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Abstract

We investigate the analysis of trajectories that are observed under arbitrary time evolutions. We propose a new
Riemannian metric on the shape space of trajectories. The resulting metric is invariant with respect to time-warpings
(or temporal re-parameterizations) of trajectories. We apply this framework to human actions recognition and to
vehicle trajectory analysis.

1. Introduction

In this paper we focus on problems that deal with
comparison of shapes of trajectories. One motivation
comes from action recognition where features extracted
from video (or RGB Depth video) frames are naturally
represented by elements of nonlinear manifolds, and
where temporal evolutions of an action can be modeled
by trajectories on those manifolds. However, as men-
tionned by [1], [2] and [3], the execution rate (veloc-
ity) of activities may often vary. It follows that, with-
out the execution invariance, two identical actions can
be viewed as very di↵erent trajectories. Typical ap-
proaches for accounting for variations in execution rate
are either directly based on the dynamic time warping
(DTW) algorithm or some variation of this algorithm.

One promising idea is to formulate the features mo-
tion as trajectories. Matikainen et al. [4] present
a method for using the trajectories of tracked feature
points in a bag of words paradigm for video action
recognition. Despite of the promising results obtained,
the authors do not take into account the geometric infor-
mation of the trajectories.

More recently, in the case of human skeleton in RGB-
Depth images, Devianne et al. [5] propose to formu-
late the actions recognition as the problem of computing
a distance between trajectories generated by the joints
moving during the action. An action is a parameterized
path on the shape space of the human skeleton. Sim-
ilar to the ideas of Devianne et al., Su et al. [6] pro-
pose a metric which takes into account time-warping on
a Riemannian manifold. They propose a metric, which
allows the regitration of trajectories and compute statis-
tics of the trajectories. Su et al. [7] apply this framework

to the problem of visual speech recognition. All these
approachs require a registration of trajectories. In the
present paper, we propose a new theoretical framework
which uses the shape information of trajectories. The
main contributions of this paper are:

• The proposed framework is independent of time-
re-parameterization of trajectories in R3.

• A new rate-invariant metric on the shape space of
trajectories is proposed. No trajectories registra-
tion is required.

• We demonstrate the use of this framework theory
in two computer vision applications.

The rest of this paper is organized as follows. Section
2 presents the gauge invariant framework for comparing
shapes. Section 3 presents applications of the proposed
approach to action recognition and to vehicle trajecto-
ries recognition.

2. Mathematical framework

The trajectory of a point in Rn can describe the evo-
lution of a hurricane on the Earth, of a car driver in a
city, or of the joints of a tennis player. There are two
principal characteristics of the movement: the velocity
of movement and the route. In this paper, we are only
interested in the route used by the point, i.e. we want
to be able to compare the routes of two di↵erent points
irrespective of the velocity of the movements. The cor-
responding mathematical objects are the following : a
point-trajectory will be synonymous with a parameter-
ized curve f : [0, 1] ! Rn and the route used by the
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point f (t) will be synonymous with the shape [ f ] of the
curve f , which is the equivalence class of f modulo
the action of the re-parameterization group Di↵+([0, 1]).
The shape [ f ] of the parameterized curve f will be also
called the un-parameterized curve corresponding to f .
We recall this quotient construction in the next section.

2.1. Space of Trajectory Shapes

In this section the space of interest is the space of
un-parameterized smooth curves in Rn. A curve in Rn

can be represented by a smooth function f : [0,TE] !
Rn in the following way : given f , the corresponding
curve is the trajectory of the point f (t) when t ranges in
[0,TE]. The maximal value TE of time is the duration
of execution of the movement and will be set equal to
TE = 1. However, we will keep writing TE instead of
1 in the body of the paper in order to avoid confusion
with another duration TD which will be the duration of
deformation of a movement into another and will appear
below. Two functions f1 and f2 represent the same shape
or route if their images are the same (see Figure 1), and
this happens if and only if f2 = f1 � �, where � is a
re-parameterization of the interval [0,TE]. To be fully
precise the spaceF of functions considered in this paper
is

F = { f 2 C1([0,TE],Rn) | f 0(t)^ f 00(t) , 0, 8t 2 [0,TE]},

and the space of shapes is denoted by S, and is the
quotient space of the space F by the group of time re-
parameterizations � = Di↵+([0,TE]) :

Shape space S = F /� space of functions
modulo re-parameterization.

