Structure of vector space

Exercise 1 1. Using the addition + and the multiplication - of two numbers, define, for each set E in the list below :

- an addition $\oplus: E \times E \rightarrow E$;
- a multiplication by real numbers $\odot: \mathbb{R} \times E \rightarrow E$.
(a) $E=\mathbb{R}^{n}$;
(b) $E=$ the set of trajectories of a point particle in \mathbb{R}^{3};
(c) $E=$ the set of solutions $(x, y, z) \in \mathbb{R}^{3}$ of the equation $\mathcal{S}_{1}: x-2 y+3 z=0$;
(d) $E=$ the set of solutions $(x, y, z) \in \mathbb{R}^{3}$ of the system of equations $\mathcal{S}_{2}:\left\{\begin{array}{l}2 x+4 y-6 z=0 \\ y+z=0\end{array}\right.$;
(e) $E=$ the set of solutions of the differential equation $y^{\prime \prime}+2 y^{\prime}-3 y=0$;
(f) $E=$ the set of functions $y(x)$ such that

$$
y^{\prime \prime}(x) \sin x+x^{3} y^{\prime}(x)+y(x) \log x=0, \quad \forall x>0 ;
$$

(g) $E=$ the set of complex valued functions $\Psi(t, x)$ that are solutions of the Schrödinger equation :

$$
i \hbar \frac{\partial}{\partial t} \Psi(t, x)=-\frac{\hbar}{2 m} \frac{\partial^{2}}{\partial x^{2}} \Psi(x, t)+x^{2} \Psi(t, x)
$$

where \hbar and m are constants;
(h) $E=$ the set of sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ of real numbers;
(i) $E=$ the set of polynomials $P(x)$ with real coefficients;
(j) $E=$ the set of polynomials $P(x)$ of degree less than or equal to 3 with real coefficients;
(k) $E=$ the set of polynomials $P(x)$ with real coefficients divisible by $(x-1)$;
(l) $E=$ the set of continuous functions on the interval $[0,1]$ taking real values;
(m) $E=$ the set of continuous functions on the interval $[0,1]$ taking real values and whose integral is zero;
(n) $E=$ the set of differentiable functions on the interval $(0,1)$ taking real values;
(o) $E=$ the set of real functions which vanish at $0 \in \mathbb{R}$;
(p) $E=$ the set of real functions having 0 as a limit when x goes to $+\infty$.
2. For the previously defined additions \oplus, show that E admits a neutral element (expression to be defined), and that each element in E admits an inverse.

Solution of Exercise 1:

1. (a) For $E=\mathbb{R}^{n}$, let us define \oplus and \odot by

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \oplus\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right),
$$

and

$$
\lambda \odot\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\lambda \cdot x_{1}, \lambda \cdot x_{2}, \ldots, \lambda \cdot x_{n}\right) .
$$

The results belong to \mathbb{R}^{n}, hence $\oplus: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\odot: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are well-defined.
(b) Let E be the set of trajectories of a point particle in \mathbb{R}^{3}, i.e. the set of functions from \mathbb{R}^{+}to \mathbb{R}^{3}. Take two such functions f_{1} and f_{2}, and any real number $\lambda \in \mathbb{R}$. Define $f_{1} \oplus f_{2}$ by

$$
\left(f_{1} \oplus f_{2}\right)(x)=f_{1}(x)+f_{2}(x),
$$

and $\lambda \odot f_{1}$ by $\left(\lambda \odot f_{1}\right)(x)=\lambda \cdot f_{1}(x)$. The results of such operations are again in E, hence $\oplus: E \times E \rightarrow E$ and $\odot: \mathbb{R} \times E \rightarrow E$ are well-defined.
(c) - Define the addition \oplus on $E=\left\{(x, y, z) \in \mathbb{R}^{3}, x-2 y+3 z=0\right\}$ by the following formula

$$
\left(x_{1}, y_{1}, z_{1}\right) \oplus\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right),
$$

where $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ belong to E. Let us check that this indeed defines a map $\oplus: E \times E \rightarrow E$. One has

$$
\left(x_{1}+x_{2}\right)-2\left(y_{1}+y_{2}\right)+3\left(z_{1}+z_{2}\right)=\left(x_{1}-2 y_{1}+3 z_{1}\right)+\left(x_{2}-2 y_{2}+3 z_{2}\right)=0+0=0,
$$

hence $\left(x_{1}, y_{1}, z_{1}\right) \oplus\left(x_{2}, y_{2}, z_{2}\right)$ belongs to E whenever $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ belong to E.

- Similarly define the product \odot by the formula

$$
\lambda \odot(x, y, z)=(\lambda \cdot x, \lambda \cdot y, \lambda \cdot z),
$$

where $\lambda \in \mathbb{R}$ and $(x, y, z) \in E$. One has

$$
\lambda \cdot x-2 \lambda \cdot y+3 \lambda \cdot z=\lambda(x-2 y+3 z)=\lambda \cdot 0=0,
$$

hence $\lambda \odot(x, y, z)$ belong to E whenever (x, y, z) belong to E.
(d) Let E be the set of solutions $(x, y, z) \in \mathbb{R}^{3}$ of the system of equations $\quad \mathcal{S}_{2}:\left\{\begin{array}{l}2 x+4 y-6 z=0 \\ y+z=0\end{array}\right.$.

