the \(e_n\)'s for \(0 < n \leq p\) will be denoted \(\mathcal{H}_p\). Let \(J_0\) be the bounded operator on \(\mathcal{H}\) defined by \(J_0 e_i = -e_{-i}\) if \(i < 0\) and \(J_0 e_i = e_{-i}\) if \(i > 0\). For \(\mathcal{F} = \mathcal{H}, \mathcal{H}_\pm, \mathcal{H}_p,\) or \(\mathcal{H}_p^2\) define the following Hilbert Lie groups and the associated Lie algebras
\[
\begin{align*}
\text{GL}_2(\mathcal{F}) & := \{ g \in \text{GL}(\mathcal{F}) \mid g - \text{id} \in L^2(\mathcal{F}) \}, \\
\text{U}_2(\mathcal{F}) & := \{ g \in \text{U}(\mathcal{F}) \mid g - \text{id} \in L^2(\mathcal{F}) \}, \\
\text{O}_2(\mathcal{F}_\mathbb{R}) & := \{ g \in \text{U}_2(\mathcal{F}) \mid g^T g = \text{id} \}, \\
\mathfrak{o}_2(\mathcal{F}_\mathbb{R}) & := \{ a \in \mathfrak{u}_2(\mathcal{F}) \mid a^T + a = 0 \}.
\end{align*}
\]
At last define
\[
\text{Sp}_2(\mathcal{H}) := \{ g \in \text{U}_2(\mathcal{H}) \mid g^T J_0 g = J_0 \}, \quad \mathfrak{sp}_2(\mathcal{H}) := \{ a \in \mathfrak{u}_2(\mathcal{H}) \mid a^T J_0 + J_0 a = 0 \}.
\]
On the Lie algebras \(\mathfrak{g}\) listed above, the bracket is the commutator of operators and the Hermitian product \(\langle \cdot , \cdot \rangle_{\mathcal{H}}\) is defined using the trace by
\[
\langle A , B \rangle := \text{Tr} A^* B.
\]
These Lie algebras are \(L^*\)-algebras in the sense that the following property is satisfied :
\[
\langle [x , y] , z \rangle = \langle y , [x^* , z] \rangle
\]
for every \(x, y\) and \(z\). In fact, \(\mathfrak{u}_2(\mathcal{H}), \mathfrak{o}_2(\mathcal{H}_\mathbb{R})\) and \(\mathfrak{sp}_2(\mathcal{H})\) are the only separable infinite-dimensional simple \(L^*\)-algebras of compact type modulo isomorphisms (see below for the corresponding definition and [1], [8], or [23] for the proof of this statement). An \(L^*\)-group is a Banach-Lie group whose Lie algebra has a structure of \(L^*\)-algebra (see [7]). The \(L^*\)-groups \(\text{GL}_2(\mathcal{H}), \text{U}_2(\mathcal{H})\) and \(\text{Sp}_2(\mathcal{H})\) are connected, but \(\text{O}_2(\mathcal{H}_\mathbb{R})\) admits two connected components (see Proposition 12.4.2 on page 245 in [15]). The connected component of \(\text{O}_2(\mathcal{H}_\mathbb{R})\) containing the special orthogonal group
\[
\text{SO}_1(\mathcal{H}_\mathbb{R}) := \{ g \in \text{O}_2(\mathcal{H}_\mathbb{R}) \mid g - \text{id} \in L^1(\mathcal{H}), \det(g) = 1 \},
\]
where \(\det\) denotes the Fredholm determinant (see [18]), will be denoted by \(\text{O}_2^+(\mathcal{H})\). The aim of this paper is to prove the following statement.

Theorem 1.1 Every irreducible infinite-dimensional Hermitian-symmetric affine coadjoint orbit of a connected simple \(L^*\)-group of compact type is isomorphic to one of the following homogeneous space
\begin{enumerate}
\item the Grassmannian \(\text{Gr}_p^{(p)} = \text{U}_2(\mathcal{H})/(\text{U}_2(\mathcal{H}_p) \times \text{U}_2(\mathcal{H}_p^+))\) of \(p\)-dimensional subspaces of \(\mathcal{H}\) with \(\dim(\mathcal{H}_p) < p < +\infty\)
\item the connected component of the restricted Grassmannian \(\text{Gr}^0_{\text{res}} = \text{U}_2(\mathcal{H})/(\text{U}_2(\mathcal{H}_+) \times \text{U}_2(\mathcal{H}_-))\) of the polarized Hilbert space \(\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-\) with \(\dim\mathcal{H}_+ = \dim\mathcal{H}_- = +\infty\)
\item the Grassmannian \(\text{Gr}_1^{(2)} = \text{O}_2^+(\mathcal{H}_\mathbb{R})/(\text{SO}(\mathcal{H}_\mathbb{R}) \times \text{O}_2^+(\mathcal{H}_\mathbb{R}^\perp))\) of oriented 2-planes in \(\mathcal{H}_\mathbb{R}\),
\item the Grassmannian \(\mathcal{Z}(\mathcal{H}) = \text{O}_2^+(\mathcal{H}_\mathbb{R})/\text{U}_2(\mathcal{H})\) of orientation-preserving orthogonal complex structures close to the distinguished complex structure on \(\mathcal{H}\),
\item the Grassmannian \(\mathcal{L}(\mathcal{H}) = \text{Sp}_2(\mathcal{H})/\text{U}_2(\mathcal{H}_+))\) of Lagrangian subspaces close to \(\mathcal{H}_+\).
\end{enumerate}

Since there is a duality between affine coadjoint orbits of compact and non-compact type, Theorem 1.1 gives as a Corollary the classification of every irreducible infinite-dimensional Hermitian-symmetric affine coadjoint orbits of the connected \(L^*\)-groups of non-compact type with simple complexification. Each of these non-compact duals are symmetric Hilbert domains (see Corollary 3.17).
In the finite-dimensional case, every Hermitian-symmetric space of compact type is a coadjoint orbit of its connected group of isometries (see Proposition 8.89 in [3]). In the infinite-dimensional setting, the biggest group of isometries of a given Hermitian-symmetric space is not a Hilbert Lie group in general. For example the restricted unitary group \(U_{\text{res}}(\mathcal{H}) \) (see [13] for its definition) is a Banach Lie group acting by isometries on the restricted Grassmannian. It is a non trivial fact that the unitary Hilbert Lie group \(U_{\text{res}}(\mathcal{H}) \), strictly contained in \(U_{\text{res}}(\mathcal{H}) \), acts transitively on each connected component of the restricted Grassmannian (see Proposition 5.2 in [3]). Theorem 1.1 above compared to the work of W. Kaup ([9], [10], [11]), leads to the following generalization:

Corollary 1.2 Every Hermitian-symmetric space of compact or non-compact type is an homogeneous space of an Hilbert Lie group. More precisely, every Hermitian-symmetric space of compact or non-compact type is an affine-coadjoint orbit of an \(L^* \)-group.

2 Root Theory of complex \(L^* \)-algebra

The root theory of complex \(L^* \)-algebras has been developed by J. R. Schue in [10] and [17]. Let us first recall that an \(L^* \)-algebra \(g \) over \(K \in \{ \mathbb{R}, \mathbb{C} \} \) is a Lie algebra over \(K \), which is also a Hilbert space over \(K \) such that for every element \(x \in g \), there exists \(x^* \in g \) with the following property

\[
\langle [x, y], z \rangle = \langle y, [x^*, z] \rangle, \tag{1}
\]

for every \(y, z \in g \). In the case when \(K = \mathbb{C} \), our convention for the Hermitian product \(\langle \cdot, \cdot \rangle \) is that it is \(\mathbb{C} \)-skew-linear with respect to the first variable, and \(\mathbb{C} \)-linear with respect to the second variable. The first example of \(L^* \)-algebra is a semi-simple finite-dimensional complex Lie algebra \(g_0 \) endowed with an involution \(\sigma \), which defines a compact real form of \(g_0 \). In this example, the involutions \(* \) and \(\sigma \) are related by \(x^* = -\sigma(x) \) and the Hermitian scalar product is given by \(\langle x, y \rangle = B(x^*, y) \), where \(B \) denotes the Killing form of \(g_0 \). An \(L^* \)-algebra is called of compact type if \(x^* = -x \) for every \(x \in g \). It is called of non-compact type otherwise. For a given \(L^* \)-algebra \(g \) the subspace

\[
\mathfrak{k} := \{ x \in g \mid x^* = -x \}
\]

is a real \(L^* \)-algebra of compact type. Thus a complex \(L^* \)-algebra can be thought as an Hilbert Lie algebra together with a distinguished compact real form.