Both F and S are infinite-dimensional smooth Fréchet
manifolds.

f_1

[f_1] = [f_2]
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f_1(1) = f_2(1)
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Figure 1: Two parameterized curves f1 and f2 corresponding to the
same shape [ f1] = [ f2], and a parameterized curve f3 corresponding
to a di↵erent shape [ f3].

2.2. Comparison of shapes
In order to compare two shapes, i.e. two un-

parameterized curves S 1 and S 2 in S, we will quantify
the minimal energy needed to deform one shape into the
other. To define an appropriate energy function, we will
endow S with a Riemannian metric ((·, ·)). A Rieman-
nian metric allows to compute the norm of a tangent
vector to S. Note that a tangent vector to the space S
at some curve S 1 is an infinitesimal deformation of S 1
which is given by a vector field along S 1. A deforma-
tion s 7!  (s) of one un-parameterized curve S 1 into
another one S 2 is a metamorphosis of un-parameterized
curves such that at deformation-time 0, the shape is S 1,
i.e.  (0) = S 1, and at deformation-time TD the shape
is S 2, i.e.  (TD) = S 2. Given a deformation  relating
two shapes S 1 and S 2, one can compute the energy of
deformation E( ) using the Riemannian metric by inte-
grating along the deformation the squared-norm of the
velocity vector  s =

d 
ds (s) of the deformation :

E( ) =
Z TD

0
(( s(s), s(s))) (s) ds. (1)

Analogously, one can compute the length L( ) of the
deformation  by integrating the norm of the velocity
vector :

L( ) =
Z TD

0

q
(( s(s), s(s))) (s)ds. (2)

Of course, there are many possible deformations of S 1
into S 2, but the energy being positive (since it is the
integral of a positive function), it has a minimum. A
deformation having the minimal value of energy is re-
markable and is a geodesic. The minimal value of
the length is called the geodesic distance between S 1
and S 2. The geodesic distance between two curves S 1
and S 2 is therefore given by :

dS(S 1, S 2) = inf :[0,TD]!S, (0)=S 1, (1)=S 2 L( ),

where the infimum is taken over all deformations from
S 1 to S 2.

2.3. From shapes to functions
Remark that to define the distance between two

un-parameterized curves using a Riemannian frame-
work, we needed to speak about deformations of un-
parameterized curves or shapes. In practice, instead of
handling shapes directly, it is more convenient to handle
functions f representing shapes. Indeed the curves we
consider are given by the positions of sensors with re-
spect to time, i.e. by functions f on a time-interval with
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values in Euclidean space. Therefore, instead of work-
ing on the space S directly, we will work on the space
of functions F , and the deformation space which will
play a predominant role will be the space of deforma-
tions of functions. Let us therefore introduce the space
of deformations :

D := C1([0,TD],F ),

which is a smooth Fréchet manifold.

Figure 2: Upper frame : initial curve in red, final curve in blue; middle
frame : a deformation of the red curve into the blue one; lower frame :
velocity vector field of the deformation at 4 deformation-times (initial
time, 2 intermediate times, and final time).

Note that, at this stage, there are two parameters rep-
resenting an evolution : the parameter t corresponding
to the velocity of execution of a movement represented
by a function f (t), which will be called the execution-
time and ranges from 0 to TE , and the parameter s cor-
responding to the deformation  of a movement (more

precisely of a function representing a movement) into
another, which will be called the deformation-time and
ranges from 0 to TD. To have a picture in mind con-
sider the two curves depicted in the upper frame of Fig-
ure 2. A metamorphosis from the red curve into the
blue one is depicted in the middle frame of Figure 2. It
is a continuous deformation of the first curve into the
other. The execution-time axis is the same as the one
used in the upper frame of Figure 2. The deformation-
time axis is the one used to draw intermediate curves,
interpolating between the red and blue curves. In the
last frame of Figure 2, the starting red curve, the ending
blue curve, and two intermediate curves are depicted, as
well as the velocity vector field of the deformation (in
green) at these four deformation-times.

2.4. Drawback of using functions
The drawback of using functions to encode the vari-

ation of the shape of curves is that it introduces vari-
ability in the way curves are parameterized. Recall
that two parameterized curves f1 and f2 correspond to
the same shape if and only if f1(t) = f2(�(t)) for any
t 2 [0,TE], where � belongs to the reparameterization
group � := Di↵+([0,TE]). Analogously, two deforma-
tions  1 and  2 correspond to the same parameterized
metamorphosis of un-parameterized curves if

 1(s, t) =  2(s, �(s, t)), (3)

for any t 2 [0,TE] and s 2 [0,TD], where this time � be-
longs belongs to the group G := C1([0,TD],�) of time-
dependent reparameterizations. The relation (3) will be
written

 1 = �
�1 ·  2 (4)

for short. Note that at each deformation-time s 2
[0,TD], the function t 7! �(s, t) belongs to � and is a re-
parameterization of the curve t 7!  2(s, t). The group
G is called the gauge group, and one says that G acts by
gauge transformations on the space of deformationsD.