As previously define the addition \oplus on E by $\left(x_{1}, y_{1}, z_{1}\right) \oplus\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right)$ for $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ in E, and the product \odot by $\lambda \odot(x, y, z)=(\lambda \cdot x, \lambda \cdot y, \lambda \cdot z)$ for $\lambda \in \mathbb{R}$ and $(x, y, z) \in E$. The same kind of computations as in (a) show that $\left(x_{1}, y_{1}, z_{1}\right) \oplus\left(x_{2}, y_{2}, z_{2}\right)$ and $\lambda \odot\left(x_{1}, y_{1}, z_{1}\right)$ belong to E whenever $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ belong to E and $\lambda \in \mathbb{R}$.
(e) - Let $E=\left\{y: \mathbb{R} \rightarrow \mathbb{R}, y^{\prime \prime}+2 y^{\prime}-3 y=0\right\}$. For two functions y_{1} and y_{2} in E define a new function $y_{1} \oplus y_{2}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\left(y_{1} \oplus y_{2}\right)(x)=y_{1}(x)+y_{2}(x),
$$

i.e. $\left(y_{1} \oplus y_{2}\right)$ is the sum of the two function y_{1} and y_{2}. Since the derivative of a sum is the sum of the derivatives, $\left(y_{1} \oplus y_{2}\right)^{\prime}=y_{1}^{\prime}+y_{2}^{\prime}$. Now

$$
\left(y_{1} \oplus y_{2}\right)^{\prime \prime}+2\left(y_{1} \oplus y_{2}\right)^{\prime}-3\left(y_{1} \oplus y_{2}\right)=\left(y_{1}^{\prime \prime}+2 y_{1}^{\prime}-3 y_{1}\right)+\left(y_{1}^{\prime \prime}+2 y_{1}^{\prime}-3 y_{1}\right)=0,
$$

hence the sum of two solutions of the given differential equation is again a solution of the same equation.

- For $\lambda \in \mathbb{R}$ and $y \in E$, define $\lambda \odot y$ by

$$
(\lambda \odot y)(x)=\lambda \cdot y(x), \forall x \in \mathbb{R}
$$

hence $\lambda \odot y$ is the usual product of the function y by the constant λ. Since $(\lambda \odot y)^{\prime}=\lambda \odot y^{\prime}$, one has

$$
(\lambda \odot y)^{\prime \prime}+2(\lambda \odot y)^{\prime}-3(\lambda \odot y)^{\prime}=\lambda \cdot\left(y^{\prime \prime}+2 y^{\prime}-3 y\right)=0,
$$

hence the product of a solution of the given differential equation by a real number is again a solution.
(f) Let E be the set of functions $y(x)$ such that

$$
y^{\prime \prime}(x) \sin x+x^{3} y^{\prime}(x)+y(x) \log x=0, \quad \forall x>0 .
$$

As in (c), define $y_{1} \oplus y_{2}: \mathbb{R}^{+} \rightarrow \mathbb{R}$ by $\left(y_{1} \oplus y_{2}\right)(x)=y_{1}(x)+y_{2}(x)$, and $\lambda \odot y: \mathbb{R}^{+} \rightarrow \mathbb{R}$ by $(\lambda \odot y)(x)=\lambda \cdot y(x), \forall x \in \mathbb{R}^{+}$. One has

$$
\begin{aligned}
& \left(y_{1} \oplus y_{2}\right)^{\prime \prime} \sin x+x^{3}\left(y_{1} \oplus y_{2}\right)^{\prime}+\left(y_{1} \oplus y_{2}\right) \log x= \\
& \left(y_{1}^{\prime \prime}(x) \sin x+x^{3} y_{1}^{\prime}(x)+y_{1}(x) \log x\right)+\left(y_{2}^{\prime \prime}(x) \sin x+x^{3} y_{2}^{\prime}(x)+y_{2}(x) \log x\right)=0,
\end{aligned}
$$

and

$$
(\lambda \odot y)^{\prime \prime} \sin x+x^{3}(\lambda \odot y)^{\prime}+(\lambda \odot y) \log x=\lambda \cdot\left(y^{\prime \prime}(x) \sin x+x^{3} y^{\prime}(x)+y(x) \log x\right)=0 .
$$

Hence the sum of two solutions and the product of a solution by a real number are again solutions of E.
(g) - Let E be the set of complex valued functions $\Psi(t, x)$ that are solutions of the Schrödinger equation :

$$
i \hbar \frac{\partial}{\partial t} \Psi(t, x)=-\frac{\hbar}{2 m} \frac{\partial^{2}}{\partial x^{2}} \Psi(x, t)+x^{2} \Psi(t, x),
$$

where \hbar and m are constants. Let us define the addition \oplus on E by the usual sum + of functions. One has to show that the sum of two solutions of the Schrödinger equation also satisfies the same equation. Let Ψ_{1} and Ψ_{2} be two elements of E. One has

$$
\begin{align*}
\frac{\partial}{\partial t}\left(\Psi_{1} \oplus \Psi_{2}\right) & =\frac{\partial}{\partial t} \Psi_{1} \oplus \frac{\partial}{\partial t} \Psi_{2} \tag{1}\\
\frac{\partial^{2}}{\partial x^{2}}\left(\Psi_{1} \oplus \Psi_{2}\right) & =\frac{\partial^{2}}{\partial x^{2}} \Psi_{1} \oplus \frac{\partial^{2}}{\partial x^{2}} \Psi_{2} \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
x^{2}\left(\Psi_{1} \oplus \Psi_{2}\right)=x^{2} \Psi_{1} \oplus x^{2} \Psi_{2} \tag{3}
\end{equation*}
$$

