
ISSN 0002-9920 (print)
ISSN 1088-9477 (online)

Volume 63, Number 4

of the American Mathematical Society
April 2016

Gauge Invariance of Degenerate 
Riemannian Metrics
page 342

Mathematics Awareness Month

page 352

Spring Sectional Sampler
page 359

Alexandre Grothendieck, 
1928–2014, Part 2
page 40

About the cover: (see page 365)



maximum
signed
curvature

unit
tangent
vector

minimum
signed
curvature

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−100

0

100

200

300

400

500

600



1

Gauge Invariance of degenerate

Riemannian metrics

Alice Barbara Tumpach

Abstract—To obtain a metric on the space of surfaces that is independent of parameterization (gauge invariance), we define a metric

on the space of repameterized surfaces that is degenerate in the direction of reparameterization.

F

1 INTRODUCTION

We want to be able to compare shapes of surfaces in R3 in a
way that does not depend on parameterizations. To accomplish
such so-called gauge invariance, we defined a metric on the
space of parameterized surfaces that is degenerate in the
direction of reparameterization. Mathematically, the space of
parametrized surfaces is a fiber bundle over the shape space of
unparameterized surfaces, as we will explain in section 2.2.1

1.1 Surfaces and diffeomorphisms
The surfaces we will consider in this note are surfaces which
are diffeomorphic to the unit sphere. In other words, the unit
sphere will be our model surface, and the surfaces we will
consider will be those that can be modeled out of it. To be
mathematically precise, these are orientable genus-0 smooth
compact surfaces, or equivalently orientable 2-dimensional
compact simply connected submanifolds of R3, and will be
called spherical surfaces in this note.

How to represent the unit sphere? The good thing about the
unit sphere is that only one chart suffices to cover it almost
completely. We will use spherical coordinates, with polar angle
✓ being greater than 0 (North pole) and less than ⇡ (South
pole) and azimuthal angle � being greater than or equal to
0 (Greenwich prime meridian) and less than 2⇡ (Greenwich
prime meridian again), see Fig. 1.

Fig. 1. Spherical coordinates.

What is a parameterization? What we mean mathematically by
a parameterization of a spherical surface is a diffeomorphism
from the unit sphere to this surface. In practice however, we
will need a discrete version of this notion : it will be a well-
behaved mapping from n⇥ p grid points on the sphere to n⇥
p points in R3. The distinction is that we will never have a
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Fig. 2. Parameterization of the sphere and of a hand.

formula for the diffeomorphism, but just the values taken by
the diffeomorphism on the vertices of a spherical grid. In order
to be able to speak to a computer, we will label the vertices
of our favorite spherical grid (for instance the one given by
uniformly placed points on a 2⇡ by ⇡ rectangle using spherical
coordinates, see Fig. 2) using two indices ranging from 1 to n
for the latitudes and from 1 to p for the longitudes. A computer
version of a parameterization is now a 3-sheeted (n, p)-matrix,
one sheet for each coordinate x, y and z of R3, containing the
coordinates x

ij

, y
ij

and z
ij

of the R3-point associated to the
spherical point with indices (i, j).

Fig. 3. Some triangulated surfaces from the Tosca dataset and their parameter-

ized versions.

How to find a parameterization of a given surface? Usually the
surfaces we would like to compare do not come with a formula.
These are objects of real life, and, unlike the sphere, it may be
difficult to make them fit some equations. A 3D-scanner may
help give a triangulation of the surfaces we are interested in
(i.e. a set of vertices and edges), but it is still a lot of work to
build a parameterization out of it. The surfaces used in this
paper come from the dataset Tosca (http://tosca.cs.technion.ac.
il/book/resources data.html) containing triangulated surfaces
parameterized by H. Laga in [2] (see Fig. 3).

