
University of Lille I
PC first year list of exercises n◦ 8

Structure of vector space

Exercise 1 1. Using the addition + and the multiplication · of two numbers, define, for each set E in
the list below :
– an addition ⊕ : E × E → E ;
– a multiplication by real numbers � : R× E → E.

(a) E = Rn ;

(b) E = the set of trajectories of a point particle in R3 ;

(c) E = the set of solutions (x, y, z) ∈ R3 of the equation S1 : x− 2y + 3z = 0 ;

(d) E = the set of solutions (x, y, z) ∈ R3 of the system of equations S2 :
{

2x+ 4y − 6z = 0
y + z = 0

;

(e) E = the set of solutions of the differential equation y′′ + 2y′ − 3y = 0 ;

(f) E = the set of functions y(x) such that

y′′(x) sinx+ x3y′(x) + y(x) log x = 0, ∀x > 0 ;

(g) E = the set of complex valued functions Ψ(t, x) that are solutions of the Schrödinger equation :

i~
∂

∂t
Ψ(t, x) = − ~

2m
∂2

∂x2
Ψ(x, t) + x2Ψ(t, x)

where ~ and m are constants ;

(h) E = the set of sequences (xn)n∈N of real numbers ;

(i) E = the set of polynomials P (x) with real coefficients ;

(j) E = the set of polynomials P (x) of degree less than or equal to 3 with real coefficients ;

(k) E = the set of polynomials P (x) with real coefficients divisible by (x− 1) ;

(l) E = the set of continuous functions on the interval [0, 1] taking real values ;

(m) E = the set of continuous functions on the interval [0, 1] taking real values and whose integral
is zero ;

(n) E = the set of differentiable functions on the interval (0, 1) taking real values ;

(o) E = the set of real functions which vanish at 0 ∈ R ;

(p) E = the set of real functions having 0 as a limit when x goes to +∞.

2. For the previously defined additions ⊕, show that E admits a neutral element (expression to be
defined), and that each element in E admits an inverse.

Solution of Exercise 1 :

1. (a) For E = Rn, let us define ⊕ and � by

(x1, x2, . . . , xn)⊕ (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

and
λ� (x1, x2, . . . , xn) = (λ · x1, λ · x2, . . . , λ · xn).

The results belong to Rn, hence ⊕ : Rn × Rn → Rn and � : R× Rn → Rn are well-defined.
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(b) Let E be the set of trajectories of a point particle in R3, i.e. the set of functions from R+ to
R3. Take two such functions f1 and f2, and any real number λ ∈ R. Define f1 ⊕ f2 by

(f1 ⊕ f2)(x) = f1(x) + f2(x),

and λ � f1 by (λ � f1)(x) = λ · f1(x). The results of such operations are again in E, hence
⊕ : E × E → E and � : R× E → E are well-defined.

(c) – Define the addition ⊕ on E = {(x, y, z) ∈ R3, x− 2y + 3z = 0} by the following formula

(x1, y1, z1)⊕ (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2),

where (x1, y1, z1) and (x2, y2, z2) belong to E. Let us check that this indeed defines a map
⊕ : E × E → E. One has

(x1 + x2)− 2(y1 + y2) + 3(z1 + z2) = (x1 − 2y1 + 3z1) + (x2 − 2y2 + 3z2) = 0 + 0 = 0,

hence (x1, y1, z1)⊕ (x2, y2, z2) belongs to E whenever (x1, y1, z1) and (x2, y2, z2) belong to E.
– Similarly define the product � by the formula

λ� (x, y, z) = (λ · x, λ · y, λ · z),

where λ ∈ R and (x, y, z) ∈ E. One has

λ · x− 2λ · y + 3λ · z = λ(x− 2y + 3z) = λ · 0 = 0,

hence λ� (x, y, z) belong to E whenever (x, y, z) belong to E.

(d) Let E be the set of solutions (x, y, z) ∈ R3 of the system of equations S2 :
{

2x+ 4y − 6z = 0
y + z = 0

.

As previously define the addition ⊕ on E by (x1, y1, z1)⊕ (x2, y2, z2) = (x1 +x2, y1 +y2, z1 +z2)
for (x1, y1, z1) and (x2, y2, z2) in E, and the product � by λ�(x, y, z) = (λ·x, λ·y, λ·z) for λ ∈ R
and (x, y, z) ∈ E. The same kind of computations as in (a) show that (x1, y1, z1) ⊕ (x2, y2, z2)
and λ� (x1, y1, z1) belong to E whenever (x1, y1, z1) and (x2, y2, z2) belong to E and λ ∈ R.