Therefore by (1) and the Schrödinger equation applied to Ψ_{1} and Ψ_{2}

$$
\begin{array}{r}
i \hbar \frac{\partial}{\partial t}\left(\Psi_{1} \oplus \Psi_{2}\right)=i \hbar \frac{\partial}{\partial t} \Psi_{1}+i \hbar \frac{\partial}{\partial t} \Psi_{2} \\
=-\frac{\hbar}{2 m} \frac{\partial^{2}}{\partial x^{2}} \Psi_{1}+x^{2} \Psi_{1}-\frac{\hbar}{2 m} \frac{\partial^{2}}{\partial x^{2}} \Psi_{2}+x^{2} \Psi_{2} .
\end{array}
$$

Now by (2) and (3),

$$
i \hbar \frac{\partial}{\partial t}\left(\Psi_{1} \oplus \Psi_{2}\right)=-\frac{\hbar}{2 m} \frac{\partial^{2}}{\partial x^{2}}\left(\Psi_{1} \oplus \Psi_{2}\right)+x^{2}\left(\Psi_{1} \oplus \Psi_{2}\right) .
$$

- Similarly, define the product \odot by the usual product \cdot of a function by real numbers. Using that $\frac{\partial}{\partial t}(\lambda \cdot \Psi)=\lambda \cdot \frac{\partial}{\partial t} \Psi, \frac{\partial^{2}}{\partial x^{2}}(\lambda \cdot \Psi)=\lambda \cdot \frac{\partial^{2}}{\partial x^{2}} \Psi$ and $x^{2}(\lambda \cdot \Psi)=\lambda \cdot x^{2} \Psi$, one checks that, for any $\lambda \in \mathbb{R}$ and any $\Psi \in E, \lambda \cdot \Psi$ is a solution of the Schrödinger equation.
(h) Let E be the set of sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ of real numbers. For $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ in E and $\lambda \in \mathbb{R}$, set

$$
\left(x_{n}\right)_{n \in \mathbb{N}} \oplus\left(y_{n}\right)_{n \in \mathbb{N}}=\left(x_{n}+y_{n}\right)_{n \in \mathbb{N}}
$$

and

$$
\lambda \odot\left(x_{n}\right)_{n \in \mathbb{N}}=\left(\lambda \cdot x_{n}\right)_{n \in \mathbb{N}} .
$$

The maps \oplus and \odot are well-defined applications from $E \times E$ and $\mathbb{R} \times E$ respectively with values in E.
(i) Let E be the set of polynomials $P(x)$ with real coefficients. One uses that the sum of two polynomials with real coefficients is again a polynomial with real coefficients, and that multiplying a polynomial with real coefficient by a real number gives another polynomial with real coefficients.
(j) Let E be the set of polynomials $P(x)$ of degree less than or equal to 3 with real coefficients. For $P, Q \in E$ and $\lambda \in \mathbb{R}$, one has $d^{o}(P+Q)=d^{o} P+d^{o} Q$ and $d^{o}(\lambda P)=\lambda d^{o} P$, where d^{o} denotes the degree. Hence E is stable by the sum and the multiplication by real numbers.
(k) Let E be the set of polynomials $P(x)$ with real coefficients divisible by $(x-1)$. Take P and Q in E. By definition, there exists two polynomials \tilde{P} and \tilde{Q} such that $P(x)=(x-1) \tilde{P}(x)$ and $Q(x)=(x-1) \tilde{Q}(x)$. Therefore $P(x)+Q(x)=(x-1) \tilde{P}(x)+(x-1) \tilde{Q}(x)=(x-1)(\tilde{P}+\tilde{Q})(x)$. In other words, $P+Q$ is divisible by $(x-1)$. Moreover, for any $\lambda \in \mathbb{R}$ and any $P \in E, \lambda P$ is divisible by $(x-1)$, with $\widetilde{\lambda P}=\lambda \tilde{P}$.
(1) Let E be the set of continuous functions on the interval $[0,1]$ taking real values. Here one uses that the sum of two continuous functions is again a continuous function, and that the product of a real-valued continuous function by a real number is again a real-valued continuous function.
(m) Let E be the set of continuous functions on the interval $[0,1]$ taking real values and whose integral is zero. Here one uses that

$$
\int_{0}^{1}(f+g)(x) d x=\int_{0}^{1} f(x) d x+\int_{0}^{1} g(x) d x
$$

and

$$
\int_{0}^{1} \lambda \cdot f(x) d x=\lambda \cdot \int_{0}^{1} f(x) d x
$$

(n) Let E be the set of differentiable functions on the interval $(0,1)$ taking real values. Here the point is to remark that the sum of two differentiable real functions is differentiable and real, and that the product of a differentiable real function by a real number is a real-valued differentiable function.
(o) Let E be the set of real functions which vanish at $0 \in \mathbb{R}$. Since for any f and g in E one has $(f+g)(0)=f(0)+g(0)=0+0=0$ and, for any $\lambda \in \mathbb{R},(\lambda \cdot f)(0)=\lambda \cdot f(0)=\lambda \cdot 0=0$, the set E is stable by the sum and the product by the reals.
(p) Let E be the set of real functions having 0 as a limit when x goes to $+\infty$. Here the point is that, given two functions f and g having as a limit 0 at $+\infty$

$$
\lim _{x \rightarrow+\infty}(f+g)=\lim _{x \rightarrow+\infty} f+\lim _{x \rightarrow+\infty} g=0+0=0
$$

and $\lim _{x \rightarrow+\infty} \lambda \cdot f=\lambda \cdot \lim _{x \rightarrow+\infty} f=\lambda \cdot 0=0$.
2. A neutral element for an addition $\oplus: E \times E \rightarrow E$ is an element $e \in E$ such that