How to represent a diffeomorphism? One can think of a diffeo-
morphism of the sphere as a bijection from the sphere to itself
mapping smooth curves to smooth curves, tangent spaces to
tangent spaces. To visualise a diffeomorphism, one can draw
a grid on the sphere and look at how the diffeomorphism
moves the grid points. The infinitesimal version of a smooth
diffeomorphism is a smooth vector field : at each surface point
there is a velocity vector attached, which says in which direc-

http://tosca.cs.technion.ac.il/book/resources_data.html
http://tosca.cs.technion.ac.il/book/resources_data.html
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Fig. 4. A vector field on the sphere (upper left), and a path of diffeomorphisms having this vector field as velocity at t = 0 (5 other spheres). Bottom line : action of this

path of diffeomorphisms on a cat and corresponding vector field.

tion and with which amplitude the point has to move. In fact,
the set of all smooth (orientation preserving) diffeomorphisms
of the unit sphere, denoted by Di↵

+
(S2

), forms a (Fréchet)
manifold, whose tangent space at the identity map is the space
of smooth vector fields. Moreover this manifold structure is
compatible with the group operation given by the composition
law, making Di↵

+
(S2

) into a Fréchet Lie group. In the upper line
of Fig. 4, we have depicted a path of diffeomorphisms starting
at the identity map, and the corresponding velocity vector field
at t = 0. To generate this picture, we used the following family
of Möbius transformations :

�(t) = exp t (�0.05 0.5
0.5 0.05 ) =

⇣
a(t) b(t)
c(t) d(t)

⌘
,

where the unit sphere is identified with C [ {1} under the
stereographic projection (see Fig. 5), and where �(t) acts on
C [ {1} by

z 7! a(t)z + b(t)

c(t)z + d(t)
.

Note that these diffeomorphisms do not preserve the North
and South poles, hence do not preserve the chart given by the
spherical coordinates.

Fig. 5. Stereographic projection and M

¨

obius transformation.

How to act by a diffeomorphism on a spherical surface? Given
a parameterization of a spherical surface, any diffeomorphism
of this surface can be obtained by precomposing the parame-
terization by a diffeomorphism of the sphere. In this sense, the
group of diffeomorphisms Di↵

+
(S2

) acts on a parameterized
surface by changing its parameterization. Recall however that
we do not have an explicit formula for the parameterization of
most of the surfaces we are interested in, but only the values
of the parameterization at some grid points. We therefore
need to use some interpolation function (we used the Matlab
function interp2) in order to approximate the values of the
parameterization on the spherical grid obtained after applying
a diffeomorphism on the sphere. In the bottom line of Fig. 4,
we have depicted the path of diffeomorphisms of a jumping
cat obtained by precomposing our initial parameterization by
the path of diffeomorphisms of the sphere illustrated in the
upper line of Fig. 4.

Is there a preferred parameterization of a spherical surface? Yes,
there is. Note that the surfaces we are considering are sitting
in the Euclidean ambient 3-dimensional space. It follows that
each tangent space at a given point of a spherical surface
(for example at the tip of the middle finger depicted in
Fig. 7) can be identified with a 2-dimensional vector subspace
of R3 to which the Euclidean scalar product of R3 can be
restricted. The smoothness of the surface then ensures that
these 2-dimensional scalar products on the tangent spaces
vary smoothly along the surface, defining what is called a
Riemannian metric on the surface. It follows that, on a spherical
surface, one is able to measure angles between two tangent
vectors anchored at the same surface point : this angle is exactly
the angle between these tangent vectors seen as vectors in R3

(see Fig. 7). One can also measures distances, in the same way
we are measuring distances on earth, by measuring the shortest
path drawn on earth’s surface (and not inside!) joining two
given points. In this context, saying that a spherical surface
is orientable means exactly that one can define on the surface
a unit normal vector field pointing outside the surface. This
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Fig. 6. Rotational alignment: two hands before and after the alignment (right column). Each hand is approximated by an ellipsoid (first 2 columns from the left). The

rotation used takes the axes of one ellipsoid to the axes of the other (middle column).