For every subsets \(A \) and \(B \) of an \(L^* \)-algebra \(g \), \([A, B] \) will denote the closure of the vector space spanned by \(\{ [a, b] \mid a \in A, b \in B \} \). With this notation, an \(L^* \)-algebra is called semi-simple if \(g = [g, g] \), and simple if \(g \) is non-commutative and if every closed ideal of \(g \) is trivial. Every \(L^* \)-algebra can be decomposed into an orthogonal sum of its center and a semi-simple closed ideal (see [10], 2.2.13.). A Cartan subalgebra of a complex semi-simple \(L^* \)-algebra \(g^C \) is defined as a maximal Abelian \(*\)-stable subalgebra of \(g^C \). Note that the condition of being \(*\)-stable is added in comparison to the finite-dimensional setting, hence a Cartan subalgebra may not be maximal in the set of Abelian subalgebras. It is noteworthy that a Cartan subalgebra of an \(L^* \)-algebra is in fact maximal Abelian (see [17], 1.1). Remark that a finite-dimensional Cartan subalgebra of a complex semi-simple Lie algebra \(g^C \) (for the usual definition) is contained in a compact real form of \(g^C \), thus is also a Cartan subalgebra of the corresponding finite-dimensional \(L^* \)-algebra. The existence of Cartan subalgebras of \(L^* \)-algebra is guarantied by Zorn’s Lemma. Every semi-simple \(L^* \)-algebra is an Hilbert sum of closed \(*\)-stable simple ideals (see Theorem 1 in [10] for the complex case and Theorem 1 in [2] for the real case).

In the sequel, \(g^C \) will denote a semi-simple complex \(L^* \)-algebra and \(\mathfrak{h}^C \) a Cartan subalgebra of \(g^C \). A root of \(g^C \) with respect to \(\mathfrak{h}^C \) is defined, as in the finite dimensional case, as an element \(\alpha \) in the dual of \(\mathfrak{h}^C \) such that the corresponding “eigenspace”

\[
V_{\alpha} := \{ v \in g^C \mid \forall h \in \mathfrak{h}^C, [h, v] = \alpha(h)v \}
\]

is non-empty. In the following the set of non-zero roots with respect to a given Cartan subalgebra will be denoted by \(\mathcal{R} \). Let us remark that a root has operator norm less than 1 and that for a non-zero root \(\alpha \), the vector space \(V_{\alpha} \) is one-dimensional (see [10]). The Jacobi identity implies that

\[
[V_{\alpha}, V_{\beta}] \subset V_{\alpha+\beta}. \tag{2}
\]
By relation (1), $V^*_\alpha = V_{-\alpha}$. The main achievement in [17] is to prove that a semi-simple complex L^*-algebra \mathfrak{g}^C admits a Cartan decomposition with respect to a given Cartan subalgebra \mathfrak{h}^C in the sense that \mathfrak{g}^C is the Hilbert sum

$$\mathfrak{g}^C = \mathfrak{h}^C \oplus \sum_{\alpha \in \mathcal{R}} V_\alpha. \quad (3)$$

Let us remark that in a separable L^*-algebra, the set of root is countable or finite.

By Zorn’s Lemma, one can decompose the set \mathcal{R} of non-zero roots into two disjoint subsets \mathcal{R}_+ and \mathcal{R}_- such that $\alpha \in \mathcal{R}_+ \Leftrightarrow -\alpha \in \mathcal{R}_-$. Such a decomposition defines a strict partial ordering on \mathcal{R} by

$$\alpha > \beta \Leftrightarrow \alpha - \beta > 0,$$

where we write $\alpha - \beta > 0$ for $\alpha - \beta \in \mathcal{R}_+$. The elements in \mathcal{R}_+ will be called positive roots. In the sequel, a decomposition $\mathcal{R} = \mathcal{R}_+ \cup \mathcal{R}_-$ as before and the induced ordering on the set of non-zero roots will be identified.

For every positive root α, one can choose $e_\alpha \in V_\alpha$ such that $\|e_\alpha\| = 1$. Then $e^*_\alpha \in V_{-\alpha}$ and $\|e^*_\alpha\| = 1$. This choice made, we define $e_\alpha := e^*_\alpha$ for $\alpha \in \mathcal{R}_-$, in order to have, for every $\alpha \in \mathcal{R}$, the following relation $e^*_\alpha = -e_\alpha$. By (3), the set $\{e_\alpha \mid \alpha \in \mathcal{R}\}$ is an Hilbert basis of $(\mathfrak{h}^C)^\perp$, and by (2), $[e_\alpha, e^*_\alpha]$ belongs to \mathfrak{h}^C. We define the following elements in the Cartan subalgebra \mathfrak{h}^C:

$$h_\alpha := [e_\alpha, e^*_\alpha], \quad (4)$$

for $\alpha \in \mathcal{R}_+$. A positive root is called simple if it can not be written as the sum of two positive roots. The set of simple roots will be denoted by \mathcal{S}. A subset \mathcal{N} of the set of non-zero roots \mathcal{R} is called a root system, if it satisfies the following conditions:

1. $\alpha \in \mathcal{N} \Rightarrow -\alpha \notin \mathcal{N}$,
2. $(\alpha, \beta \in \mathcal{N} \text{ and } \alpha + \beta \in \mathcal{R}) \Rightarrow \alpha + \beta \in \mathcal{N}$.

A subset $\mathcal{N} \subset \mathcal{R}$ is called indecomposable if it can not be written as the union of two orthogonal non-empty subsets. As in the classical theory, one has the following facts. The set \mathcal{R} of non-zero roots of a simple L^*-algebra is indecomposable. If \mathcal{F} is an indecomposable subset of the set of non-zero roots \mathcal{R}, then it generates a root system $\mathcal{N}_\mathcal{F}$, which is again indecomposable. The simple L^*-algebra generated by $\{e_\alpha \mid \alpha \in \mathcal{N}_\mathcal{F}\}$ will be denoted by $\mathfrak{g}(\mathcal{N}_\mathcal{F})$.

For the classification of Hermitian-symmetric affine coadjoint orbits given in next section, we will need the following results. They were proved by J.R. Schue in [16] in order to classify the complex simple infinite-dimensional L^*-algebras.

Proposition 2.1 ([16]) For every finite subset \mathcal{F} of the set of non-zero roots \mathcal{R} of a simple L^*-algebra, there exists a finite indecomposable system of non-zero roots containing \mathcal{F}.

Theorem 2.2 ([16], 3.2) Let \mathfrak{g}^C be a simple complex separable L^*-algebra and $\mathcal{R} = \{\alpha_i \mid i \in \mathbb{N} \setminus \{0\}\}$ the set of non-zero roots with respect to a given Cartan subalgebra of \mathfrak{g}^C. For every $n \in \mathbb{N} \setminus \{0\}$, set $\mathcal{F}_n := \{\alpha_1, \ldots, \alpha_n\}$. Then there exists a sequence $\{\mathcal{N}_n\}_{n \in \mathbb{N} \setminus \{0\}}$ of finite subsets of \mathcal{R} such that

1. $\mathcal{F}_n \subset \mathcal{N}_n \subset \mathcal{N}_{n+1}$;
2. \mathcal{N}_n is an indecomposable root system;
3. $\mathcal{R} = \bigcup_{n \in \mathbb{N} \setminus \{0\}} \mathcal{N}_n$.
4. the simple subalgebras $\mathfrak{g}(\mathcal{N}_n)$ generated by \mathcal{N}_n form a strictly increasing sequence with

$$\mathfrak{g}^C = \bigcup_{n \in \mathbb{N} \setminus \{0\}} \mathfrak{g}(\mathcal{N}_n);$$

5. The simple complex finite-dimensional algebras $\mathfrak{g}(\mathcal{N}_n)$ are of the same Cartan type A, B, C or D.

Proposition 2.3 ([16], 3.2) Given a sequence $\{\mathcal{N}_n\}_{n \in \mathbb{N} \setminus \{0\}}$ as in the previous Theorem, there exists a total ordering on the vector space generated by the set of roots such that:

1. $\alpha > 0 \Rightarrow -\alpha < 0$;
2. $\alpha > 0, \beta > 0 \Rightarrow \alpha + \beta > 0$;
3. $\alpha > 0$ and $\alpha \notin \mathcal{N}_n$ then $\alpha > \beta$ for all $\beta \in \mathcal{N}_n$.
4. the induced ordering on N_n is a lexicographical ordering with respect to a basis of roots.

Proposition 2.4 ([16], 3.3) Let S be the set of simple roots of g^C with respect to the ordering defined in the previous Proposition. The following assertions hold:

1. $S \cap N_n$ is a complete system of simple roots of the finite-dimensional algebra $g(N_n)$, i.e. every positive root α of N_n can be written as a linear combination of elements in $S \cap N_n$ with non-negative integral coefficients;

2. If α and β belong to S, $\alpha - \beta$ is a root if and only if $\alpha = \beta$;

3. the elements in S are linearly independent on the reals and every positive root $\alpha \in R_+$ is a linear combination of elements in S with non-negative integral coefficients which are all zero except for a finite number of them.