2.5. Choice of a Riemannian metric on Shape space
Recall that the unit tangent vector field to the param-

eterized curve f is defined as ~v = f 0

k f 0k , the unit binormal
is ~b = f 0^ f 00

k f 0^ f 00k and the unit normal is ~n = ~b ^ ~v. Any
parameterized curve f can be re-parameterized accord-
ing to the arc-length l =

R TE

0 k f 0(t)kdt into a curve with
constant speed. If � f is a function taking any t 2 [0,TE]
to a vector of Rn based at f (t) (i.e. � f 2 T fF ), then its
derivative with respect to arc-length is defined as

Dl(� f )(t) :=
(� f )0(t)
k f 0(t)k .
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Let us introduce the following Riemannian metric on
the space of parameterized curves F :

Ga,b,c(� f , � f ) =R TE

0

⇣
ahDl� f ,~vi2 + bhDl� f ,~ni2 + chDl� f ,~bi2

⌘
k f 0kdt

(5)
where � f 2 T fF and a, b, c are positive constants. For
c = 0, this metric was introduced in [8] and called an
elastic metric. It was shown in [9] that it is, in the case
of plane curves, a flat Riemannian metric.

The important property of this metric on F is that it is
�-invariant, that is Ga,b,c(� f , � f ) = Ga,b,c(� f � �, � f � �),
for any re-parameterization � 2 � = Di↵+([0,TE]).
One consequence of this property is that it induces a
Riemannian metric on the quotient space S such that
the quotient map is a Riemannian submersion. How-
ever to compute the quotient Riemannian metric on S,
an optimization over the infinite-dimensional group of
re-parameterizations is needed, leading to extra com-
putational costs. The comparison of shapes using the
quotient elastic metric via an optimization over the re-
parameterization group has been implemented in [8].

In the present paper, we want to avoid the optimiza-
tion step in order to reduce computational cost. For
this purpose, we will use another consequence of the �-
invariance of the metric Ga,b,c. Namely that its restric-
tion to the normal vector fields defines a Riemannian
metric on the quotient space, which is di↵erent from
the quotient metric but as good as the quotient metric
for comparing shapes, and which has the advantage of
giving the same ‘distance’ d( f1, f2) = d( f 01 , f 02) for any
parameterized curves f 01 2 [ f1] and f 02 2 [ f2]. Let us first
explain what we mean by normal vector fields.

Definition 1. A vector field V along a parameterized
curve f is said to be a normal vector field if V(t) is or-
thogonal to the unit tangent vector field ~v(t) = f 0(t)

k f 0(t)k , for
any t 2 [0,TE] :

hV(t),~v(t)i = 0, 8t 2 [0,TE],

where h·, ·i denotes the Euclidean scalar product of Rn.

In a complementary manner, we define the space of
tangent vector fields as follows.

Definition 2. A vector field V along a parameterized
curve f is said to be a tangent vector field if

V(t) = u(t) ~v(t), 8t 2 [0,TE]

for a real-valued function u : [0,TE]! R.

Note that the tangent vector fields are precisely the
vector fields generated by the infinitesimal action of the
re-parameterization group �. Indeed, an infinitesimal
re-parameterization of a parameterized curve f does not
change the shape of f , hence can only result in a rear-
rangement of the points along the curve f . Note also
that, given a vector field V along f , we will denote by
VT the component of V tangent to f , and by V? the
component of V orthogonal to f . One has :

VT = hV,~vi~v

and
V? = V � hV,~vi~v.

Hence V = V? + VT . Then we have the following :

Proposition 1. The non-negative semi-definite inner
product on F defined by

((� f , � f )) f := Ga,b,c(� f?, � f?) (6)

induces a Riemannian metric on the quotient space S
and satisfies the gauge invariance condition

L( ) = L(� ·  ), (7)

for any time-dependent re-parameterization � 2 G =
C1([0,TD],�), where

L( ) =
Z TD

0

q
(( s(s), s(s))) (s)ds (8)

is the length of the deformation  .