Fig. 7. Scalar product on the tangent plan to the tip of the middle finger of a

hand, and shortest path from the tip of the index finger to the tip of the thumb.

is enough to ensure that the surface is naturally endowed
with a complex structure, the complex structure in a given
tangent space being nothing but the rotation of Euclidean angle
+⇡/2 around the normal (the orientability helps defining the
direction of rotation in a coherent way, see Fig. 7). In other
words, the surfaces we are considering are Riemann surfaces.
Since they are compact and simply connected, the Uniformiza-
tion Theorem says that they are conformally equivalent to the
unit sphere. This means that, given a spherical surface, there
exists a homeomorphism, called the uniformization map, which
preserves the angles and transforms the unit sphere into the
surface. In particular, the uniformization map transforms the

coordinate grid into a grid which also has the property of
orthogonal intersections (for the orthogonality of vectors in
R3). Note that the parameterization of the hand given in Fig. 2
is not conformal since it does not preserve the orthogonality
of the grid. In fact, given a spherical surface, there are many
conformal maps from the unit sphere to it, as many as elements
in PSL(2,C). This may sound a lot since there are infinitely
many complex 2-by-2-matrices with determinant 1 (and the P
in PSL(2,C) only divides this amount by 2), but PSL(2,C)
is just a 3-dimensional complex Lie group, as opposed to
the infinite-dimensional Fréchet Lie group Di↵

+
(S2

). Hence,
to the question if there exists a preferred parameterization
of a spherical surface, a geometer will answer : Yes, modulo
PSL(2,C), there is a unique one.

So why not use this preferred parameterization? Because it is
hard to implement.

2 SHAPE ANALYSIS

If we want to compare shapes in R3, the first thing to do is
to state clearly what is relevant in the shape, and what is not.
Depending on our situation, one may for instance think of a
shape as a surface modulo rotation and/or modulo translation
and/or modulo scaling. Before comparing two surfaces, one may
therefore want to align them properly first, and do so in a
way that does not depend on the parameterizations. In the
next section, we explain how the first and second moments of
the surface can help us do that. In section 2.2, we explain the
fiber bundle structure of the space of parameterized spherical
surfaces. In section 2.3, we will explain what characterizes
a shape. In section 3, we will use this characterization to
define a Riemannian metric on the space of shapes and, using
section 2.2, implement it in a way that is independant of the
parameterizations (the reader interested in implementing this
section can consult [1], where precise algorithms are given).
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Fig. 8. Robustness of the approximating ellipsoid of a surface with respect to reparameterizations.

2.1 Alignement of two surfaces
In most situations, it makes sense to think of our spherical
surfaces as boundaries of 3D-volumes (the surface of a cat has
a meaning for us, precisely because it encloses a cat). In order
to scale a given surface, we will therefore compute the enclosed
volume V and divide each coordinate of surface points by
V 1/3. Accordingly, to center a surface, we will compute the
center of mass of the enclosed volume and substract it from
the coordinates of surfaces points. The center of mass, whose
coordinates are the first moments of the surface, is defined by
the following integral over the enclosed volume :

C =

Z ⇣
x

y

z

⌘
dVol.

In order to rotationally align our spherical surface, we will
compute the best ellipsoid that approximates the enclosed vol-
ume, and apply to the surface points the rotation that maps the
axes of the ellipsoid (with decreasing lengths) to the reference
axes. This rotation is uniquely defined if the approximating
ellipsoid is triaxial (i.e. the lengths of its principal axes are
distinct). As an example, Fig. 6 shows two hands that have
different orientations in space, the corresponding ellipsoids,
and the hands after rotation (with a gap to separate them in
order to facilitate visualization).

How to find the best ellipsoid that approximates a surface? What
we expect from the approximation of a surface by an ellipsoid
is at least that, if we start with an ellipsoid, then it returns
the ellipsoid itself. We expect also that if we change the
parameterization of the surface, the ellipsoid’s shape does not
change. To fulfill both conditions, we will need the second
moments of the surface defined as the following integral over
the enclosed volume

M =

Z ✓
x

2
xy xz

xy y

2
yz

xz xy z

2

◆
dvol.