$$
e \oplus x=x \oplus e=e, \forall x \in E
$$

The inverse of an element $x \in E$, is an element $\tilde{x} \in E$ such that $x \oplus \tilde{x}=\tilde{x} \oplus x=e$. The neutral elements e and inverses \tilde{x} of $x \in E$ for the previously defined additions are :
(a) $e=(0,0,0) \in \mathbb{R}^{n}$, the inverse of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is $\tilde{x}=\left(-x_{1},-x_{2}, \ldots,-x_{n}\right)$.
(b) e is the null function $e: \mathbb{R}^{+} \rightarrow \mathbb{R}^{3}, e(t)=(0,0,0)$. The inverse of $x: \mathbb{R}^{+} \rightarrow \mathbb{R}^{3}, x(t)=$ $\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)$ is $\tilde{x}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{3}, \tilde{x}(t)=\left(-x_{1}(t),-x_{2}(t),-x_{3}(t)\right)$.
(c) as in (a) for $n=3$.
(d) as in (a) for $n=3$.
(e) e is the null function $e: \mathbb{R} \rightarrow \mathbb{R}, e(t)=0$. The inverse of $x: \mathbb{R} \rightarrow \mathbb{R}$ is $\tilde{x}: \mathbb{R} \rightarrow \mathbb{R}, \tilde{x}(t)=-x(t)$.
(f) e is the null function $e: \mathbb{R}^{+*} \rightarrow \mathbb{R}, e(t)=0$. The inverse of $x: \mathbb{R}^{+*} \rightarrow \mathbb{R}$ is $\tilde{x}: \mathbb{R}^{+*} \rightarrow \mathbb{R}$, $\tilde{x}(t)=-x(t)$.
(g) e is the null function $e: \mathbb{R}^{+} \times \mathbb{R} \rightarrow \mathbb{C}, e(t, x)=0$. The inverse of $\Psi: \mathbb{R}^{+} \times \mathbb{R} \rightarrow \mathbb{C}$ is $\tilde{\Psi}: \mathbb{R}^{+} \times \mathbb{R} \rightarrow \mathbb{C}, \tilde{\Psi}(t, x)=-\Psi(t, x)$.
(h) e is the null sequence $e=(0,0, \ldots, 0, \ldots)$. The inverse of the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is the sequence $\left(-x_{n}\right)_{n \in \mathbb{N}}$.
(i) e is the null polynomial, $e=0$. The inverse of the polynomial $P(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+$ $\cdots+a_{1} X+a_{0}$ is the polynomial $-P(X)=-a_{n} X^{n}-a_{n-1} X^{n-1}-\cdots-a_{1} X-a_{0}$.
(j) as in (i).
(k) as in (i).
(l) e is the null function $e:[0,1] \rightarrow \mathbb{R}$. The inverse of a continuous function $f:[0,1] \rightarrow \mathbb{R}$ is the function $\tilde{f}:[0,1] \rightarrow \mathbb{R}$ such that $\tilde{f}(t)=-f(t)$.
(m) as in (l).
(n) e is the null function $e:(0,1) \rightarrow \mathbb{R}$. The inverse of a continuous function $f:(0,1) \rightarrow \mathbb{R}$ is the function $\tilde{f}:(0,1) \rightarrow \mathbb{R}$ such that $\tilde{f}(t)=-f(t)$.
(o) e is the null function $e: \mathbb{R} \rightarrow \mathbb{R}$. The inverse of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is the function $\tilde{f}(t)=-f(t)$.
(p) as in (o).

Exercise 2 What are the obstacles to defining the same operations as before for the following sets E ?
(a) $E=$ the set of solutions $(x, y, z) \in \mathbb{R}^{3}$ of the equation $\mathcal{S}_{3}: x-2 y+3 z=3$;
(b) $E=$ the set of functions $y(x)$ such that $y^{\prime \prime}(x) \sin x+x^{3} y^{2}(x)+y(x) \log x=0, \forall x>0$;
(c) $E=\mathbb{N}$;
(d) $E=\mathbb{Z}$;
(e) $E=\mathbb{R}^{+}$;
(f) $E=\mathbb{Q}^{n}$;
(g) $E=$ the set of sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ of non-negative numbers;
(h) $E=$ the set of real functions taking the value 1 at 0 ;
(i) $E=$ the set of real functions going to $+\infty$ as x goes to $+\infty$.

Solution of Exercise 2:

(a) $3+3 \neq 3$.
(b) $\left(y_{1}+y_{2}\right)^{2} \neq y_{1}^{2}+y_{2}^{2}$.
(c) $n \in \mathbb{N} \Rightarrow(-1) \cdot n \notin \mathbb{N}$.
(d) $n \in \mathbb{Z} \Rightarrow \pi \cdot n \notin \mathbb{Z}$.
(e) $t \in \mathbb{R}^{+*} \Rightarrow(-1) t \notin \mathbb{R}^{+}$
(f) If $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}^{n}$, the n-uple $\pi \cdot\left(x_{1}, \ldots, x_{n}\right) \notin \mathbb{Q}^{n}$. Remark: this could be overcome by restricting the multiplication to $\mathbb{Q} \subsetneq \mathbb{R}$, i.e. by defining the map \odot from $\mathbb{Q} \times E$ into E.
(g) If $\left(x_{n}\right)_{n \in \mathbb{N}} \in E$, the sequence $(-1) \cdot\left(x_{n}\right)_{n \in \mathbb{N}} \notin E$.
(h) $1+1 \neq 1$.
(i) $(-1) \cdot+\infty \neq+\infty$.