Proof. The idea of the proof is that the product
((� f , � f )) f is zero precisely when � f? = 0, or equiv-
alently when � f is tangent to the parameterized curve
f . This happens if and only if � f is generated by an
infinitesimal re-parameterization of the parameterized
curve f . Taking the quotient by the re-parameterization
group � amounts therefore precisely to cancelling out
the tangent vector fields. Hence the resulting inner prod-
uct on shape space is positive-definite and defines a
Riemannian metric on S. The gauge-invariance of the
length is a direct consequence of the fact that the gauge
group generates vector fields at which the inner product
(6) vanishes.

Corollary 1. The Riemannian distance dS on the Shape
space S for the Riemannian metric induced by (6) sat-
isfies :

dS([ f1], [ f2]) = d( f 01 , f 02),

for any parameterized curves f 01 2 [ f1] and f 02 2 [ f2],
where

d( f 01 , f 02) = inf :[0,TD]!F , (0)= f 01 , (1)= f 02
L( ). (9)
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The practical consequence of the previous corollary
is that, contrary to the Riemannian framework on the
space of functions F , any pair of functions f1 and f2
representing two given shapes S 1 and S 2 respectively is
good enough to compute the geodesic distance in Shape
spaceS. Recall that whenF is endowed with a Rieman-
nian metric, the geodesic distance in shape space be-
tween S 1 and S 2 is obtained by minimizing over the re-
parameterization group the geodesic distance between
f1 and f2 � � where f1 and f2 are such that [ f1] = S 1
[ f2] = S 2, and where � 2 �. This minimization is nec-
essary in the Riemannian framework on F , since the
geodesic distance varies when moving in the fiber of
the quotient map F ! S. In the present framework,
the function d(·, ·) defined by (9) is not properly speak-
ing a distance function on F since d( f1, f1 � �) = 0 for
any � 2 �, so the inner product (6) on F does not de-
fine a Riemannian metric on F since it has a kernel.
But the kernel has been chosen to ensure that the func-
tion d( f 01 , f 02) does not vary when f 01 and f 02 are moving
independently in [ f 01] = S 1 and [ f 02] = S 2 (contrary
to the geodesic distance in a Riemannian framework).
This property is a consequence of the vanishing of the
inner product on tangent vector fields together with the
�-invariance inherited from the �-invariance of the elas-
tic metric Ga,b,c and of the space of normal vector fields.

2.6. Implementation of the Rate-invariant comparison
of shapes

As mentioned before, the advantage of this gauge-
invariant construction is that there is no need to optimize
over the re-parameterization group. In practice, the de-
formation cost function used to compare two shapes
S 1 = [ f1] and S 2 = [ f2] is :

E = inf
 :[0,TD]!F |, (0)= f1, (TD)= f2

E( ),

where

E( ) =
Z TD

0
Ga,b,c

 
d 
ds

?
,

d 
ds

?!
ds,

and
d 
ds

?
=

d 
ds
�

*
d 
ds
,~v

+
~v.

The infimum in the definition of the cost function E will
be approximated using a path-straightening method ex-
plained in detail in Algorithm 1. The algorithm has as
input two parameterized curves f1 and f2 representing
two shapes [ f1] and [ f2], and a basis of perturbation B.
An element of B is a vector field on the path connecting
f1 to f2.

Input: Two trajectories f1 and f2, a basis of
perturbation B.

Output: The minimal energy needed to deform f1
into f2 given by the value of the cost
function E.

Set 5E = 1.
1- Pre-processing step : i = 1, 2 decompose fi into
Fourier series
fi(t) = a0 +

P
m am cos

⇣
2⇡m
TE

t
⌘
+ bm sin

⇣
2⇡m
TE

t
⌘

where
a0, am and bm are constant vectors in Rn and cut
the high-frequency components, i.e. replace fi by
f̃i = a0 +

PM
m am cos

⇣
2⇡m
TE

t
⌘
+ bm sin

⇣
2⇡m
TE

t
⌘

for
some chosen M.

2- for i = 1, 2 parameterize f̃i by arc-length and
resample it uniformly using a spline interpolation.

3- Initialize the path  between f̃1 and f̃2 by the
linear interpolation between f̃1 and f̃2.

while 5E > 10�3 do
4- Compute the energy E of the path  .
5- Set  upd = 0.
for ind  1 to size(B) do

6- Add a perturbation to the current path  :
 eps =  + ✏1 B(ind), where B(ind) is the
element of the pertubation basis B of
index ind.

7- Compute the energy Eeps of the
perturbed path  eps.