(e) – Let E = {y : R → R, y′′ + 2y′ − 3y = 0}. For two functions y1 and y2 in E define a new
function y1 ⊕ y2 : R→ R by

(y1 ⊕ y2)(x) = y1(x) + y2(x),

i.e. (y1 ⊕ y2) is the sum of the two function y1 and y2. Since the derivative of a sum is the
sum of the derivatives, (y1 ⊕ y2)′ = y′1 + y′2. Now

(y1 ⊕ y2)′′ + 2(y1 ⊕ y2)′ − 3(y1 ⊕ y2) = (y′′1 + 2y′1 − 3y1) + (y′′1 + 2y′1 − 3y1) = 0,

hence the sum of two solutions of the given differential equation is again a solution of the
same equation.

– For λ ∈ R and y ∈ E, define λ� y by

(λ� y)(x) = λ · y(x),∀x ∈ R,

hence λ� y is the usual product of the function y by the constant λ. Since (λ� y)′ = λ� y′,
one has

(λ� y)′′ + 2(λ� y)′ − 3(λ� y)′ = λ · (y′′ + 2y′ − 3y) = 0,

hence the product of a solution of the given differential equation by a real number is again
a solution.
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(f) Let E be the set of functions y(x) such that

y′′(x) sinx+ x3y′(x) + y(x) log x = 0, ∀x > 0.

As in (c), define y1 ⊕ y2 : R+ → R by (y1 ⊕ y2)(x) = y1(x) + y2(x), and λ � y : R+ → R by
(λ� y)(x) = λ · y(x), ∀x ∈ R+. One has

(y1 ⊕ y2)′′ sinx+ x3(y1 ⊕ y2)′ + (y1 ⊕ y2) log x =
(y′′1(x) sinx+ x3y′1(x) + y1(x) log x) + (y′′2(x) sinx+ x3y′2(x) + y2(x) log x) = 0,

and

(λ� y)′′ sinx+ x3(λ� y)′ + (λ� y) log x = λ · (y′′(x) sinx+ x3y′(x) + y(x) log x) = 0.

Hence the sum of two solutions and the product of a solution by a real number are again
solutions of E.

(g) – Let E be the set of complex valued functions Ψ(t, x) that are solutions of the Schrödinger
equation :

i~
∂

∂t
Ψ(t, x) = − ~

2m
∂2

∂x2
Ψ(x, t) + x2Ψ(t, x),

where ~ and m are constants. Let us define the addition ⊕ on E by the usual sum + of
functions. One has to show that the sum of two solutions of the Schrödinger equation also
satisfies the same equation. Let Ψ1 and Ψ2 be two elements of E. One has

∂

∂t
(Ψ1 ⊕Ψ2) =

∂

∂t
Ψ1 ⊕

∂

∂t
Ψ2, (1)

∂2

∂x2
(Ψ1 ⊕Ψ2) =

∂2

∂x2
Ψ1 ⊕

∂2

∂x2
Ψ2, (2)

and
x2(Ψ1 ⊕Ψ2) = x2Ψ1 ⊕ x2Ψ2. (3)

Therefore by (1) and the Schrödinger equation applied to Ψ1 and Ψ2

i~ ∂
∂t(Ψ1 ⊕Ψ2) = i~ ∂

∂tΨ1 + i~ ∂
∂tΨ2

= − ~
2m

∂2

∂x2 Ψ1 + x2Ψ1 − ~
2m

∂2

∂x2 Ψ2 + x2Ψ2.

Now by (2) and (3),

i~
∂

∂t
(Ψ1 ⊕Ψ2) = − ~

2m
∂2

∂x2
(Ψ1 ⊕Ψ2) + x2(Ψ1 ⊕Ψ2).

– Similarly, define the product � by the usual product · of a function by real numbers. Using
that ∂

∂t(λ ·Ψ) = λ · ∂
∂tΨ, ∂2

∂x2 (λ ·Ψ) = λ · ∂2

∂x2 Ψ and x2(λ ·Ψ) = λ · x2Ψ, one checks that, for
any λ ∈ R and any Ψ ∈ E, λ ·Ψ is a solution of the Schrödinger equation.