Exercise 3 In \mathbb{R}^{3} consider the vectors $\overrightarrow{v_{1}}=(1,1,0), \overrightarrow{v_{2}}=(4,1,4)$ and $\overrightarrow{v_{3}}=(2,-1,4)$.

1. Show that $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ are not collinear. Do the same with $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{3}}$, and with $\overrightarrow{v_{2}}$ and $\overrightarrow{v_{3}}$.
2. Is the family ($\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$) linearly independent?

Solution of Exercise 3:

1. Two vectors $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ in \mathbb{R}^{3} are collinear if and only if their coordinates are proportionnal. One sees that $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ are non-collinear since $\frac{1}{4} \neq \frac{1}{1}$. The vectors $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{3}}$ are non-collinear since $\frac{1}{2} \neq \frac{1}{-1}$. The vectors $\overrightarrow{v_{2}}$ and $\overrightarrow{v_{3}}$ are non-collinear since $\frac{4}{2} \neq \frac{1}{-1}$.
2. A family of 3 vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ in \mathbb{R}^{3} is linearly independent if and only if $\operatorname{det}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right) \neq 0$. One has

$$
\operatorname{det}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right)=\left|\begin{array}{rrr}
1 & 4 & 2 \\
1 & 1 & -1 \\
0 & 4 & 4
\end{array}\right|=-4\left|\begin{array}{rr}
1 & 2 \\
1 & -1
\end{array}\right|+4\left|\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right|=12-12=0
$$

Hence the family $\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$ is linearly dependent.
Exercise 4 Are the following families linearly independent?

1. $\overrightarrow{v_{1}}=(1,0,1), \overrightarrow{v_{2}}=(0,2,2)$ and $\overrightarrow{v_{3}}=(3,7,1)$ in \mathbb{R}^{3}.
2. $\overrightarrow{v_{1}}=(1,0,0), \overrightarrow{v_{2}}=(0,1,1)$ and $\overrightarrow{v_{3}}=(1,1,1)$ in \mathbb{R}^{3}.
3. $\overrightarrow{v_{1}}=(1,2,1,2,1), \overrightarrow{v_{2}}=(2,1,2,1,2), \overrightarrow{v_{3}}=(1,0,1,1,0)$ and $\overrightarrow{v_{4}}=(0,1,0,0,1)$ in \mathbb{R}^{5}.
4. $\overrightarrow{v_{1}}=(2,4,3,-1,-2,1), \overrightarrow{v_{2}}=(1,1,2,1,3,1)$ and $\overrightarrow{v_{3}}=(0,-1,0,3,6,2)$ in \mathbb{R}^{6}.
5. $\overrightarrow{v_{1}}=(2,1,3,-1,4,-1), \overrightarrow{v_{2}}=(-1,1,-2,2,-3,3)$ and $\overrightarrow{v_{3}}=(1,5,0,4,-1,7)$ in \mathbb{R}^{6}.

Solution of Exercise 4:

1. The vectors $\overrightarrow{v_{1}}=(1,0,1), \overrightarrow{v_{2}}=(0,2,2)$ and $\overrightarrow{v_{3}}=(3,7,1)$ are 3 linearly independent vectors in \mathbb{R}^{3} if and only if $\operatorname{det}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right) \neq 0$. One has

$$
\operatorname{det}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right)=\left|\begin{array}{ccc}
1 & 0 & 3 \\
0 & 2 & 7 \\
1 & 2 & 1
\end{array}\right|=1\left|\begin{array}{cc}
2 & 7 \\
2 & 1
\end{array}\right|+1\left|\begin{array}{cc}
0 & 3 \\
2 & 7
\end{array}\right|=-12-6=-18
$$

Since $\operatorname{det}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right) \neq 0, \overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ are linearly independent.
2. One has

$$
\operatorname{det}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right)=\left|\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right|=0
$$

Hence the vectors $\overrightarrow{v_{1}}=(1,0,0), \overrightarrow{v_{2}}=(0,1,1)$ and $\overrightarrow{v_{3}}=(1,1,1)$ are linearly dependent (one can also argue that $\left.\overrightarrow{v_{3}}=\overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right)$.
3. By definition, p-vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{p}}$ in \mathbb{R}^{n} are linearly independent if and only if the equation

$$
\lambda_{1} \overrightarrow{v_{1}}+\lambda_{2} \overrightarrow{v_{2}}+\cdots+\lambda_{p} \overrightarrow{v_{p}}=\overrightarrow{0}
$$

(whose unknowns are $\lambda_{1}, \ldots, \lambda_{p}$) admits a unique solution given by $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)=(0,0, \ldots, 0)$. Let us consider the equation

$$
\lambda_{1} \overrightarrow{v_{1}}+\lambda_{2} \overrightarrow{v_{2}}+\lambda_{3} \overrightarrow{v_{3}}+\lambda_{4} \overrightarrow{v_{4}}=\overrightarrow{0}
$$