The resulting matrix is a symmetric real matrix, hence can be
diagonalized in an orthonormal basis. Its eigenvectors define
the rotation we are looking for (more precisely its inverse). To

illustrate the robustness of the approximating ellipsoid under
reparameterization, we show in Fig. 8 different parameteri-
zations of a cat (middle) obtained by pre-composing a given
parameterization by a diffeomorphism of the sphere (bottom)
and the resulting ellipsoid (top).

How to compute the first and second moments of a surface? Recall
that, given a spherical surface, we do not have any formula
for a parameterization of it. Moreover we have only a finite
number of points on the surface. The integration procedure
is therefore replaced by the sum over the oriented tetrahedra
defined by two edges on the surface, and a surface point (see
Fig. 11). Recall that the volume of a tetrahedron built on three
vectors v1, v2 and v3 reads 1

6 det(v1, v2, v3). It is important
to keep track of the orientation of the surface (in Fig. 11,
the volume of the red tetrahedron is coming with a + sign,
whereas the volume of the blue one is coming with a �
sign). The value of the integral of a polynomial function on
a tetrahedron can be expressed (exactly) using just the values
taken by the polynomial at a finite number of points on the
tetrahedron. For instance, the integral of x2 over the tetrahe-
dron with vertices 0, v1 = (x1, y1, z1), v2 = (x2, y2, z2), and
v3 = (x3, y3, z3) is the volume of the tetrahedron multiplied
by 1

20 ⇥ [(x1 + x2)
2
+ (x2 + x3)

2
+ (x1 + x3)

2
].

 

0
0

Fig. 11. Integration over a triangulated surface.
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Fig. 9. Two paths in pre-shape space with the same sequence of shapes but with different parameterizations of the corresponding shapes.

Fig. 10. Decomposition of a vector field on the cat (green) into a vector field orthogonal to the cat (black) and a vector field tangent to the cat (red).

2.2 Fiber bundle structure of pre-shape space

In the introduction, we stressed the distinction between the set
of all (aligned) parameterized spherical surfaces, called pre-shape
space, and the set of all (aligned) spherical surfaces, called shape
space. Recall that the group Di↵

+
(S2

) of (orientation preserv-
ing) diffeomorphisms of the unit sphere acts on the pre-shape
space simply by reparameterization. It is noteworthy that two
parameterized surfaces correspond to the same surface if and
only if one can pre-compose the first parameterization by a
diffeomorphism of the sphere to obtain the second parameter-
ization. One can therefore put an equivalence relation on the
pre-shape space, by saying that two parameterized surfaces
are equivalent if and only if they can by related by an element
of the group Di↵

+
(S2

), i.e. if and only if they represent the
same surface. The equivalence classes are also called the orbits
of the group Di↵

+
(S2

) acting on pre-shape space. Note that
two distinct orbits do not intersect, therefore the set of orbits
fibers the pre-shape space in a nice way. There is a one to
one correspondence between the set of orbits and the shape
space. One says that the shape space is the quotient space of the
preshape space by the action of the group of diffeomorphisms
of the sphere. In Fig. 9, we have illustrated this fiber bundle
structure : the blue surfaces at the bottom line are elements in
the shape space (no parameterization), and the vertical lines
above them symbolize the corresponding fibers in pre-shape
space. Two elements in each fiber are depicted, for instance in
the first left fiber one can see two parameterized horses which
correspond to the same shape.

The pre-shape space is a smooth (Fréchet) manifold, meaning
that locally it looks like a vector space, in the same sense

that the earth looks locally like a plane. In fact, the pre-
shape space is an open set in the vector space C1

(S2,R3
)

of smooth maps from the unit sphere into R3. Moreover,
the fiber bundle structure described above is a smooth one,
meaning in particular that the tangent space at some pre-shape
point (which can be identified with C1