8- Compute the gradient of energy 5Eeps in
the direction B(ind) using the
approximation 5Eeps ⇠ Eeps�E

✏1
.

9- Compute the updating path:
 upd =  upd + 5E ·G(ind)

end
10- Update the path:  =  � ✏2 upd

end
Algorithm 1: Computation of the cost function E.

3. Applications

3.1. Human actions recognition

An action is a sequence of frames forming a movie.
Typical actions are walking, running, rotating. The
speed of execution of the action induces variability that
one would like to remove. Indeed, the walk can be slow
or fast, but the movements accomplished in a fast walk
are closer to the ones accomplished in a slow walk then
in a run. In the context of action recognition, one major
challenge is to be able to distinguish actions like a fast
walk and a slow run.

The distribution of activity-specific temporal warp-
ings, represents the space of all permissible time-

5



warping transformations for each activity [1]. During
actions, trajectories of skeleton’s joints are built and can
be analyzed for classifing the actions. An example of a
skeleton extracted from the Kinect stream is reported in
Figure 3.1 (at the right). The depth and the color stream
are also reported in this Figure.

Several authors [10, 11, 12] use the skeleton extracted
using the Kinect for action recognition. In Figure 4,
we report the skeleton’s tracking during human actions.
The first two rows report the same action with di↵erent
rates. It is clear that the trajectories generated by joints
present time-warping transformations and this is a chal-
lenging task in action recognition.

Using the Kinect, the human skeleton can be ex-
tracted from depth images in real-time thanks to the
work proposed by Shotton et al.[13] where a real-time
method is defined to accurately predict 3D positions of
body joints (20 joints) in individual depth maps without
using any temporal information.

For given human action sequences, we propose
to compare the pairwise trajectories of corresponding
joints using the gauge invariant framework described in
the previous section. The sum over all joints of the re-
sulting distances represents the dissimilarity score. This
score is used for human action recognition. We no-
tice that we detect the specific case when the two cor-
responding joints do not move considerably. In this
case, the distance is forced to zero and the calculation
is avoided. This idea is illustrated in Fig. 4. The tra-
jectories illustrated in the upper two rows correspond to
the same action executed with di↵erent rates. However,
the action corresponding to the trajectories in the two
lower row is di↵erent. The trajectories generated by the
same action present similar shapes with di↵erent time
execution. In this case, using the gauge invariant frame-
work presented previously, we argue that the distance
between two trajectories corresponding to the same ac-
tion will be small without any need for time alignment.

We propose to use data from a public dataset : MSR
Action 3D dataset [10] on which many methods have
been evaluated. This dataset includes 20 actions per-
formed by 10 persons facing the camera. Each action
is performed 2 or 3 times. In total, 567 sequences are
available. The di↵erent actions are high arm wave, hor-
izontal arm wave, hammer, hand catch, forward punch,
high throw, draw X, draw tick, draw circle, hand clap,
two hand wave, side-boxing, bend,..
We perform our test on a subset of 30 human actions
from MSR dataset with di↵erent rates. Examples of the
actions are reported in Figure 4; the two upper rows rep-
resent the same action with di↵erent rates. The down
two rows reports another action with di↵erent rates. We

success to correctly classify 29 actions over the 30 used
in this small experiment.

For further understanding of the limitation of our
method, the action that was not recognized by our ap-
proach is reported in the first row of Figure 5. The clos-
est action is reported in the lower row. The two actions
are quite similar.

3.2. Vehicle Trajectories recognition

Here we study the problem of classifying vehicle tra-
jectories into broad motion patterns using data obtained
from tra�c videos. While the general motion of a vehi-
cle at a tra�c intersection is predicable: left turn, right
turn, U turn, or straight line, the travel speeds of vehi-
cles may be di↵erent in di↵erent instances due to tra�c
variations. Since we are interested in tracking position
and orientation of a vehicle, we will consider individ-
ual tracks as parameterized trajectories. The data for
this experiment comes from tra�c videos available at
the Image Sequence Server website1. Examples of this
dataset are illustrated in Fig. 6. From left to right, are
illustrated a left turn, a right turn and a straight line.