(h) Let E be the set of sequences (xn)n∈N of real numbers. For (xn)n∈N and (yn)n∈N in E and
λ ∈ R, set

(xn)n∈N ⊕ (yn)n∈N = (xn + yn)n∈N

and
λ� (xn)n∈N = (λ · xn)n∈N.

The maps ⊕ and � are well-defined applications from E×E and R×E respectively with values
in E.

(i) Let E be the set of polynomials P (x) with real coefficients. One uses that the sum of two
polynomials with real coefficients is again a polynomial with real coefficients, and that multi-
plying a polynomial with real coefficient by a real number gives another polynomial with real
coefficients.
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(j) Let E be the set of polynomials P (x) of degree less than or equal to 3 with real coefficients. For
P,Q ∈ E and λ ∈ R, one has do(P + Q) = doP + doQ and do(λP ) = λ doP , where do denotes
the degree. Hence E is stable by the sum and the multiplication by real numbers.

(k) Let E be the set of polynomials P (x) with real coefficients divisible by (x− 1). Take P and Q
in E. By definition, there exists two polynomials P̃ and Q̃ such that P (x) = (x − 1)P̃ (x) and
Q(x) = (x− 1)Q̃(x). Therefore P (x) +Q(x) = (x− 1)P̃ (x) + (x− 1)Q̃(x) = (x− 1)(P̃ + Q̃)(x).
In other words, P + Q is divisible by (x − 1). Moreover, for any λ ∈ R and any P ∈ E, λP is
divisible by (x− 1), with λ̃P = λP̃ .

(l) Let E be the set of continuous functions on the interval [0, 1] taking real values. Here one uses
that the sum of two continuous functions is again a continuous function, and that the product
of a real-valued continuous function by a real number is again a real-valued continuous function.

(m) Let E be the set of continuous functions on the interval [0, 1] taking real values and whose
integral is zero. Here one uses that∫ 1

0
(f + g)(x) dx =

∫ 1

0
f(x) dx+

∫ 1

0
g(x) dx

and ∫ 1

0
λ · f(x) dx = λ ·

∫ 1

0
f(x) dx.

(n) Let E be the set of differentiable functions on the interval (0, 1) taking real values. Here the
point is to remark that the sum of two differentiable real functions is differentiable and real, and
that the product of a differentiable real function by a real number is a real-valued differentiable
function.

(o) Let E be the set of real functions which vanish at 0 ∈ R. Since for any f and g in E one has
(f + g)(0) = f(0) + g(0) = 0 + 0 = 0 and, for any λ ∈ R, (λ · f)(0) = λ · f(0) = λ · 0 = 0, the
set E is stable by the sum and the product by the reals.

(p) Let E be the set of real functions having 0 as a limit when x goes to +∞. Here the point is
that, given two functions f and g having as a limit 0 at +∞

lim
x→+∞

(f + g) = lim
x→+∞

f + lim
x→+∞

g = 0 + 0 = 0,

and limx→+∞ λ · f = λ · limx→+∞ f = λ · 0 = 0.

2. A neutral element for an addition ⊕ : E × E → E is an element e ∈ E such that

e⊕ x = x⊕ e = e,∀x ∈ E.

The inverse of an element x ∈ E, is an element x̃ ∈ E such that x ⊕ x̃ = x̃ ⊕ x = e. The neutral
elements e and inverses x̃ of x ∈ E for the previously defined additions are :

(a) e = (0, 0, 0) ∈ Rn, the inverse of x = (x1, x2, . . . , xn) is x̃ = (−x1,−x2, . . . ,−xn).

(b) e is the null function e : R+ → R3, e(t) = (0, 0, 0). The inverse of x : R+ → R3, x(t) =
(x1(t), x2(t), x3(t)) is x̃ : R+ → R3, x̃(t) = (−x1(t),−x2(t),−x3(t)).

(c) as in (a) for n = 3.

(d) as in (a) for n = 3.

(e) e is the null function e : R→ R, e(t) = 0. The inverse of x : R→ R is x̃ : R→ R, x̃(t) = −x(t).

(f) e is the null function e : R+∗ → R, e(t) = 0. The inverse of x : R+∗ → R is x̃ : R+∗ → R,
x̃(t) = −x(t).

(g) e is the null function e : R+ × R → C, e(t, x) = 0. The inverse of Ψ : R+ × R → C is
Ψ̃ : R+ × R→ C, Ψ̃(t, x) = −Ψ(t, x).