In coordinates, we obtain the following system

Let us parametrize the set of solutions of the system by $t=\lambda_{4} \in \mathbb{R}$. One has

$$
\left\{\begin{array} { r l }
{ \lambda _ { 1 } + 2 \lambda _ { 2 } + \lambda _ { 3 } } & { = 0 } \\
{ - 3 \lambda _ { 2 } - 2 \lambda _ { 3 } } & { = - t } \\
{ \lambda _ { 3 } } & { = } \\
{ \lambda _ { 4 } } & { = t }
\end{array} \quad t \quad \Leftrightarrow \left\{\begin{array} { r l r l }
{ \lambda _ { 1 } } & { = } & { - 2 \lambda _ { 2 } - t } \\
{ - 3 \lambda _ { 2 } } & { = } & { - t + 2 t = t } \\
{ \lambda _ { 3 } } & { = } & { t } \\
{ \lambda _ { 4 } } & { = } & { t }
\end{array} \Leftrightarrow \left\{\begin{array}{rl}
\lambda_{1} & =\frac{2}{3} t-t=-\frac{1}{3} t \\
\lambda_{2} & =-\frac{1}{3} t \\
\lambda_{3} & =t \\
\lambda_{4} & =t
\end{array}\right.\right.\right.
$$

Since the solution of the system is the line d generated by the vector $\left(\begin{array}{c}-\frac{1}{3} \\ -\frac{1}{3} \\ 1 \\ 1\end{array}\right)$, or in other words

$$
\left(\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3} \\
\lambda_{4}
\end{array}\right) \in \mathbb{R}\left(\begin{array}{c}
-\frac{1}{3} \\
-\frac{1}{3} \\
1 \\
1
\end{array}\right)
$$

the vectors $\overrightarrow{v_{1}}=(1,2,1,2,1), \overrightarrow{v_{2}}=(2,1,2,1,2), \overrightarrow{v_{3}}=(1,0,1,1,0)$ and $\overrightarrow{v_{4}}=(0,1,0,0,1)$ are not linearly independent.
(A quicker argument is to point out that $\overrightarrow{v_{1}}+\overrightarrow{v_{2}}=3 \cdot\left(\overrightarrow{v_{3}}+\overrightarrow{v_{4}}\right)$.)
4. Let us consider the equation

$$
\lambda_{1} \overrightarrow{v_{1}}+\lambda_{2} \overrightarrow{v_{2}}+\lambda_{3} \overrightarrow{v_{3}}=\overrightarrow{0}
$$

In coordinates, this gives rise to the following system :

$$
\left\{\begin{aligned}
2 \lambda_{1}+\lambda_{2} & =0 \\
4 \lambda_{1}+\lambda_{2}-\lambda_{3} & =0 \\
3 \lambda_{1}+2 \lambda_{2} & =0 \\
-\lambda_{1}+\lambda_{2}+3 \lambda_{3} & =0 \\
-2 \lambda_{1}+3 \lambda_{2}+6 \lambda_{3} & =0 \\
\lambda_{1}+\lambda_{2}+2 \lambda_{3} & =0
\end{aligned}\right.
$$

By the Gauss algorithm, the system is equivalent to

$$
\begin{aligned}
& \left\{\begin{array} { r l }
{ \lambda _ { 1 } + \lambda _ { 2 } + 2 \lambda _ { 3 } } & { = 0 } \\
{ 2 \lambda _ { 1 } + \lambda _ { 2 } } & { = 0 } \\
{ 4 \lambda _ { 1 } + \lambda _ { 2 } - \lambda _ { 3 } } & { = 0 } \\
{ 3 \lambda _ { 1 } + 2 \lambda _ { 2 } } & { = 0 } \\
{ - \lambda _ { 1 } + \lambda _ { 2 } + 3 \lambda _ { 3 } } & { = 0 } \\
{ - 2 \lambda _ { 1 } + 3 \lambda _ { 2 } + 6 \lambda _ { 3 } } & { = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{rllll}
\lambda_{1}+\lambda_{2}+2 \lambda_{3} & =0 \\
-\lambda_{2} & -4 \lambda_{3} & =0 & L_{2} \leftarrow L_{2}-2 L_{1} \\
-3 \lambda_{2}-9 \lambda_{3} & =0 & L_{3} \leftarrow L_{3}-4 L_{1} \\
- & \lambda_{2} & -6 \lambda_{3} & =0 & L_{4} \leftarrow L_{4}-3 L_{1} \\
+2 \lambda_{2}+5 \lambda_{3} & =0 & L_{5} \leftarrow L_{5}+L_{1} \\
+5 \lambda_{2}+10 \lambda_{3} & =0 & L_{6} \leftarrow L_{6}+2 L_{1}
\end{array}\right.\right. \\
& \Leftrightarrow\left\{\begin{array}{rllll}
\lambda_{1}+\lambda_{2} & +2 \lambda_{3} & =0 & \\
& -\lambda_{2} & -4 \lambda_{3} & =0 & \\
& & +3 \lambda_{3} & =0 & L_{3} \leftarrow L_{3}-3 L_{2} \\
& - & 2 \lambda_{3} & =0 & L_{4} \leftarrow L_{4}-L_{2} \\
& & 3 \lambda_{3} & =0 & L_{5} \leftarrow L_{5}+2 L_{2} \\
& & 10 \lambda_{3} & =0 & L_{6} \leftarrow L_{6}+5 L_{1}
\end{array}\right.
\end{aligned}
$$