3 Classification of irreducible Hermitian-symmetric affine coadjoint orbits

The classification of finite-dimensional Hermitian-symmetric coadjoint orbits using the notion of roots of non-compact type has been carried out by J. A. Wolf in [26]. In this section we use the same technique to classify Hermitian-symmetric affine coadjoint orbits of connected simple L^*-groups of compact type, and then deduce a classification result for Hermitian-symmetric affine coadjoint orbits of non-compact type. Affine coadjoint orbits have been introduced in particular by K.-H. Neeb in [12]. Given an L^*-group G with Lie algebra g, an affine coadjoint action of G is a continuous homomorphism Ad^*_g from G into the affine group of transformations $Aff(g^e) = GL(g^e) \ltimes g^e$ of the continuous dual g^e of g such that $Ad^*_g(g) = (Ad^*(g), \theta(g))$, $g \in G$, where Ad^* is the usual linear coadjoint action. By derivation at the unit element $1 \in G$, it gives an affine coadjoint action of g on g^e, i.e. an continuous homomorphism $ad^*_g : g \to aff(g^e) = gl(g^e) \ltimes g^e$ such that $ad^*_g(x) = (ad^*(x), d\theta(x))$, $x \in g$. If $d\theta(x) = \omega(x, \cdot)$ for a continuous 2-cocycle $\omega \in Z^2(gl)$, then the orbits of the affine coadjoint action of G defined by θ are naturally symplectic (see Theorem 2.4 in [12]) with symplectic form:

$$\Omega_\theta(ad^*_g(x)(\beta), ad^*_g(y)(\beta)) = \beta([x, y]) - \omega(x, y),$$

where $x, y \in g$ and $\beta \in g^e$.

Definition 3.1 An affine coadjoint orbit O of G is called Hermitian-symmetric if it has a G-invariant structure of Hermitian-symmetric space.

Remark 3.2 A Hermitian-symmetric affine coadjoint orbit O is in particular (locally-)symmetric, i.e. the Lie algebra g of G splits into $g = \mathfrak{t} \oplus \mathfrak{m}$, where \mathfrak{t} is the Lie algebra of the isotropy group K fixing a given point $o \in O$ and \mathfrak{m} is a K-invariant complement of \mathfrak{t} in g such that $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{t}$.

(One also says that (g, \mathfrak{t}) is a symmetric pair). Consequently the Levi-Civita connection of an affine coadjoint Hermitian-symmetric orbit O is the homogeneous connection and every G-invariant tensor is parallel (see e.g. Proposition 1.9 in [21] and its proof). In particular, O is Kähler since the complex structure is G-invariant hence parallel.

Since we are interested in Hermitian-symmetric orbits, which by the previous remark are in particular symplectic, we will consider only affine coadjoint actions such that $d\theta_{\mathfrak{e}}(x) = \omega(x, \cdot)$ for some continuous 2-cocycle $\omega \in Z^2(gl)$. Since the bracket $\langle \cdot, \cdot \rangle$ on the L^*-algebra g is non-degenerate, there exists an operator D on g such that:

$$\omega(x, y) = \langle x^*, Dy \rangle,$$

for $x, y \in g$. Since ω is a cocycle, D is a derivation of the Lie algebra g. By Remark 2.5(d) in [12], it is sufficient to consider affine coadjoint orbits of $0 \in g^e$.

In the sequel, g will denote an infinite-dimensional separable simple L^*-algebra of compact type and G_0 a connected simple L^*-group with the Lie algebra g. According to [1], [8] or [23], g can be realized as a subalgebra of the L^*-algebra $gl_2(H)$ consisting of Hilbert-Schmidt operators on a separable complex
Hilbert space \mathcal{H}. We may therefore assume $\mathfrak{g} \subseteq \mathfrak{gl}_2(\mathcal{H})$. By the duality $\mathfrak{g}' = \mathfrak{g}$ given by the trace, we can identify affine adjoint and affine coadjoint orbits of G_0.

Suppose that \mathcal{O} is a Hermitian-symmetric affine adjoint orbit of G_0 for an action as above. Then it is in particular strongly Kähler and by Theorem 4.4 in [12], there exists $D \in B(\mathcal{H})$ satisfying $D^* = -D$ such that for every x in \mathfrak{g}, $\mathbb{D}x = [D, x]$, as well as a Cartan subalgebra \mathfrak{h}^C of \mathfrak{g}^C which is contained in $\ker \mathbb{D}$. To emphasize the relation between the orbit and the bounded operator D, we will often write $\mathcal{O} = \mathcal{O}_D$.

Now let G be the group of operators on \mathcal{H} generated by the exponentials of operators in \mathfrak{g}, and G^C be the group of operators on \mathcal{H} generated by the exponentials of operators in $\mathfrak{g}^C := \mathfrak{g} \oplus i \mathfrak{g} \subseteq \mathfrak{gl}_2(\mathcal{H})$. That is, G (resp. G^C) is the connected 1-component of the classical Hilbert-Lie group whose Lie algebra is \mathfrak{g} (resp. \mathfrak{g}^C). Since the center of G reduces to $\{1\}$, it follows that the corresponding adjoint action

$$\text{Ad}_G : G \to \text{Ad}(\mathfrak{g})$$

is an isomorphism of Lie groups, where $\text{Ad}(\mathfrak{g})$ is the adjoint group of the Banach-Lie algebra \mathfrak{g}. Recall that the automorphism group $\text{Aut}(\mathfrak{g})$ of \mathfrak{g} has the natural structure of a Banach-Lie group whose Lie algebra consists of all derivations of \mathfrak{g}, and $\text{Ad}(\mathfrak{g})$ is the connected (integral) subgroup of $\text{Aut}(\mathfrak{g})$ corresponding to the Lie subalgebra of inner derivations of \mathfrak{g}.

On the other hand we have the adjoint action

$$\text{Ad}_{G_0} : G_0 \to \text{Ad}(\mathfrak{g}).$$

This Lie group homomorphism is onto and its kernel is equal to the center Z_{G_0} of G_0. Since G_0 is a simple Lie group, it follows that Z_{G_0} is a discrete subgroup. Thus we get a covering homomorphism

$$\pi = (\text{Ad}_G)^{-1} \circ \text{Ad}_{G_0} : G_0 \to G \hookrightarrow B(\mathcal{H})$$

whose fiber over $1 \in G$ is precisely the center of G_0, and for every $D \in B(\mathcal{H})$ the diagram

$$\begin{array}{ccc}
G_0 & \xrightarrow{\pi} & G \\
\text{Ad}_{G_0, \omega_D} \downarrow & & \downarrow \text{Ad}_{G, \omega_D} \\
B(\mathcal{H}) & \xrightarrow{\text{id}} & B(\mathcal{H})
\end{array}$$

is commutative. Here the vertical arrows stand for the corresponding affine coadjoint actions :

$$\text{Ad}_{G_0, \omega_D}(g)X = \text{Ad}_{G_0}(g)X + \pi(g)D\pi(g)^{-1} - D$$

for every $g \in G_0$ and $X \in \mathfrak{g}$, and

$$\text{Ad}_{G, \omega_D}(g)X = \text{Ad}_G(g)X + gDg^{-1} - D$$

for every $g \in G$ and $X \in \mathfrak{g}$.

Since $\pi : G_0 \to G$ is a covering map, it follows by the above commutative diagram that the affine coadjoint orbits of G_0 and the ones of G are the same. Thus it suffices to investigate the affine coadjoint orbits of G.

Abusing slightly the notation, we will sometimes denote \mathbb{D} by $\text{ad}(D)$. An alternative definition of \mathcal{O}_D is

$$\mathcal{O}_D = \{gDg^{-1} - D \mid g \in G\},$$

and the affine adjoint action of G on \mathfrak{g} is given by

$$g \cdot a = \text{Ad}_G(g)(a) + gDg^{-1} - D$$

where $g \in G$ and $a \in \mathfrak{g}$. The subalgebra \mathfrak{t} of \mathfrak{g} which fixes 0 is

$$\mathfrak{t} := \{x \in \mathfrak{g} \mid [D, x] = 0\}.$$

It is an L^*-subalgebra of \mathfrak{g}. Let K be the isotropy subgroup of G that fixes 0. Since G and \mathcal{O} are connected, K is connected. We will denote by \mathfrak{m} the orthogonal complement of \mathfrak{t} in \mathfrak{g}, which is in particular K-invariant.
From the discussion above it follows that it suffices to consider Hermitian-symmetric orbits \(O_D \) of the connected 1-component \(G \) of the classical Hilbert-Lie group whose Lie algebra is the infinite-dimensional separable simple \(L^* \)-algebra of compact type \(g \subseteq \mathfrak{gl}_2(\mathcal{H}) \). Such an orbit is said to be of compact type and admits a dual of non-compact type in the following sense. If \(g = \mathfrak{t} \oplus \mathfrak{m} \) is the decomposition of the Lie algebra of \(G \) as above, then \(g^{\mathbb{C}} = \mathfrak{t} \oplus \mathfrak{m} \) is a real \(L^* \)-subalgebra of the complexification \(g^\mathbb{C} \) of \(g \). Since \(g^\mathbb{C} \) is supposed to be a subalgebra of \(\mathfrak{gl}_2(\mathcal{H}) \), one can define the connected \(L^* \)-group \(G^{\mathbb{C}} \) generated by the exponentials of operators in \(g^{\mathbb{C}} \). Then the dual of \(O_D \) is defined as the affine coadjoint orbit of \(G^{\mathbb{C}} \) for the derivation \(D \). Let \(\mathfrak{t}^\mathbb{C} \) and \(\mathfrak{m}^\mathbb{C} \) denote the complexifications of \(\mathfrak{t} \) and \(\mathfrak{m} \) respectively. Note that \(g^\mathbb{C} \) is the orthogonal sum of \(\mathfrak{t}^\mathbb{C} \) and \(\mathfrak{m}^\mathbb{C} \) with respect to the Hermitian product of the \(L^* \)-algebra \(g^\mathbb{C} \).