(h) e is the null sequence e = (0, 0, . . . , 0, . . . ). The inverse of the sequence (xn)n∈N is the sequence
(−xn)n∈N.
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(i) e is the null polynomial, e = 0. The inverse of the polynomial P (X) = anX
n + an−1X

n−1 +
· · ·+ a1X + a0 is the polynomial −P (X) = −anX

n − an−1X
n−1 − · · · − a1X − a0.

(j) as in (i).

(k) as in (i).

(l) e is the null function e : [0, 1]→ R. The inverse of a continuous function f : [0, 1]→ R is the
function f̃ : [0, 1]→ R such that f̃(t) = −f(t).

(m) as in (l).

(n) e is the null function e : (0, 1)→ R. The inverse of a continuous function f : (0, 1)→ R is the
function f̃ : (0, 1)→ R such that f̃(t) = −f(t).

(o) e is the null function e : R → R. The inverse of the function f : R → R is the function
f̃(t) = −f(t).

(p) as in (o).

Exercise 2 What are the obstacles to defining the same operations as before for the following sets E ?

(a) E = the set of solutions (x, y, z) ∈ R3 of the equation S3 : x− 2y + 3z = 3 ;

(b) E = the set of functions y(x) such that y′′(x) sinx+ x3y2(x) + y(x) log x = 0, ∀x > 0 ;

(c) E = N ;

(d) E = Z ;

(e) E = R+ ;

(f) E = Qn ;

(g) E = the set of sequences (xn)n∈N of non-negative numbers ;

(h) E = the set of real functions taking the value 1 at 0 ;

(i) E = the set of real functions going to +∞ as x goes to +∞.

Solution of Exercise 2 :

(a) 3 + 3 6= 3.

(b) (y1 + y2)2 6= y2
1 + y2

2.

(c) n ∈ N⇒ (−1) · n /∈ N.

(d) n ∈ Z⇒ π · n /∈ Z.

(e) t ∈ R+∗ ⇒ (−1)t /∈ R+

(f) If x = (x1, . . . , xn) ∈ Qn, the n-uple π · (x1, . . . , xn) /∈ Qn. Remark : this could be overcome by
restricting the multiplication to Q ( R, i.e. by defining the map � from Q× E into E.

(g) If (xn)n∈N ∈ E, the sequence (−1) · (xn)n∈N /∈ E.

(h) 1 + 1 6= 1.

(i) (−1) ·+∞ 6= +∞.

Exercise 3 In R3 consider the vectors −→v1 = (1, 1, 0), −→v2 = (4, 1, 4) and −→v3 = (2,−1, 4).

1. Show that −→v1 and −→v2 are not collinear. Do the same with −→v1 and −→v3 , and with −→v2 and −→v3 .

2. Is the family (−→v1 ,−→v2 ,−→v3) linearly independent ?

Solution of Exercise 3 :

1. Two vectors −→v1 and −→v2 in R3 are collinear if and only if their coordinates are proportionnal. One sees
that −→v1 and −→v2 are non-collinear since 1

4 6=
1
1 . The vectors −→v1 and −→v3 are non-collinear since 1

2 6=
1
−1 .

The vectors −→v2 and −→v3 are non-collinear since 4
2 6=

1
−1 .
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2. A family of 3 vectors −→v1 ,−→v2 ,−→v3 in R3 is linearly independent if and only if det(−→v1 ,−→v2 ,−→v3) 6= 0. One
has

det(−→v1 ,−→v2 ,−→v3) =

∣∣∣∣∣∣
1 4 2
1 1 −1
0 4 4

∣∣∣∣∣∣ = −4
∣∣∣∣ 1 2

1 −1

∣∣∣∣+ 4
∣∣∣∣ 1 4

1 1

∣∣∣∣ = 12− 12 = 0.

Hence the family {−→v1 ,−→v2 ,−→v3} is linearly dependent.

Exercise 4 Are the following families linearly independent ?

1. −→v1 = (1, 0, 1), −→v2 = (0, 2, 2) and −→v3 = (3, 7, 1) in R3.

2. −→v1 = (1, 0, 0), −→v2 = (0, 1, 1) and −→v3 = (1, 1, 1) in R3.

3. −→v1 = (1, 2, 1, 2, 1), −→v2 = (2, 1, 2, 1, 2), −→v3 = (1, 0, 1, 1, 0) and −→v4 = (0, 1, 0, 0, 1) in R5.