It follows that the unique solution of the system is $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=(0,0,0)$, consequently the vectors $\overrightarrow{v_{1}}=(2,4,3,-1,-2,1), \overrightarrow{v_{2}}=(1,1,2,1,3,1)$ and $\overrightarrow{v_{3}}=(0,-1,0,3,6,2)$ are linearly independent.
5 . The equation

$$
\lambda_{1} \overrightarrow{v_{1}}+\lambda_{2} \overrightarrow{v_{2}}+\lambda_{3} \overrightarrow{v_{3}}=\overrightarrow{0}
$$

written in coordinates gives rise to the following system :

$$
\left\{\begin{aligned}
2 \lambda_{1}-\lambda_{2}+\lambda_{3} & =0 \\
\lambda_{1}+\lambda_{2}+5 \lambda_{3} & =0 \\
3 \lambda_{1}-2 \lambda_{2} & =0 \\
-\lambda_{1}+2 \lambda_{2}+4 \lambda_{3} & =0 \\
4 \lambda_{1}-3 \lambda_{2}-\lambda_{3} & =0 \\
-\lambda_{1}+3 \lambda_{2}+7 \lambda_{3} & =0
\end{aligned}\right.
$$

By the Gauss algorithm, the system is equivalent to

$$
\begin{aligned}
& \left\{\begin{array} { r l }
{ \lambda _ { 1 } + \lambda _ { 2 } + 5 \lambda _ { 3 } } & { = 0 } \\
{ 2 \lambda _ { 1 } - \lambda _ { 2 } + \lambda _ { 3 } } & { = 0 } \\
{ 3 \lambda _ { 1 } - 2 \lambda _ { 2 } } & { = 0 } \\
{ - \lambda _ { 1 } + 2 \lambda _ { 2 } + 4 \lambda _ { 3 } } & { = 0 } \\
{ 4 \lambda _ { 1 } - 3 \lambda _ { 2 } - \lambda _ { 3 } } & { = 0 } \\
{ - \lambda _ { 1 } + 3 \lambda _ { 2 } + 7 \lambda _ { 3 } } & { = 0 }
\end{array} \leftrightarrow L _ { 1 } \quad \Leftrightarrow \left\{\begin{array}{rllll}
\lambda_{1}+\lambda_{2}+5 \lambda_{3} & =0 \\
-3 \lambda_{2} & -9 \lambda_{3} & =0 & L_{2} \leftarrow L_{2}-2 L_{1} \\
-5 \lambda_{2} & -15 \lambda_{3} & =0 & L_{3} \leftarrow L_{3}-3 L_{1} \\
+3 \lambda_{2} & +9 \lambda_{3} & =0 & L_{4} \leftarrow L_{4}+L_{1} \\
-7 \lambda_{2} & -21 \lambda_{3}=0 & L_{5} \leftarrow L_{5}-4 L_{1} \\
+4 \lambda_{2}+12 \lambda_{3} & =0 & L_{6} \leftarrow L_{6}+L_{1}
\end{array}\right.\right.
\end{aligned}
$$

A nontrivial solution is therefore given by $\lambda_{2}=-3 \lambda_{3}$ and $\lambda_{1}=-\lambda_{2}-5 \lambda_{3}=-2 \lambda_{3}$, i.e. $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ collinear with $(-2,-3,1)$. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ are not linearly independent (and one can check that $\left.2 \overrightarrow{v_{1}}+3 \overrightarrow{v_{2}}=\overrightarrow{v_{3}}\right)$.

Exercise 5 One supposes that $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are linearly independent vectors in \mathbb{R}^{n}.

1. Are the vectors $v_{1}-v_{2}, v_{2}-v_{3}, v_{3}-v_{4}, \ldots, v_{n}-v_{1}$ linearly independent?
2. Are the vectors $v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}, \ldots, v_{n}+v_{1}$ linearly independent?
3. Are the vectors $v_{1}, v_{1}+v_{2}, v_{1}+v_{2}+v_{3}, v_{1}+v_{2}+v_{3}+v_{4}, \ldots, v_{1}+v_{2}+\cdots+v_{n}$ linearly independent?

Solution of Exercise 5:

1. Consider the following system

$$
\begin{gather*}
\alpha_{1}\left(\overrightarrow{v_{1}}-\overrightarrow{v_{2}}\right)+\alpha_{2}\left(\overrightarrow{v_{2}}-\overrightarrow{v_{3}}\right)+\cdots+\alpha_{n}\left(\overrightarrow{v_{n}}-\overrightarrow{v_{1}}\right)=\overrightarrow{0} \tag{4}\\
\Leftrightarrow\left(\alpha_{1}-\alpha_{n}\right) \overrightarrow{v_{1}}+\left(\alpha_{2}-\alpha_{1}\right) \overrightarrow{v_{2}}+\left(\alpha_{3}-\alpha_{2}\right) \overrightarrow{v_{3}} \ldots\left(\alpha_{n}-\alpha_{n-1}\right) \overrightarrow{v_{n}}=\overrightarrow{0} .
\end{gather*}
$$

Since $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \ldots, \overrightarrow{v_{n}}$ are linearly independent vectors in \mathbb{R}^{n}, the previous system is equivalent to

$$
\left\{\begin{array}{c}
\alpha_{1}-\alpha_{n}=0 \\
\alpha_{2}-\alpha_{1}=0 \\
\vdots \\
\alpha_{n}-\alpha_{n-1}=0
\end{array} \Leftrightarrow \alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}\right.
$$

Hence the equation (4) admits a line of solutions given by $\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n}\end{array}\right)=\lambda\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$. Consequently the vectors $v_{1}-v_{2}, v_{2}-v_{3}, v_{3}-v_{4}, \ldots, v_{n}-v_{1}$ are not linearly independent.
2. Consider the following system

$$
\begin{gather*}
\alpha_{1}\left(\overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right)+\alpha_{2}\left(\overrightarrow{v_{2}}+\overrightarrow{v_{3}}\right)+\cdots+\alpha_{n}\left(\overrightarrow{v_{n}}+\overrightarrow{v_{1}}\right)=\overrightarrow{0} \tag{5}\\
\Leftrightarrow\left(\alpha_{1}+\alpha_{n}\right) \overrightarrow{v_{1}}+\left(\alpha_{2}+\alpha_{1}\right) \overrightarrow{v_{2}}+\left(\alpha_{3}+\alpha_{2}\right) \overrightarrow{v_{3}} \ldots\left(\alpha_{n}+\alpha_{n-1}\right) \overrightarrow{v_{n}}=\overrightarrow{0}
\end{gather*}
$$