Experiments show that the distances corresponding
to similar trajectories are much smaller in terms of the
geodesic distances, when compared to the distances be-
tween di↵erent trajectories. The 14 ⇥ 14 matrix shows
pairwise distances between 14 trajectories, associated
with three classes (left turn, right turn, U turn, or straight
line) corresponding to right turn indexed from 1 to 5, 5
trajectories of straight line indexed from 6 to 10, and
4 trajectories of left turn indexed from 11 to 14. The
resulting distances are shown as a matrix in Figure 7.
In this visualization of the matrix, the lightness of each
element (i;j) is proportional to the magnitude of the dis-
tances between actions i and j. That is, each row and
column represent the distances for a trajectorie when
compared to all 14 trajectories. Darker elements rep-
resent better matches, while lighter elements indicate
worse matches. Shown in the first row of Figure 7 are
the resulting pairwise distance matrices computed by
our approach (c) and from [6] with and without tem-
poral alignment; respectively (a) and (b).

We have performed a dendrogram clustering vehicule
trajectories using pairwise distances. The dendrogram
can be analyzed by slicing them with an horizontal line
and see the resulting clustering. The classification is
ra�ned as well as the horizontal line moves down. To
analyze the results, we consider the case of the classi-
fication into 3 classes. As these pictures illustrate, the

1http://i21www.ira.uka.de/image sequences/
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Color video stream Depth stream Skeleton

Figure 3: An example of human captured by the Kinect. From left to right are reported the color stream, the depth stream and the skeleton.

Figure 4: Illustration of skeleton’s tracking during human actions. The upper two rows report the same action conveyed in di↵erent rates. The
remaining two rows illustrate another action with di↵erent rates.

Figure 5: Illustration of non recognized action (upper row) and the closest one (lower row).

clustering is quite successful by our approach although
no time registration is performed. The same trajectory
are mostly clustered together, away from the clusters for
trajectories. The classification results obtained by our
approach are comparable to the results obtained by [6]
which required trajectories registration.

It can be clearly seen that the temporal alignment pro-

posed by [6] helps in revealing the underlying patterns
of the data and improves the clustering performance.
Actually, with temporal alignment, the classes were cor-
rectly distinguished. The proposed approach performed
similar accuracy without any temporal alignment. We
demonstrate here that by defining the metric directly on
the shape space, we are able to perform as good as with
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Figure 6: An example vehicle trajectories : right turn (left pannel),
left turn (middle pannel) and straignt line (right pannel).

temporal alignment.

4. Conclusion

Analysis of trajectories are very important in many
areas, e.g. medical imaging, computer vision etc. In this
paper, we have provided a gauge invariant framework
for comparing trajectories while being invariant to time-
warping.

Specifically, we have defined a proper Riemannian
metric directly on the quotient (shape) space, rather
than inheriting it from pre-shape space. We have used
it to formulate a path energy that measures only the
normal components of velocities along the path. The
geodesic computation is based on a path-straightening
technique that iteratively corrects paths between curves
until geodesics are achieved.

Both theoretical proofs and experimental results on
trajectories from human action and vehicles trajecto-
ries are provided to validate this framework. For future
work, we would like to extend it to other applications
with di↵erent underlying manifolds.

Appendix .1. Expression of the Riemannian metric on
Shape space

To be fully complete, let us give the expression of
the Riemannian metric obtained on Shape space by the
Gauge invariant construction. Let � f 2 T fF be given
by � f = hv~v + hn~n + hb~b, where hv, hn and hb are real
functions. Then (� f )? = hn~n + hb~b and

Dl(� f )? = �hn~v + (Dlhn � hb⌧)~n + (Dlhb + hn⌧)~b,

where  denotes the curvature, and ⌧ the torsion of the
parameterized curve f . Therefore hDl� f ,~vi2 = h2

n
2,

hDl� f ,~ni2 = (Dlhn � hb⌧)2 and hDl� f ,~bi2 = (Dlhb +
hn⌧)2. It follows that

Ga,b,c(� f?, � f?) =R TE

0

⇣
ah2

n
2 + b(Dlhn � hb⌧)2 + c(Dlhb + hn⌧)2

⌘
k f 0kdt

In other word, the Riemannian metric on shape space
we used in this paper is the following : given a shape

[ f ], and real functions hn and hb of the arc-length pa-
rameter l of [ f ], the vector field h = hnv + hbb defines
uniquely a infinitesimal deformation of the shape [ f ]
whose norm is given by

((h, h))[ f ] =R TE

0

⇣
ah2

n
2 + b(Dlhn � hb⌧)2 + c(Dlhb + hn⌧)2

⌘
k f 0kdt.

(.1)
The Riemannian metric on S defined by this formula is
a H1-type metric, depending smoothly on the curvature
and the torsion.
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Figure 7: Comparison of vehicle trajectories distance matrices and dendrograms resulting by [6] with temporal alignment (a), [6] without temporal
lignment (b) and our approach (c).
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