4. −→v1 = (2, 4, 3,−1,−2, 1), −→v2 = (1, 1, 2, 1, 3, 1) and −→v3 = (0,−1, 0, 3, 6, 2) in R6.

5. −→v1 = (2, 1, 3,−1, 4,−1), −→v2 = (−1, 1,−2, 2,−3, 3) and −→v3 = (1, 5, 0, 4,−1, 7) in R6.

Solution of Exercise 4 :

1. The vectors −→v1 = (1, 0, 1), −→v2 = (0, 2, 2) and −→v3 = (3, 7, 1) are 3 linearly independent vectors in R3 if
and only if det(−→v1 ,−→v2 ,−→v3) 6= 0. One has

det(−→v1 ,−→v2 ,−→v3) =

∣∣∣∣∣∣
1 0 3
0 2 7
1 2 1

∣∣∣∣∣∣ = 1
∣∣∣∣ 2 7

2 1

∣∣∣∣+ 1
∣∣∣∣ 0 3

2 7

∣∣∣∣ = −12− 6 = −18.

Since det(−→v1 ,−→v2 ,−→v3) 6= 0, −→v1 , −→v2 , −→v3 are linearly independent.

2. One has

det(−→v1 ,−→v2 ,−→v3) =

∣∣∣∣∣∣
1 0 1
0 1 1
0 1 1

∣∣∣∣∣∣ = 0

Hence the vectors −→v1 = (1, 0, 0), −→v2 = (0, 1, 1) and −→v3 = (1, 1, 1) are linearly dependent (one can also
argue that −→v3 = −→v1 +−→v2).

3. By definition, p-vectors −→v1 , −→v2 , . . . , −→vp in Rn are linearly independent if and only if the equation

λ1
−→v1 + λ2

−→v2 + · · ·+ λp
−→vp =

−→
0

(whose unknowns are λ1, . . . , λp) admits a unique solution given by (λ1, λ2, . . . , λp) = (0, 0, . . . , 0).
Let us consider the equation

λ1
−→v1 + λ2

−→v2 + λ3
−→v3 + λ4

−→v4 =
−→
0 .

In coordinates, we obtain the following system
λ1 + 2λ2 + λ3 = 0
2λ1 + λ2 + λ4 = 0
λ1 + 2λ2 + λ3 = 0
2λ1 + λ2 + λ3 = 0
λ1 + 2λ2 + λ4 = 0

⇔


λ1 + 2λ2 + λ3 = 0
− 3λ2 − 2λ3 + λ4 = 0 L2 ← L2 − 2L1

0 = 0 L3 ← L3 − L1

− 3λ2 − λ3 = 0 L4 ← L4 − 2L1

− λ3 + λ4 = 0 L5 ← L5 − L1

⇔


λ1 + 2λ2 + λ3 = 0
− 3λ2 − 2λ3 + λ4 = 0

λ3 − λ4 = 0 L4 ← L4 − L2

− λ3 + λ4 = 0

⇔


λ1 + 2λ2 + λ3 = 0
− 3λ2 − 2λ3 + λ4 = 0

λ3 − λ4 = 0
0 = 0 L4 + L3
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Let us parametrize the set of solutions of the system by t = λ4 ∈ R. One has
λ1 + 2λ2 + λ3 = 0
− 3λ2 − 2λ3 = −t

λ3 = t
λ4 = t

⇔


λ1 = −2λ2 − t
−3λ2 = −t+ 2t = t
λ3 = t
λ4 = t

⇔


λ1 = 2

3 t− t = −1
3 t

λ2 = −1
3 t

λ3 = t
λ4 = t

Since the solution of the system is the line d generated by the vector


−1

3
−1

3
1
1

, or in other words


λ1

λ2

λ3

λ4

 ∈ R


−1

3
−1

3
1
1

 ,

the vectors −→v1 = (1, 2, 1, 2, 1), −→v2 = (2, 1, 2, 1, 2), −→v3 = (1, 0, 1, 1, 0) and −→v4 = (0, 1, 0, 0, 1) are not
linearly independent.
(A quicker argument is to point out that −→v1 +−→v2 = 3 · (−→v3 +−→v4).)

4. Let us consider the equation
λ1
−→v1 + λ2

−→v2 + λ3
−→v3 =

−→
0 .