Proposition 3.3 Let \(\mathfrak{h}^\mathbb{C} \) be a Cartan subalgebra of \(g^\mathbb{C} \) that is contained in \(\ker \text{ad} D \), and let

\[
\mathfrak{h}^\mathbb{C} = \mathfrak{h}^\mathbb{C} \oplus \sum_{\alpha \in \mathcal{R}} \mathfrak{V}_\alpha
\]

be the associated Cartan decomposition of \(g^\mathbb{C} \), where \(\mathcal{R} \) denotes the set of non-zero roots with respect to \(\mathfrak{h}^\mathbb{C} \). Suppose that \(O_D \) is Hermitian-symmetric. Then there exists two subsets \(\mathcal{A} \) and \(\mathcal{B} \) of \(\mathcal{R} \) such that \(\mathcal{A} \cup \mathcal{B} = \mathcal{R} \) and

\[
\mathfrak{t}^\mathbb{C} = \mathfrak{h}^\mathbb{C} \oplus \sum_{\alpha \in \mathcal{A}} \mathfrak{V}_\alpha, \quad \mathfrak{m}^\mathbb{C} = \sum_{\alpha \in \mathcal{B}} \mathfrak{V}_\alpha.
\]

Proof of Proposition 3.3:

Since \(O_D \) is (locally-)symmetric, one has \(g^\mathbb{C} = \mathfrak{t}^\mathbb{C} \oplus \mathfrak{m}^\mathbb{C} \) with

\[
[\mathfrak{t}^\mathbb{C}, \mathfrak{t}^\mathbb{C}] \subset \mathfrak{t}^\mathbb{C}; \quad [\mathfrak{t}^\mathbb{C}, \mathfrak{m}^\mathbb{C}] \subset \mathfrak{m}^\mathbb{C}; \quad [\mathfrak{m}^\mathbb{C}, \mathfrak{m}^\mathbb{C}] \subset \mathfrak{t}^\mathbb{C}.
\]

Let \(v \) be a non-zero vector in \(\mathfrak{V}_\alpha \), and \(v = v_0 + v_1 \) his decomposition with respect to the direct sum \(g^\mathbb{C} = \mathfrak{t}^\mathbb{C} \oplus \mathfrak{m}^\mathbb{C} \). For every \(h \in \mathfrak{h}^\mathbb{C} \), one has

\[
[h, v] = [h, v_0 + v_1] = \alpha(h)(v_0 + v_1) = \alpha(h)v_0 + \alpha(h)v_1 = [h, v_0] + [h, v_1].
\]

Since \([\mathfrak{h}^\mathbb{C}, \mathfrak{t}^\mathbb{C}] \subset \mathfrak{t}^\mathbb{C} \) and \([\mathfrak{h}^\mathbb{C}, \mathfrak{m}^\mathbb{C}] \subset \mathfrak{m}^\mathbb{C} \), it follows that

\[
[h, v_0] = \alpha(h)v_0 \quad \text{et} \quad [h, v_1] = \alpha(h)v_1.
\]

But \(\mathfrak{V}_\alpha \) is one-dimensional, hence either \(v_0 = 0 \), or \(v_1 = 0 \). Consequently \(\mathfrak{V}_\alpha \) is contained either in \(\mathfrak{t}^\mathbb{C} \) or in \(\mathfrak{m}^\mathbb{C} \).

Proposition 3.4 For every \(\alpha \in \mathcal{R} \), there exists a constant \(c_\alpha \in \mathbb{R} \) such that \([D, e_\alpha] = ic_\alpha e_\alpha \). Moreover \(c_{-\alpha} = -c_\alpha \).

Proof of Proposition 3.4:

For every \(\alpha \in \mathcal{R} \) and every \(h \in \mathfrak{h}^\mathbb{C} \), one has

\[
[h, [D, e_\alpha]] = [[h, D], e_\alpha] + [D, [h, e_\alpha]] = \alpha(h) [D, e_\alpha].
\]

The space \(\mathfrak{V}_\alpha \) being one-dimensional, it follows that \([D, e_\alpha] \) is proportional to \(e_\alpha \). Since \(D \) satisfies \(D^* = -D \), one has, for every \(\alpha \in \mathcal{R} \), the following relation

\[
\langle [D, e_\alpha], e_\alpha \rangle = -\langle e_\alpha, [D, e_\alpha] \rangle = -\langle [D, e_\alpha], e_\alpha \rangle.
\]

Thus there exists a real constant \(c_\alpha \) such that

\[
[D, e_\alpha] = ic_\alpha e_\alpha.
\]

On the other hand,

\[
[D, e_\alpha]^* = [e_\alpha^*, D]^* = -[e_\alpha^*, D] = [D, e_\alpha^*].
\]

Whence

\[
\langle [D, e_\alpha^*], e_\alpha^* \rangle = \langle e_\alpha, [D, e_\alpha] \rangle = \langle e_\alpha, [D, e_\alpha] \rangle = ic_\alpha.
\]

Consequently \([D, e_\alpha^*] = -ic_\alpha e_\alpha^* \).
Remark 3.5 Let us denote by \(m_+ \) (resp. \(m_- \)) the closed subspace of \(m^C \) generated by the \(e_\alpha \)'s, where \(\alpha \) runs over the set of roots for which \(c_\alpha > 0 \) (resp. \(c_\alpha < 0 \)). Let \(B_+ \) (resp. \(B_- \)) be the set of roots \(\beta \) in \(B \) such that \(V_\beta \in m_+ \) (resp. \(V_\beta \in m_- \)).

Definition 3.6 The affine coadjoint orbit \(O_D \) is called (isotropy-)irreducible if \(m \) is a non-zero irreducible \(K \)-module.

Proposition 3.7 If the affine adjoint orbit \(O_D \) is irreducible, then \(m_+ \) and \(m_- \) are irreducible \(\text{Ad}(K) \)-modules, and there exists a constant \(c > 0 \) such that \(\text{ad}(D)|_{m_+} = ic \text{id}|_{m_+} \) and \(\text{ad}(D)|_{m_-} = -ic \text{id}|_{m_-} \). In particular, the spectrum of \(\text{ad}(D) \) is \(\{0, ic, -ic\} \), hence \(D \) admits exactly two distinct eigenvalues.

\[\square \text{ Proof of Proposition 3.7.} \]
For every \(k \in \mathfrak{k} \) and every \(e_\alpha \in m_\pm \), one has
\[
[D, [k, e_\alpha]] = [[D, k], e_\alpha] + [k, [D, e_\alpha]] = ic[e, e_\alpha].
\]
It follows that \([\mathfrak{t}, m_\pm] \subset m_\pm \) and that \(m_\pm \) is stable under the adjoint action of \(K \). Let us suppose that \(m_+ \) decomposes into a sum of two non-zero \(\text{Ad}(K) \)-modules \(m_1 \) and \(m_2 \). Then
\[
m_- = m_1^+ \oplus m_2^+,
\]
and it follows that \(m \) decomposes also into the sum of two non-zero \(\text{Ad}(K) \)-modules, namely \(\mathfrak{g} \cap (m_1^+ \oplus m_2^+) \) and \(\mathfrak{g} \cap (m_2^+ \oplus m_1^+) \). The orbit \(O_D \) being irreducible, \(m \) is an irreducible \(\text{Ad}(K) \)-module and this leads to a contradiction. So the irreducibility of \(m_\pm \) is proved. Let \(e_\alpha \) be an element in \(m_+ \) and set \(c = e_\alpha : \)
\[
[D, e_\alpha] = ic e_\alpha.
\]
The kernel \(\ker(D - ic) \) being an \(\text{Ad}(K) \)-module of \(m_+ \), one has \(\text{ad}(D)|_{m_+} = ic \text{id}|_{m_+} \). The relation \(c_{-\alpha} = -c_\alpha \) implies that \(\text{ad}(D)|_{m_-} = -ic \text{id}|_{m_-} \). \(\square \)