(S2,R3
) itself) can be

decomposed into the tangent space to the fiber passing through
this point and some complement. Since we are dealing with
surfaces embedded in R3, there is a natural complement to
the tangent space of the fibers (in mathematical terminology,
there is a natural connection on this fiber bundle). Indeed, let
us describe the tangent space of the fiber at some pre-shape
point, for instance at the parameterization of the cat depicted
in Fig. 4. By definition, a tangent vector to the fiber passing
through this parameterized cat is the velocity vector at t = 0

of a smooth curve drawn in the fiber whose initial point at
t = 0 is precisely the parameterized cat we are considering.
Such a smooth curve is depicted at the bottom line of Fig. 4,
and is obtained by the action on the parameterized cat of a
smooth curve in the diffeomorphism group of S2 starting at
the identity (upper line of Fig. 4). Hence the tangent space to
the fiber passing through the parameterized cat is the space
of tangent vector fields to the surface of the cat. A natural
complement to this tangent space in C1

(S2,R3
) (which can

be identified with the space of R3-valued vector fields on the
cat using the parameterization at hand) is the space of vector
fields which are orthogonal to the surface of the cat, for the
scalar product of the Euclidean space R3. In Fig. 10, we have
depicted the decomposition of an element in C1

(S2,R3
) into

the sum of a vector field tangent to the cat and a vector field
orthogonal to the cat.
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Fig. 12. From left to right: A hand with the tangent plane and normal at the tip of the index finger; 3-neighborhood of the tip of the index finger; tip of the index finger

after rotation; a closeup; approximating second order polynomial.

2.3 Characterization of a shape

If we want to compare shapes, as opposed to parameterized
surfaces, one has to understand what is characteristic of the
shape, i.e. what is independent of the parameterization. Recall
that on a spherical surface one can measure distances, and
angles, just because the surface is sitting in the Euclidean 3-
dimensional space. This is encoded by the Riemannian metric
on the spherical surface obtained by restricting the Euclidean
metric of R3, and is called the first fundamental form of the
surface. The second fundamental form is encoding how the
surface is embedded into R3, and combine with the first
fundamental form to define the Shape operator of the surface,
which tells us how the surface is bent in R3. The shape operator
is related to the differential of the normal vector field seen as
an application, called Gauss map, from the surface into the unit
sphere, assigning to each point of the surface the unit normal
vector to the surface at this point (identified with an element
of the unit sphere). The eigenvalues of the Shape operator at
a given point, called principal curvatures, are the minimal and
maximal curvatures that a curve, obtained as intersection of a
plane containing the normal at this point with the surface, can
have. For instance, the principal curvatures at any point of a
plane are both 0, whereas the principal curvatures at any point
of a sphere of radius R are both 1/R. It is a remarkable fact
observed by Gauss that the product of the principal curvatures
(called Gauss curvature nowadays) depends only on the first
fundamental form (Theorema Egregium). The half sum of
the principal curvatures is the mean curvature and is what is
relevant in the formation of soap films.

How to compute the curvature at some surface point? To compute
the principal curvatures 1 and 2 at a given point of a surface,
e.g. at the tip of the index finger of the hand depicted in Fig. 12,
we first compute the normal at this point by averaging the
normals of the facets having this point as vertex. A tangent
plane is then defined as the plane orthogonal to the normal
passing through the point under consideration. A neighbor-
hood of the point is isolated from the surface (we use a 3-
neighborhood, see second drawing in Fig. 12). We then apply
a rigid transformation to center the point at the origin and to
align the tangent plane with the xy-plane (see third drawing,
and a closeup in the fourth drawing). After that, we compute
the second order polynomial P (x, y) = a1x

2
+ a2y

2
+ a3xy +

a4x+ a5y + a6, which minimizes the sum
P

i

(z
i

� P (x
i

, y
i

))

2

over the points of the centered and rotated neighborhood.
Then, the Gauss curvature at that point is approximated by
K = 4a1a2 � a2

3, the mean curvature by H = a1 + a2, and the
principal curvatures by 1 = a1 + a2 +

p
((a1 � a2)

2
+ a2

3) and
2 = a1 + a2 �

p
((a1 � a2)

2
+ a2

3).
What characterizes a spherical surface? It follows from the

fundamental theorem of surface theory that two parameterized
(smooth) surfaces f1 and f2 having the same first and second
fundamental forms differ at most by a translation and a
rotation. Therefore, in order to characterize an aligned surface,
one can use its first and second fundamental forms, or better,
its first fundamental form g and its Gauss map n.