In coordinates, this gives rise to the following system :

2λ1 + λ2 = 0
4λ1 + λ2 − λ3 = 0
3λ1 + 2λ2 = 0
−λ1 + λ2 + 3λ3 = 0
−2λ1 + 3λ2 + 6λ3 = 0
λ1 + λ2 + 2λ3 = 0

By the Gauss algorithm, the system is equivalent to

λ1 + λ2 + 2λ3 = 0
2λ1 + λ2 = 0
4λ1 + λ2 − λ3 = 0
3λ1 + 2λ2 = 0
−λ1 + λ2 + 3λ3 = 0
−2λ1 + 3λ2 + 6λ3 = 0

⇔



λ1 + λ2 + 2λ3 = 0
− λ2 − 4λ3 = 0 L2 ← L2 − 2L1

− 3λ2 − 9λ3 = 0 L3 ← L3 − 4L1

− λ2 − 6λ3 = 0 L4 ← L4 − 3L1

+ 2λ2 + 5λ3 = 0 L5 ← L5 + L1

+ 5λ2 + 10λ3 = 0 L6 ← L6 + 2L1

⇔



λ1 + λ2 + 2λ3 = 0
− λ2 − 4λ3 = 0

+ 3λ3 = 0 L3 ← L3 − 3L2

− 2λ3 = 0 L4 ← L4 − L2

− 3λ3 = 0 L5 ← L5 + 2L2

− 10λ3 = 0 L6 ← L6 + 5L1

It follows that the unique solution of the system is (λ1, λ2, λ3) = (0, 0, 0), consequently the vectors
−→v1 = (2, 4, 3,−1,−2, 1), −→v2 = (1, 1, 2, 1, 3, 1) and −→v3 = (0,−1, 0, 3, 6, 2) are linearly independent.

5. The equation
λ1
−→v1 + λ2

−→v2 + λ3
−→v3 =

−→
0

written in coordinates gives rise to the following system :

2λ1 − λ2 + λ3 = 0
λ1 + λ2 + 5λ3 = 0
3λ1 − 2λ2 = 0
−λ1 + 2λ2 + 4λ3 = 0
4λ1 − 3λ2 − λ3 = 0
−λ1 + 3λ2 + 7λ3 = 0
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By the Gauss algorithm, the system is equivalent to

λ1 + λ2 + 5λ3 = 0
2λ1 − λ2 + λ3 = 0 L2 ↔ L1

3λ1 − 2λ2 = 0
−λ1 + 2λ2 + 4λ3 = 0
4λ1 − 3λ2 − λ3 = 0
−λ1 + 3λ2 + 7λ3 = 0

⇔



λ1 + λ2 + 5λ3 = 0
− 3λ2 − 9λ3 = 0 L2 ← L2 − 2L1

− 5λ2 − 15λ3 = 0 L3 ← L3 − 3L1

+ 3λ2 + 9λ3 = 0 L4 ← L4 + L1

− 7λ2 − 21λ3 = 0 L5 ← L5 − 4L1

+ 4λ2 + 12λ3 = 0 L6 ← L6 + L1

⇔



λ1 + λ2 + 5λ3 = 0
λ2 + 3λ3 = 0 −1

3L2

λ2 + 3λ3 = 0 −1
5L3

λ2 + 3λ3 = 0 1
3L4

λ2 + 3λ3 = 0 −1
7L5

λ2 + 3λ3 = 0 1
4L6

⇔
{
λ1 + λ2 + 5λ3 = 0

λ2 + 3λ3 = 0

A nontrivial solution is therefore given by λ2 = −3λ3 and λ1 = −λ2 − 5λ3 = −2λ3, i.e. (λ1, λ2, λ3)
collinear with (−2,−3, 1). The vectors −→v1 ,−→v2 ,−→v3 are not linearly independent (and one can check
that 2−→v1 + 3−→v2 = −→v3).

Exercise 5 One supposes that v1, v2, v3, . . . , vn are linearly independent vectors in Rn.

1. Are the vectors v1 − v2, v2 − v3, v3 − v4, . . . , vn − v1 linearly independent ?

2. Are the vectors v1 + v2, v2 + v3, v3 + v4, . . . , vn + v1 linearly independent ?

3. Are the vectors v1, v1 + v2, v1 + v2 + v3, v1 + v2 + v3 + v4, . . . , v1 + v2 + · · ·+ vn linearly independent ?

Solution of Exercise 5 :

1. Consider the following system

α1(−→v1 −−→v2) + α2(−→v2 −−→v3) + · · ·+ αn(−→vn −−→v1) =
−→
0 (4)

⇔ (α1 − αn)−→v1 + (α2 − α1)−→v2 + (α3 − α2)−→v3 . . . (αn − αn−1)−→vn =
−→
0 .