Definition 3.8 Given an ordering on the set of non-zero roots \(R \) of \(g^C \), a simple root \(\phi \) is called of non-compact type (see [26]) if every root \(\alpha \in R \) is of the form
\[
\alpha = \pm \sum_{\Psi \in S \setminus \{\phi\}} a_\Psi \Psi, \text{ where } a_\Psi \geq 0 \text{ for all } \Psi \in S \setminus \{\phi\},
\]
or of the form
\[
\alpha = \pm \left(\phi + \sum_{\Psi \in S \setminus \{\phi\}} a_\Psi \Psi \right), \text{ where } a_\Psi \geq 0 \text{ for all } \Psi \in S \setminus \{\phi\}.
\]

Lemma 3.9 Let \(O_D \) be a Hermitian-symmetric affine adjoint irreducible orbit of a simple \(L^* \)-algebra \(\mathfrak{g}, \mathfrak{h}^C \) be a Cartan subalgebra of \(\mathfrak{g}^C \) contained in \(\ker \text{ad}D \), and
\[
\mathfrak{g}^C = \mathfrak{h}^C \oplus \sum_{\alpha \in A} V_\alpha \oplus \sum_{\beta \in B} V_\beta
\]
be the associated Cartan decomposition of \(g^C \) with
\[
\mathfrak{t}^C = \mathfrak{h}^C \oplus \sum_{\alpha \in A} V_\alpha, \text{ and } m^C = \sum_{\beta \in B} V_\beta.
\]
For every ordering \(R = R_+ \cup R_- \) on the set of roots, there exists a unique simple root \(\phi \) belonging to \(R \).

\[\Delta \text{ Proof of Lemma 3.9:} \]
Let \(\{\phi_i, \Psi_j\}_{i \in I, j \in J} \) be the set of simple roots with \(\phi_i \) in \(B \) and \(\Psi_j \) in \(A \). Let us suppose that \(I \) is empty. The relation \([\mathfrak{t}^C, \mathfrak{t}^C] \subset \mathfrak{t}^C \) implies that every positive root belongs to \(A \) and consequently \(m = \{0\} \), which contradicts the hypothesis that \(m \) is a non-zero irreducible \(\text{Ad}(K) \)-module. Let \(\phi \) be a simple root in \(B \). The closed vector space spanned by the adjoint action of \(\mathfrak{t} \) on \(e_\phi \) is a non-zero irreducible \(\text{Ad}(K) \)-submodule of \(m^C \). It follows that \(\phi \) is necessarily unique. \(\Delta \)
Lemma 3.10 Under the hypothesis of Lemma 3.9, there exists an increasing sequence of finite indecomposable root systems \(N_n \) such that

1. \(R = \bigcup_{n \in \mathbb{N} \setminus \{0\}} N_n \);
2. all the finite-dimensional subalgebras \(\mathfrak{g}(N_n) \) generated by \(N_n \) belong to the same type \(A, B, C, \) or \(D \) and \(\mathfrak{g}^c \) is the closure of the union of the subalgebras \(\mathfrak{g}(N_n) \);
3. \(\phi \) is a simple root of non-compact type for each subalgebra \(\mathfrak{g}(N_n) \) with respect to the ordering on the roots of \(\mathfrak{g}(N_n) \) induced by the ordering on \(R \) defined in Proposition 2.3.

\(\Delta \) Proof of Lemma 3.10

Let \(\{\alpha_1, \ldots, \alpha_n, \ldots\} \) be a numbering of the roots in \(A \). Set \(F_n = \{\alpha_1, \ldots, \alpha_n\} \). Let us construct by induction an increasing sequence of finite indecomposable root systems \(N_n \) as follows. By Proposition 2.1 there exists a finite indecomposable root system \(N_1 \) containing \(\{\phi\} \cup F_1 \). Suppose that \(N_{n-1} \) is constructed, then there exists a finite indecomposable root system \(N_n \) containing \(F_n \cup N_{n-1} \). Since every root in \(B \) is the sum of \(\phi \) and roots in \(A \), \(R = \bigcup_{n \in \mathbb{N} \setminus \{0\}} N_n \). The sequence of finite-dimensional simple subalgebras \(\mathfrak{g}(N_n) \) generated by the root systems \(N_n \) is increasing and such that \(\mathfrak{g}^c = \bigcup_{n \in \mathbb{N} \setminus \{0\}} \mathfrak{g}(N_n) \). Since there exists only 9 types of finite-dimensional simple algebras, at least one type occurs an infinite number of times. Since \(\mathfrak{g}^c \) is finite-dimensional and since only the types \(A, B, C, \) or \(D \) corresponds to algebras of arbitrary dimension, at least one of the types \(A, B, C, \) or \(D \) occurs an infinite number of times. It follows that there exists a subsequence \(N_{n_k} \) of \(N_n \) such that all the subalgebras \(\mathfrak{g}(N_{n_k}) \) are of the same type \(A, B, C, \) or \(D \). Let \(S_{n_k} \) be the set of simple roots of \(\mathfrak{g}(N_{n_k}) \) with respect to the ordering induced by the ordering on \(R \) defined in Proposition 2.3. By Proposition 2.4 \(S_{n_k} = S \cap \mathfrak{g}(N_{n_k}) \), where \(S \) is the set of simple roots of \(\mathfrak{g}^c \). For every positive root \(\gamma \) in \(N_{n_k} \), there exists a finite sequence \(\{\gamma_i, i = 1, \ldots, k\} \) of roots in \(S_{n_k} \) such that

\[
\gamma = \gamma_1 + \gamma_2 + \cdots + \gamma_k,
\]

and such that the partial sums \(\gamma_1 + \cdots + \gamma_j, 1 \leq j \leq k \) are roots (see [5]). Hence the vector space \(V_{\gamma} \) is generated by

\[
v = [e_{\gamma_1}, [e_{\gamma_1}, e_{\gamma_2}], \ldots, [e_{\gamma_1}, e_{\gamma_k}]]\].

The orbit \(O_D \) being irreducible, \([D, e_{\phi}] = e_{\phi} i e_{\phi} \) with \(e_{\phi} = \pm 1 \) if \(\phi \subset \mathfrak{m}_+ \) (resp. \(\mathfrak{m}_- \)). Whence

\[
[D, v] = \text{card} \{(i, \gamma_i = \phi)\} e_{\phi} i e_{\phi} v.
\]

Since \(\text{ad}(D) \) preserves \(\mathfrak{m}_+ \) and \(\mathfrak{m}_- \), it follows that for \(\gamma \in A \cap \mathfrak{r}_+ \), \(\text{card} \{(i, \gamma_i = \phi)\} = 0 \) and for \(\gamma \in B \cap \mathfrak{r}_+ , \text{card} \{(i, \gamma_i = \phi)\} = 1 \). Consequently \(\phi \) is of non-compact type. \(\Delta \)

Proposition 3.11 Let \(O = G/K \) be a Hermitian-symmetric irreducible affine coadjoint orbit of an \(L^+ \)-group \(G \) of compact type, and \(\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m} \) the associated decomposition of the Lie algebra \(\mathfrak{g} \) of \(G \), where \(\mathfrak{k} \) is the Lie algebra of the isotropy group \(K \). Then there exists an increasing sequence of finite-dimensional subalgebras \(\mathfrak{g}_n \) of \(\mathfrak{g} \) of the same type \(A, B, C, \) or \(D \), and an increasing sequence of subalgebras \(\mathfrak{t}_n \) of \(\mathfrak{k} \) such that

1. \(\mathfrak{g} = \bigcup_{n \in \mathbb{N} \setminus \{0\}} \mathfrak{g}_n \)
2. \(\mathfrak{t} = \bigcup_{n \in \mathbb{N} \setminus \{0\}} \mathfrak{t}_n \)
3. for every \(n \in \mathbb{N} \setminus \{0\} \), the orthogonal complement \(\mathfrak{m}_n \) of \(\mathfrak{t}_n \) in \(\mathfrak{g}_n \) satisfies

\[
[\mathfrak{t}_n, \mathfrak{m}_n] \subset \mathfrak{m}_n \quad \text{and} \quad [\mathfrak{m}_n, \mathfrak{m}_n] \subset \mathfrak{t}_n,
\]

hence \((\mathfrak{g}_n, \mathfrak{t}_n) \) is a symmetric pair.