3 GAUGE INVARIANCE AND RIEMANNIAN METRICS

3.1 Elastic Riemannian Metric
Recall that a Riemannian metric on a manifold is a collection
of scalar products on the tangent spaces to the manifold,
which vary smoothly when one travels along the manifold.
In the Introduction, we have seen that the spherical surfaces
are naturally Riemannian manifolds when endowed with the
restriction of the Euclidean metric of R3. Here we are talking
about the same mathematical notion of Riemannian manifold,
but on a higher level of abstraction : indeed our manifold is
now the set of all parameterized spherical surfaces, called pre-
shape space, and the tangent space at a given parameterized
surface is the vector space C1

(S2,R3
) (see section 2.2). The

elastic metric is a (3-parameter family of) Riemannian metric(s)
on pre-shape space, which quantifies infinitesimal variations of
the first fundamental form g and of the normal vector field n
according to the following formula in which �, a, c are positive
parameters:

hh�f1, �f2iif =

Z

S2
ds|g| 12 �

aTr(g�1�g1 g
�1�g2)

+

�

2

Tr(g�1�g1) Tr(g
�1�g2) +c�n1 · �n2} , (1)

where f : S2 ! R3 is a parameterization of a spherical surface,
�f

i

denotes variations of f , �g
i

the corresponding variations
of the first fundamental form g and �n

i

the corresponding
variations of the normal vector field n (for more information
about the use of this metric in computer science see [1]).
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Fig. 13. Deformation of hand with a missing finger into a full hand, and diverse parameterizations of this deformation.

3.2 Quotient Riemannian metric

One way to define a Riemannian structure on shape space is to
put a Riemannian metric on pre-shape space that is invariant
by the action of the diffeomorphism group. It is not hard to
see that the elastic metric defined in the previous section does
have this property. The resulting Riemannian metric on shape
space is called the quotient metric.

How is the quotient metric defined? Consider two infinitesimal
deformations X and Y of the hand with a missing finger
depicted in Fig.13. Choose a parameterization f of this hand (in
the fiber O

f

above the shape of the hand) and two infinitesimal
deformations ˜X and ˜Y of this parameterized hand that project
onto X and Y . There are many possible choices for ˜X and ˜Y
since adding an infinitesimal deformation tangent to the fiber
O

f

will not change the projection onto the tangent space to
shape space. But there is a choice which is better relative to the
Riemannian metric on pre-shape space we started with : it is
when ˜X and ˜Y are orthogonal to the space T

f

O
f

. In that case,
the norms of ˜X and ˜Y are minimal (one says that ˜X and ˜Y are

horizontal for the connexion defined by the Riemannian metric
on pre-shape space). The scalar product of X and Y is then
defined as the scalar product of these minimal ˜X and ˜Y . The
invariance of the metric ensures that the real number obtained
this way does not depend on the choice of the parameterization
f of the hand.

One drawback in this definition is that usually the minimal
˜X and ˜Y are hard to find, in particular, for the elastic metric de-

fined in the previous section. But there is a second, even more
problematic drawback. Indeed, for the quotient Riemannian
metric, two paths of parameterized surfaces projecting to the
same path of unparameterized surfaces will have (in general)
different lengths. As an example we have depicted in Fig. 9 two
deformations from a parameterized horse to a parameterized
jumping cat, that project to the same sequence of (blue) shapes.
Because the elastic metric measures also deformations along
the fibers, i.e. variations of the “height” in Fig. 9, these two
deformations of parameterized surfaces do not have the same
lengths in pre-shape space.
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3.3 Defining Gauge Invariance
Contrary to the situation described in the previous section, we
would like to be able to measure the length of a metamorphosis
between two surfaces in a manner that does not depend on the
parameterizations used along the way. This requirement is in
the same spirit as the requirement that the length of a road be
independant of the speed profile of cars traveling on it (and
measuring distances using their internal machinery). More
precisely, we would like the length L[ ], for any path  in pre-
shape space, to match the length of the path t 7!  (t) � �(t),
where t 7! �(t) 2 Diff+(S2

) is any time-dependent reparame-
terization of S2. Formally, the group G := C1

([0, 1],Diff+(S2
))

of time-dependent reparameterizations acts on the space of pre-
shape paths by reparameterizing each shape of the path. The
group G is called the gauge group, and one says that G acts by
gauge transformations. We are looking for a framework where
the length of a path is invariant to gauge transformations.