Since −→v1 ,−→v2 ,−→v3 , . . . ,−→vn are linearly independent vectors in Rn, the previous system is equivalent to
α1 − αn = 0
α2 − α1 = 0

...
αn − αn−1 = 0

⇔ α1 = α2 = · · · = αn.

Hence the equation (4) admits a line of solutions given by


α1

α2
...
αn

 = λ


1
1
...
1

. Consequently the

vectors v1 − v2, v2 − v3, v3 − v4, . . . , vn − v1 are not linearly independent.

2. Consider the following system

α1(−→v1 +−→v2) + α2(−→v2 +−→v3) + · · ·+ αn(−→vn +−→v1) =
−→
0 (5)

⇔ (α1 + αn)−→v1 + (α2 + α1)−→v2 + (α3 + α2)−→v3 . . . (αn + αn−1)−→vn =
−→
0 .
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Since −→v1 ,−→v2 ,−→v3 , . . . ,−→vn are linearly independent vectors in Rn, the previous system is equivalent to

α1 + αn = 0
α2 + α1 = 0
α3 + α2 = 0

...
αn + αn−1 = 0

⇔



α1 = −αn

α2 = −α1

α3 = −α2
...

αn = −αn−1

There are two cases :

(a) The previous system implies

⇒



α1 = (−1)nα1

α2 = (−1)nα2

α3 = (−1)nα3
...

αn = (−1)nαn

.

It follows that if n is odd, α1 = 0, α2 = 0, . . . αn = 0, hence the vectors v1 + v2, v2 + v3, v3 +
v4, . . . , vn + v1 are linearly independent.

(b) if n is even, the system is equivalent to

α1 = −αn

α2 = (−1)2αn

α3 = (−1)3αn
...
αn−1 = (−1)n−1αn

,

hence the set of solutions of the system is the line given by

α1

α2

α3
...
αj
...
αn


= λ



−1
1
−1
...

(−1)j

...
1


,

consequently the vectors v1 + v2, v2 + v3, v3 + v4, . . . , vn + v1 are not linearly independent.

3. Consider the following vectors 

v′1 = v1
v′2 = v1 + v2
v′3 = v1 + v2 + v3
v′4 = v1 + v2 + v3 + v4
...
v′n = v1 + v2 + · · ·+ vn

One has 

v′1
v′2
v′3
...
v′n−1

v′n


=



1 0 0 0 . . . 0 0
1 1 0 0 . . . 0 0
1 1 1 0 . . . 0 0
...

...
...

... . . .
...

...
1 1 1 1 . . . 1 0
1 1 1 1 . . . 1 1





v1
v2
v3
...
vn−1

vn


.
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Consequently, the equation λ1v
′
1 + λ2v

′
2 + . . .+ λnv

′
n = 0 can be written

(
v′1 v′2 . . . v′n

)


λ1

λ2
...
λn

 = 0⇔
(
v1 v2 . . . vn

)


1 0 0 0 . . . 0 0
1 1 0 0 . . . 0 0
1 1 1 0 . . . 0 0
...

...
...

... . . .
...

...
1 1 1 1 . . . 1 0
1 1 1 1 . . . 1 1



T 

λ1

λ2

λ3
...
λn−1

λn


= 0.

Since the vectors v1, v2, . . . , vn are linearly independent, it follows that

1 0 0 0 . . . 0 0
1 1 0 0 . . . 0 0
1 1 1 0 . . . 0 0
...

...
...

... . . .
...

...
1 1 1 1 . . . 1 0
1 1 1 1 . . . 1 1



T 

λ1

λ2

λ3
...
λn−1

λn


=



0
0
0
...
0
0


which implies 

λ1

λ2

λ3
...
λn−1

λn


=



1 1 1 1 . . . 1 1
0 1 1 1 . . . 1 1
0 0 1 1 . . . 1 1
...

...
...

... . . .
...

...
0 0 0 0 . . . 1 1
0 0 0 0 . . . 0 1



−1

0
0
0
...
0
0


=



0
0
0
...
0
0


.

In conclusion, the vectors v1, v1 + v2, v1 + v2 + v3, v1 + v2 + v3 + v4, . . . , v1 + v2 + · · ·+ vn are linearly
independent.
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