\(\square \) Proof of Proposition 3.11:

This is a direct consequence of Lemma 3.10, with \(\mathfrak{g}_n = \mathfrak{g} \cap \mathfrak{g}(N_n) \) and \(\mathfrak{t}_n = \mathfrak{k} \cap \mathfrak{g}(N_n) \). \(\square \)

From the discussion above it follows that the classification of Hermitian-symmetric irreducible affine coadjoint orbits of \(L^+ \)-groups of compact or non-compact type can be deduced from the knowledge of the simple roots of non-compact type of finite-dimensional simple complex algebras (see the proof of Theorem 1.1 below). A simple root of a simple finite-dimensional complex algebra is of non-compact
Table 1: Simple roots of non-compact type in the simple finite-dimensional Lie algebras of type A, B, C and D.

Type A: $\alpha_2 \rightarrow \cdots \rightarrow \alpha_{n-3} \rightarrow \alpha_{n-1} \rightarrow \alpha_n$

Every root α_i is of non-compact type.

Type B: $\alpha_2 \rightarrow \cdots \rightarrow \alpha_{n-3} \rightarrow \alpha_{n-1} \rightarrow \alpha_n$

Only the root α_n is of non-compact type.

Type C: $\alpha_2 \rightarrow \cdots \rightarrow \alpha_{n-3} \rightarrow \alpha_{n-1} \rightarrow \alpha_n$

Only the root α_1 is of non-compact type.

Type D: $\alpha_2 \rightarrow \cdots \rightarrow \alpha_{n-3} \rightarrow \alpha_{n-1}$

Only the roots α_1, α_2 and α_n are of non-compact type.

type if and only if it appears with the coefficient +1 in the expression of the greatest root. We recall the list of simple roots of non-compact type in the finite-dimensional Lie algebras of type A, B, C, or D in tabular 1 (see 6 or 26).

■ Proof of Theorem 3.11:

By Lemma 3.9, there exists a unique simple root ϕ in B regardless to the ordering chosen on the set of non-zero roots R. By Lemma 3.10 part 3, ϕ is a simple root of non-compact type for each finite-dimensional subalgebras $g(N_\alpha)$ constructed in Lemma 3.10 part 2, when R is endowed with the particular ordering constructed in Proposition 2.3. For this ordering, simple roots of $g(N_\alpha)$ are simple roots of g^C. It follows that the set of possible roots ϕ can be deduced from tabular 1. Such a root ϕ defines a unique symmetric pair of compact type (g, \mathfrak{t}) with $g = \{a \in g^C \mid a + a^* = 0\}$, and $\mathfrak{t} = \{a \in g^C \mid a + a^* = 0\}$, where \mathfrak{t}^C is the L^\ast-algebra whose Dynkin diagram is obtained by removing ϕ from the Dynkin diagram of g^C (\mathfrak{t}^C is the orthogonal complement of the vector space generated by the $e_{\phi + a} \ast$’s). One sees immediately that such a root ϕ defines also a unique symmetric pair of non-compact type, the dual of (g, \mathfrak{t}), namely (g^\ast, \mathfrak{t}), where $g^\ast \mathfrak{t} := \mathfrak{t} \oplus \mathfrak{m}$ and \mathfrak{m} denotes the orthogonal complement to \mathfrak{t} in g.

Example 3.12 The Grassmannian $Gr^{(p)} = U_2(\mathcal{H})/(U_2(\mathcal{H}_p) \times U_2(\mathcal{H}_p^\perp))$ of p-dimensional subspaces of \mathcal{H} with $\dim(\mathcal{H}_p) = p < +\infty$, is the affine adjoint orbit of $U_2(\mathcal{H})$ for the derivations defined by the bounded operators $D_{k,l}^{(p)} = ikp_{\mathcal{H}_p} - ilp_{\mathcal{H}_p^\perp}$, where $k, l \in \mathbb{R}$, $k \neq -l$, and $p_{\mathcal{H}_p}$ (resp. $p_{\mathcal{H}_p^\perp}$) is the orthogonal projection onto \mathcal{H}_p (resp. \mathcal{H}_p^\perp). The homogeneous space $Gr^{(p)}$ is therefore endowed with a one-parameter family of Kähler structures (encoded by $(k + l)$). The derivation $D_{k,l}^{(p)}$ is inner if and only if $l = 0$. For $p = 1$, $Gr^{(p)}$ is the projective space of \mathcal{H}.

The dual symmetric space of $Gr^{(p)}$ is the homogeneous space $U_2(\mathcal{H}_p, \mathcal{H}_p^\perp)/(U_2(\mathcal{H}_p) \times U_2(\mathcal{H}_p^\perp))$ where $U_2(\mathcal{H}_p, \mathcal{H}_p^\perp)$ is the subgroup of $GL_2(\mathcal{H})$ which preserves the indefinite Hermitian form $\langle \cdot, \cdot \rangle$ on \mathcal{H} defined by:

$$\langle u, v \rangle = -\langle u_1, v_1 \rangle_{\mathcal{H}_p^\perp} + \langle u_2, v_2 \rangle_{\mathcal{H}_p},$$

where $u = u_1 + u_2$, $v = v_1 + v_2$ with $u_1, v_1 \in \mathcal{H}_p^\perp$ and $u_2, v_2 \in \mathcal{H}_p$. It is the affine adjoint orbit of $U_2(\mathcal{H}_p, \mathcal{H}_p^\perp)$ for the derivations $D_{k,l}^{(p)}$. It can be identified with the symmetric Hilbert domain:

$$\mathcal{A}^{(p)} = \{ Z \in L^2(\mathcal{H}_p, \mathcal{H}_p^\perp), -Z^*Z + \text{id} > 0 \},$$
where the notation $-Z^*Z + \text{id}$ means that the operator $-Z^*Z + \text{id}$ is positive definite. In particular, for $p = 1$, $A^{(1)}$ is the open unit ball in \mathcal{H}_{+}^\perp. Let us remark that $A^{(p)}$ is star-shaped hence connected and simply-connected. To see that $A^{(p)}$ is diffeomorphic to the homogeneous space $U_2(\mathcal{H}_p, \mathcal{H}_p^\perp)/(U_2(\mathcal{H}_p) \times U_2(\mathcal{H}_p^\perp))$, note that

$$U_2(\mathcal{H}_p, \mathcal{H}_p^\perp) = \left\{ g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \text{GL}_2(\mathcal{H}) \mid A^*A - C^*C = \text{id}_{\mathcal{H}_p^\perp}, D^*D - B^*B = \text{id}_{\mathcal{H}_p}, A^*B = C^*D \right\},$$

where the block decomposition of g is relative to the Hilbert sum $\mathcal{H} = \mathcal{H}_p^\perp \oplus \mathcal{H}_p$. In particular, for $Z \in A^{(p)}$, one has

$$-(AZ + B)^*(AZ + B) + (CZ + D)^*(CZ + D) = -Z^*Z + 1 > 0,$$

which implies that $(CZ + D)^*(CZ + D)$ is positive definite hence $(CZ + D) \in \text{GL}(\mathcal{H}_p)$. It follows that one can define an action of $U_2(\mathcal{H}_p, \mathcal{H}_p^\perp)$ on $A^{(p)}$ by:

$$g \cdot Z = (AZ + B)(CZ + D)^{-1},$$

where $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with respect to the decomposition $\mathcal{H} = \mathcal{H}_p^\perp \oplus \mathcal{H}_p$. This action is transitive since every $Z \in A^{(p)}$ can be written as

$$Z = \exp \begin{pmatrix} 0 & B \\ B^* & 0 \end{pmatrix} \cdot 0,$$

where

$$B = Z^{\frac{\text{argth}(Z^*Z)}{2}} \in L^2(\mathcal{H}_p, \mathcal{H}_p^\perp),$$

(this expression follows from Remark 6.5 in [13]). Another proof for the transitivity of the action (5) of $U_2(\mathcal{H}_p, \mathcal{H}_p^\perp)$ on $A^{(p)}$ can be found in [13], Theorem III.9. Since the isotropy of $0 \in A^{(p)}$ is $U_2(\mathcal{H}_p) \times U_2(\mathcal{H}_p^\perp)$, one has:

$$A^{(p)} = U_2(\mathcal{H}_p, \mathcal{H}_p^\perp)/(U_2(\mathcal{H}_p) \times U_2(\mathcal{H}_p^\perp)).$$

The Hermitian-symmetric space of non-compact type $A^{(p)}$ is a particular example of Finsler-Cartan-Hadamard manifold (see the Definition on p 124, Proposition 3.16, Proposition 3.15, and Theorem 3.6(iii) in [13]). It follows either from the general theory (Theorem 3.14 or Theorem 1.10 in [13]) or from equation (6) that

$$\exp : \left\{ \begin{pmatrix} 0 & B \\ B^* & 0 \end{pmatrix} \mid B \in L^2(\mathcal{H}_p, \mathcal{H}_p^\perp) \right\} \longrightarrow A^{(p)} \xrightarrow{\quad X \quad} \exp X \cdot 0$$

is a diffeomorphism.