Since $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \ldots, \overrightarrow{v_{n}}$ are linearly independent vectors in \mathbb{R}^{n}, the previous system is equivalent to

$$
\left\{\begin{array} { c }
{ \alpha _ { 1 } + \alpha _ { n } = 0 } \\
{ \alpha _ { 2 } + \alpha _ { 1 } = 0 } \\
{ \alpha _ { 3 } + \alpha _ { 2 } = 0 } \\
{ \vdots } \\
{ \alpha _ { n } + \alpha _ { n - 1 } = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
\alpha_{1}=-\alpha_{n} \\
\alpha_{2}=-\alpha_{1} \\
\alpha_{3}=-\alpha_{2} \\
\vdots \\
\alpha_{n}=-\alpha_{n-1}
\end{array}\right.\right.
$$

There are two cases :
(a) The previous system implies

$$
\Rightarrow\left\{\begin{array}{c}
\alpha_{1}=(-1)^{n} \alpha_{1} \\
\alpha_{2}=(-1)^{n} \alpha_{2} \\
\alpha_{3}=(-1)^{n} \alpha_{3} \\
\vdots \\
\alpha_{n}=(-1)^{n} \alpha_{n}
\end{array} .\right.
$$

It follows that if n is odd, $\alpha_{1}=0, \alpha_{2}=0, \ldots \alpha_{n}=0$, hence the vectors $v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+$ $v_{4}, \ldots, v_{n}+v_{1}$ are linearly independent.
(b) if n is even, the system is equivalent to

$$
\left\{\begin{array}{l}
\alpha_{1}=-\alpha_{n} \\
\alpha_{2}=(-1)^{2} \alpha_{n} \\
\alpha_{3}=(-1)^{3} \alpha_{n} \\
\vdots \\
\alpha_{n-1}=(-1)^{n-1} \alpha_{n}
\end{array}\right.
$$

hence the set of solutions of the system is the line given by

$$
\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\vdots \\
\alpha_{j} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\lambda\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
\vdots \\
(-1)^{j} \\
\vdots \\
1
\end{array}\right)
$$

consequently the vectors $v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{4}, \ldots, v_{n}+v_{1}$ are not linearly independent.
3. Consider the following vectors

$$
\left\{\begin{array}{l}
v_{1}^{\prime}=v_{1} \\
v_{2}^{\prime}=v_{1}+v_{2} \\
v_{3}^{\prime}=v_{1}+v_{2}+v_{3} \\
v_{4}^{\prime}=v_{1}+v_{2}+v_{3}+v_{4} \\
\vdots \\
v_{n}^{\prime}=v_{1}+v_{2}+\cdots+v_{n}
\end{array}\right.
$$

One has

$$
\left(\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime} \\
v_{3}^{\prime} \\
\vdots \\
v_{n-1}^{\prime} \\
v_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
1 & 1 & 0 & 0 & \ldots & 0 & 0 \\
1 & 1 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
1 & 1 & 1 & 1 & \ldots & 1 & 0 \\
1 & 1 & 1 & 1 & \ldots & 1 & 1
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{n-1} \\
v_{n}
\end{array}\right)
$$

Consequently, the equation $\lambda_{1} v_{1}^{\prime}+\lambda_{2} v_{2}^{\prime}+\ldots+\lambda_{n} v_{n}^{\prime}=0$ can be written

$$
\left(\begin{array}{llll}
v_{1}^{\prime} & v_{2}^{\prime} & \ldots & v_{n}^{\prime}
\end{array}\right)\left(\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\lambda_{n}
\end{array}\right)=0 \Leftrightarrow\left(\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right)\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
1 & 1 & 0 & 0 & \ldots & 0 & 0 \\
1 & 1 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
1 & 1 & 1 & 1 & \ldots & 1 & 0 \\
1 & 1 & 1 & 1 & \ldots & 1 & 1
\end{array}\right)^{T}\left(\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3} \\
\vdots \\
\lambda_{n-1} \\
\lambda_{n}
\end{array}\right)=0 .
$$

Since the vectors $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent, it follows that

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
1 & 1 & 0 & 0 & \ldots & 0 & 0 \\
1 & 1 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
1 & 1 & 1 & 1 & \ldots & 1 & 0 \\
1 & 1 & 1 & 1 & \ldots & 1 & 1
\end{array}\right)^{T}\left(\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3} \\
\vdots \\
\lambda_{n-1} \\
\lambda_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$

which implies

$$
\left(\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3} \\
\vdots \\
\lambda_{n-1} \\
\lambda_{n}
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 1 & 1 & 1 & \ldots & 1 & 1 \\
0 & 1 & 1 & 1 & \ldots & 1 & 1 \\
0 & 0 & 1 & 1 & \ldots & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & 1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)^{-1} \quad\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right) .
$$

In conclusion, the vectors $v_{1}, v_{1}+v_{2}, v_{1}+v_{2}+v_{3}, v_{1}+v_{2}+v_{3}+v_{4}, \ldots, v_{1}+v_{2}+\cdots+v_{n}$ are linearly independent.