How to build a gauge invariant framework? The idea is very
simple. Considering the pre-shape space as a fiber bundle over
the shape space (see section 2.2), recall that the tangent space
to the fiber passing through a given parameterized surface f ,
denoted by T

f

O, has a natural complement defined as the
space of normal vector fields to the surface, and denoted by
Nor

f

. Instead of starting with a Riemannian metric on pre-
shape space (for which vector fields tangent to the surfaces
have positive norm), we will define a degenerate Riemannian
metric on pre-shape space in the following way. First, we will
declare that T

f

O
f

and Nor
f

are orthogonal subspaces. Second,
we will declare that the scalar product of any two elements in
T
f

O
f

is 0. At last, we will put a Di↵

+
(S2

)-invariant scalar
product on the space of normal vector fields.

Since the tangent space to an unparameterized spherical
surface can be identified with the space of normal vector fields
(in fact the space of normal deformations is what is used to
define the manifold structure of shape space), this procedure
defines a Riemannian metric on shape space (the Di↵

+
(S2

)-
invariance ensures that the scalar product of two normal vector
fields does not depend on the parameterization of the surface).
Moreover, because we have chosen the degeneracy of the
metric to match exactly the tangent space to the fibers, the
resulting Riemannian metric on shape space is non-degenerate.
In fact any Riemannian metric on shape space can be obtained
this way (just reverse the construction).

3.4 Gauge Invariant metric
It follows from the previous section that, in order to define a
gauge invariant (degenerate) Riemannian metric on pre-shape
space, it is sufficient to specify the scalar product of two normal
vector fields, the only requirement being that this scalar prod-
uct be invariant by the action of the diffeomorphism group.
Since the elastic metric defined in section 3.1 is Di↵

+
(S2

)-
invariant, one can for instance use its restriction to the space
of normal vector fields. The resulting (non-degenerate) Rie-
mannian metric on shape space can be expressed using the
principal curvatures 1 and 2 and the first fundamental form
g in the following way :

((hn, kn))
S

=

R
S

dS
�
hk

�
2a(1 � 2)

2

+2(�+ a)(1 + 2)
2
�
+ c�n1 · �n2}, (2)

where S is any spherical surface, h and k any real functions on
S, and n the unit normal vector field on S pointing outward.
The difference 1 � 2 in the first term has been called the

normal deformation of the surface. The sum 1+2 is twice the
mean curvature which measures variations of the area of local
patches. These two terms are related to the shape index idx =

2
⇡

arctan1+2
1�2

. The last term in Eqn. (2) measures variations of
the normal vector field, i.e. bending.

Note that this Riemannian metric on shape space differs
from the quotient metric defined in section 3.2. In fact, quotient
metric and gauge invariant metric coincide if and only if Nor

f

is orthogonal to T
f

O
f

for the Riemannian metric on pre-shape
space we started with, a property that is not satisfied by the
elastic metric (1).

4 CONCLUSION

What is the advantage of a gauge invariant metric? Two paths
in pre-shape space that project to the same path in shape
space may have different lengths in the Riemannian setting,
but the same length in the present framework. For instance,
in Fig. 13 any two paths that project onto the metamorphosis
of a growing finger depicted in the bottom line have the same
length in the gauge invariant setting. The two paths depicted in
Fig. 9 from a parameterized horse to a parameterized jumping
cat have the same length (as computed by our programs, see
[1]). Moreover a path in preshape space which consists just in
reparameterizing a shape, as for example the vertical paths in
Fig. 13, will have non-zero length in the Riemannian setting,
but zero length for the degenerate gauge-invariant Riemannian
metric on pre-shape space. For more information on how to use
this framework for automatic classification of shapes, we refer
the reader to the original paper [1].
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