Example 3.13 The restricted Grassmannian Gr_{res} has been studied in [15] and [27]. The connected component Gr_{res}^0 of Gr_{res} containing \mathcal{H}_+ is the affine adjoint orbit of $U_2(\mathcal{H})$ for the derivations defined by the bounded operators $D_{k,l}^{\infty} = ik p_+ - il p_-$, where $k, l \in \mathbb{R}$, $k \neq -l$, and p_\pm is the orthogonal projection onto \mathcal{H}_\pm. None of these derivations is inner.

As in the previous case, the dual Hermitian-symmetric space of the connected component Gr_{res}^0 of the restricted Grassmannian is the homogeneous space $U_2(\mathcal{H}_+, \mathcal{H}_-)/(U_2(\mathcal{H}_+) \times U_2(\mathcal{H}_-))$ where $U_2(\mathcal{H}_+, \mathcal{H}_-)$ is the subgroup of $\text{GL}_2(\mathcal{H})$ which preserves the indefinite Hermitian form $\langle \cdot, \cdot \rangle$ on \mathcal{H} defined by:

$$\langle u, v \rangle = -\langle u_1, v_1 \rangle_{\mathcal{H}_-} + \langle u_2, v_2 \rangle_{\mathcal{H}_+},$$

where $u = u_1 + u_2$, $v = v_1 + v_2$ with $u_1, v_1 \in \mathcal{H}_-$ and $u_2, v_2 \in \mathcal{H}_+$. It is the affine adjoint orbit of $U_2(\mathcal{H}_+, \mathcal{H}_-)$ for the derivations $D_{k,l}^{\infty}$. It can be identified with the symmetric Hilbert domain:

$$A^{(\infty)} = \{ Z \in L^2(\mathcal{H}_+, \mathcal{H}_-) \mid -Z^*Z + \text{id} > 0 \}.$$
Example 3.14 Denote by \(g \) the real part of the Hermitian scalar product on \(\mathcal{H} \). The Grassmannian \(\mathcal{Z}(\mathcal{H}) = O_2^+(\mathbb{H})/U_2(\mathcal{H}) \) is the space of complex structures \(I \) on \(\mathbb{H} \) such that

\[
g(I X, I Y) = g(X, Y),
\]

defining the same orientation as the distinguished complex structure \(I_0 \) on \(\mathcal{H} \) and being closed to it. For every \(k \neq 0 \), the space \(\mathcal{Z}(\mathcal{H}) \) can be identified with the \(O_2^+(\mathbb{H}) \)-spine extension of \(\{kI \}_0 \) for the bounded operator \(D_k^{(0)} = kI_0 \). Denote by \(\mathcal{H}^C \) the \(\mathbb{C} \)-extension of \(\mathbb{H} \) and by \(Z_{\pm} \) the eigenspace of the \(\mathbb{C} \)-linear extension of \(I_0 \) with eigenvalue \(\pm i \). One has \(\mathcal{H}^C = Z_+ \oplus Z_- \) as orthogonal sum with respect to the Hermitian scalar product on \(\mathcal{H}^C \) which restricts to \(g \) on \(\mathbb{H} \). The homogeneous space \(\mathcal{Z}(\mathcal{H}) \) injects into the restricted Grassmannian of the polarized Hilbert space \(\mathcal{H}^C = Z_+ \oplus Z_- \) via the application which maps a complex structure \(I \) to the subspace of \(\mathcal{H}^C \) consisting of \((1,0)\)-type vectors \(X \) with respect to \(I \), i.e. satisfying \(IX = iX \). This realizes \(\mathcal{Z}(\mathcal{H}) \) as the totally geodesic submanifold of \(\mathbb{G}_0^0 \) consisting of maximal isotropic subspaces for the \(\mathbb{C} \)-linear extension \(g^C \) of \(g \). Starting with a basis \(\{e_n\}_{n \in \mathbb{Z} \setminus \{0\}} \) of \(\mathcal{H} \), endow \(\mathcal{H}^C \) with the basis \(\{e_n\}_{n \in \mathbb{Z} \setminus \{0\}} \cup \{I_0e_n\}_{n \in \mathbb{Z} \setminus \{0\}} \). Then \(Z_{\pm} \) is the \(\mathbb{C} \)-linear subspace of \(\mathcal{H}^C \) generated by \(\{1/\sqrt{2}(e_n \mp iI_0e_n)\}_{n \in \mathbb{Z} \setminus \{0\}} \). With respect to these basis, the symmetric \(\mathbb{C} \)-bilinear form \(g^C \) and the \(\mathbb{C} \)-linear extension of the operator \(D_k^{(0)} \) have the following decompositions as endomorphisms of \(\mathcal{H}^C = Z_+ \oplus Z_- \):

\[
g^C = \begin{pmatrix} 0 & \text{id} \\ \text{id} & 0 \end{pmatrix},
\]

\[
P_k^{(0)} = \begin{pmatrix} ik & 0 \\ 0 & -ik \end{pmatrix}.
\]

It is easy to see that \(O_2^+(\mathbb{H}) \) (as defined in the Introduction) is conjugate to the connected component of \(O_2(\mathcal{H}^C) \cap U_2(\mathcal{H}^C) \) where \(O_2(\mathcal{H}^C) \) denotes the complex \(L^* \)-group preserving \(g^C \).

The dual symmetric space of \(\mathcal{H} \) is the homogeneous space \((O_2(\mathcal{H}^C) \cap U_2(Z_+, Z_-))/U_2(Z_+) \) where \(U_2(Z_+, Z_-) \) is the subgroup of \(\text{GL}_2(\mathcal{H}^C) \) which preserves the indefinite Hermitian form \(\langle \cdot, \cdot \rangle \) on \(\mathcal{H}^C \) defined by:

\[
\langle u, v \rangle = -\langle u_1, v_1 \rangle_{Z_-} + \langle u_2, v_2 \rangle_{Z_+},
\]

where \(u = u_1 + u_2 \) and \(v = v_1 + v_2 \) with \(u_1, v_1 \in Z_- \) and \(u_2, v_2 \in Z_+ \). It is the affine adjoint orbit of \(O_2(\mathcal{H}^C) \cap U_2(Z_+, Z_-) \) for the derivations \(D_k^{(0)} \), \(k \neq 0 \). It can be identified with the symmetric Hilbert domain:

\[
\mathcal{B}^{(\infty)} = \{ Z \in \mathbb{L}^2(Z_+, Z_-) \mid Z^T + Z = 0, -Z^T Z + \text{id} > 0 \}.
\]

Example 3.15 The Grassmannian \(\mathcal{L}(\mathcal{H}) = \text{Sp}_2(\mathcal{H})/U_2(\mathcal{H}_+^\perp) \) of Lagrangian subspaces close to \(\mathcal{H}_+^\perp \) is identified with \(\mathcal{L}(\mathcal{H}) \)-affine adjoint orbit of \(0 \) for the derivations given by the bounded operators \(D_l^{(\infty)} = il_0 P_{-l} - il_0 P_0 \), \(l \neq 0 \). It is a totally geodesic submanifold of the restricted Grassmannian \(\mathbb{G}_0^0 \).

The dual symmetric space of \(\mathcal{L}(\mathcal{H}) \) is the homogeneous space \(\text{Sp}_2(\mathcal{H}, \mathcal{C}) \cap U_2(\mathcal{H}_+^\perp, \mathcal{H}_-^\perp)/U_2(\mathcal{H}_+^\perp) \), where \(\text{Sp}_2(\mathcal{H}, \mathcal{C}) \) is the complex \(L^* \)-group preserving the \(\mathbb{C} \)-antisymmetric form \(\omega(X, Y) = X^T J_0 Y \). It is the affine adjoint orbit of \(\text{Sp}_2(\mathcal{H}, \mathcal{C}) \cap U_2(\mathcal{H}_+^\perp, \mathcal{H}_-^\perp) \) for the derivations \(D_l^{(\infty)} \), \(l \neq 0 \). It can be identified with the symmetric Hilbert domain:

\[
\mathcal{C}^{(\infty)} = \{ Z \in \mathbb{L}^2(Z_+, Z_-) \mid Z^T = Z, -Z^T Z + \text{id} > 0 \}.
\]

Note that \(\text{Sp}_2(\mathcal{H}, \mathcal{C}) \cap U_2(\mathcal{H}_+^\perp, \mathcal{H}_-^\perp) \) is conjugate to

\[
\text{Sp}_2(\mathbb{H}_2) := \{ g \in \text{GL}_2(\mathbb{H}_2) \mid g^T J_0 g = J_0 \},
\]

hence \(\mathcal{C}^{(\infty)} = \text{Sp}_2(\mathbb{H}_2)/U_2(\mathbb{H}_2, J_0) \) where \(U_2(\mathbb{H}_2, J_0) \) denotes the unitary group of the Hilbert space \(\mathbb{H}_2 \) endowed with the complex structure \(J_0 \).

Example 3.16 Recall that \(\mathbb{H}_2 \) is a real Hilbert space with basis \(\{e_n\}_{n \in \mathbb{Z} \setminus \{0\}} \) and that \(\mathbb{H}_2 \) denotes the real subspace generated by \(e_1 \) and \(e_2 \). The space \(\text{Gr}_2^{(2)}(\mathbb{H}_2) = O_2^+(\mathbb{H}_2)/((\text{SO}(\mathbb{H}_2)) \times O_2^+(\mathbb{H}_2)) \) is the Grassmannian of oriented 2-planes in \(\mathbb{H}_2 \) and the \(O_2^+(\mathbb{H}_2) \)-adjoint orbit of \(kJ \) where \(k \neq 0 \) and \(J \) is the natural complex structure on \(\mathbb{H}_2 \). Via the map which assigns to an oriented 2-plane of \(\mathbb{H}_2 \) with
orthonormal basis \(\{u, v\} \) the complex line \(\mathbb{C}(u + iv) \in \mathbb{P}(\mathcal{H}) \), the Grassmannian \(\text{Gr}^{(2)}_{\text{or}} \) can be identified as complex manifold with the quadric \(\mathcal{C} \) in the complex projective space \(\mathbb{P}(\mathcal{H}) \) defined by

\[
\mathcal{C} := \left\{ [z] = \left[\sum_{i \in \mathbb{Z} \setminus \{0\}} z_i e_i \right] \in \mathbb{P}(\mathcal{H}) \mid \sum_{i \in \mathbb{Z} \setminus \{0\}} z_i^2 = 0 \right\}.
\]

The dual Hermitian-symmetric space of \(\text{Gr}^{(2)}_{\text{or}} \) is the homogeneous space \(O^+_2((\mathcal{H}_2)_{\mathbb{R}}) / (SO((\mathcal{H}_2)_{\mathbb{R}}) \times O^+_2((\mathcal{H}_2)_{\mathbb{R}})) \)

where \(O^+_2((\mathcal{H}_2)_{\mathbb{R}}) \) is the subgroup of \(\text{GL}_2(\mathbb{H}_{\mathbb{R}}) \) which preserves the indefinite symmetric form \(\langle , \rangle \) on \(\mathbb{R}_2 \) defined by:

\[
\langle u, v \rangle = u_1v_1 + u_2v_2 - \sum_{i \in \mathbb{Z} \setminus \{0, 1, 2\}} u_i v_i,
\]

where \(u = \sum_{i \in \mathbb{Z} \setminus \{0\}} u_i e_i \) and \(v = \sum_{i \in \mathbb{Z} \setminus \{0\}} v_i e_i \). It is the \(O^+_2((\mathcal{H}_2)_{\mathbb{R}}) \)-adjoint orbit for the derivations given by the bounded operators \(kJ \) for \(k \neq 0 \). It can be identified with the symmetric Hilbert domain:

\[
\mathcal{D} = \{ Z \in \mathcal{H}_2^+ \mid 1 + |Z^T Z|^2 - 2Z^* Z > 0, -Z^* Z + 1 > 0 \},
\]

Corollary 3.17 Every infinite-dimensional irreducible Hermitian-symmetric affine (co-)adjoint orbit of a connected \(L^* \)-group of non-compact type with simple complexification is isomorphic to one of the following symmetric Hilbert domains:

1. \(\mathcal{A}^{(p)} = \{ Z \in L^2(\mathcal{H}_p, \mathcal{H}_p^+ \mid -Z^* Z + \text{id} > 0 \} \);
2. \(\mathcal{A}^{(\infty)} = \{ Z \in L^2(\mathcal{H}_+, \mathcal{H}_-) \mid -Z^* Z + \text{id} > 0 \} \);
3. \(\mathcal{B}^{(\infty)} = \{ Z \in L^2(Z_+, Z_-) \mid -Z^* Z + \text{id} > 0, Z^T + Z = 0 \} \);
4. \(\mathcal{C}^{(\infty)} = \{ Z \in L^2(Z_+, Z_-) \mid -Z^* Z + \text{id} > 0, Z^T = Z \} \);
5. \(\mathcal{D}^{2} = \{ Z \in \mathcal{H}_2^+ \mid -Z^* Z + 1 > 0, 1 + |Z^T Z|^2 - 2Z^* Z > 0 \} \).

\(\square \)** Proof of Corollary 3.17:**

Let \(O^{n.c.} \) be an infinite-dimensional irreducible Hermitian-symmetric affine (co-)adjoint orbit of a non-compact \(L^* \)-group \(G^{n.c.} \) with simple complexification. Let \(g^{n.c.} \) be the Lie algebra of \(O^{n.c.} \). Since \((g^{n.c.})^C \) is simple, \(g^{n.c.} \) is also simple. Moreover we can suppose w.l.o.g. (16) that \((g^{n.c.})^C \) is either \(\mathfrak{gl}_2(\mathcal{H}) \), \(\mathfrak{o}_2(\mathcal{H}, \mathcal{C}) \) or \(\mathfrak{sp}_2(\mathcal{H}, \mathcal{C}) \), where \(\mathfrak{o}_2(\mathcal{H}, \mathcal{C}) \) (resp. \(\mathfrak{sp}_2(\mathcal{H}, \mathcal{C}) \)) is the Lie algebra of \(O_2(\mathcal{H}^C) \) (resp. \(\mathfrak{Sp}_2(\mathcal{H}, \mathcal{C}) \)) introduced in Example 3.14 (resp. in Example 3.15).

Since \(O^{n.c.} \) is in particular strongly symplectic, by Theorem 4.4 in [12], the derivation defining \(O^{n.c.} \) can be written as \(D_x = [D, x] \) where \(D \) is a skew-Hermitian operator with finite spectrum. It follows that \(t := \text{Ker} D \) is \(+ \)-invariant. Since \(g^{n.c.} \) is in particular semi-simple, one has \(\langle x, y \rangle = \langle y^*, x^* \rangle \) for every \(x, y \) in \(g^{n.c.} \). Hence the orthogonal complement \(n \) of \(t \) in \(g^{n.c.} \) is also \(+ \)-invariant. Denote by \(K \) the isotropy subgroup of \(G^{n.c.} \) fixing \(0 \). Since \(n \) is an irreducible \(K \)-module, the bilinear form \(b \) on \(n \) defining the Riemannian metric of \(O^{n.c.} \) is proportional to the trace, that is: \(b(x, y) = \lambda \text{Tr} xy \), for \(x, y \) in \(n \) for some non-zero \(\lambda \in \mathbb{R} \). The condition \(b(x, x) > 0 \) for \(x \neq 0 \) together with the \(+ \)-invariance of \(n \) then implies that either \(n \subseteq \{ x \in g^{n.c.} \mid x^* = x \} \) or \(n \subseteq \{ x \in g^{n.c.} \mid x^* = -x \} \). Since \(g^{n.c.} \) is non-compact, the second possibility is fulfilled. Hence \(g := t \oplus n \) is a \(L^* \)-algebra of compact type, which is simple.

Let \(G \) be the connected \(L^* \)-group generated by the exponentials of operator in \(g \). The affine coadjoint orbit of \(G \) defined by the derivation \([D, .] \) is infinite-dimensional irreducible and Hermitian-symmetric, hence is isomorphic to one of the affine adjoint orbits listed in Theorem 1.11. The corollary then follows by duality (see Examples 3.12, 3.13, 16).

\(\square \)** Proof of Corollary 1.2:**

By Theorem (3.9) and the discussion after Theorem (4.2) in [11], every Hermitian-symmetric space of compact (resp. non-compact) type is isomorphic to the orthogonal product of irreducible Hermitian-symmetric spaces of compact (resp. non-compact) type. The irreducible pieces are of type I-VI and described in paragraph 3 in [10]. The types V and VI correspond to the exceptional Lie groups E6.
and E7, which are of finite dimension. By the finite-dimensional theory, finite-dimensional Hermitian-symmetric spaces are coadjoint orbits of their groups of isometries (see e.g. Theorem 8.89 in \[4\]). An infinite-dimensional irreducible Hermitian-symmetric space is of type I, II, III or IV, and is isomorphic (see paragraph 3 in \[10\]) to one of the affine coadjoint orbits listed in Theorem \[1.1\] or Corollary \[3.17\]. Both the restricted Grassmannian and the Grassmannian of \(p\)-dimensional subspaces of a separable Hilbert space, with \(p < +\infty\), are Hermitian-symmetric spaces of type I. Now the theorem follows by taking the product of the \(L^\ast\)-groups acting on each irreducible pieces.

Acknowledgments

Our thanks go to J.A. Wolf and K.-H. Neeb for very pleasant and useful discussions. The excellent working conditions provided at EPFL are gratefully acknowledged. We are thankful to the anonymous referee for carefully reading the manuscript, for many valuable suggestions and for having clarify the setting of the main theorem.

References

