Review

Exercise 1 1. Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients of the system, by Cramer's formulas) :

$$\begin{cases} 2x + y = 1\\ 3x + 7y = 0 \end{cases}$$

2. Choose the method that seems the quickest to you and solve, according to the values of *a*, the following systems :

$$\begin{cases} ax + y = 2\\ (a^{2}+1)x + 2ay = 1 \end{cases}$$
$$\begin{cases} (a+1)x + (a-1)y = 1\\ (a-1)x + (a+1)y = 1 \end{cases}$$

Solution of Exercise 1 :

1. (a) By substitution

$$\begin{cases} 2x + y = 1\\ 3x + 7y = 0 \end{cases} \Leftrightarrow \begin{cases} 2x + y = 1\\ x = -\frac{7}{3}y \end{cases} \Leftrightarrow \begin{cases} -\frac{14}{3}y + y = 1\\ x = -\frac{7}{3}y \end{cases}$$
$$\Leftrightarrow \begin{cases} y = -\frac{3}{11}\\ x = \frac{7}{11} \end{cases}$$

(b) By the Gauss method

$$\begin{cases} 2x + y = 1\\ 3x + 7y = 0 \end{cases} \Leftrightarrow \begin{cases} 2x + y = 1\\ 11y = -3 \quad L_2 \leftarrow 2L_2 - 3L_1 \end{cases}$$
$$\Leftrightarrow \begin{cases} x = \frac{1-y}{2}\\ y = -\frac{3}{11} \end{cases} \Leftrightarrow \begin{cases} y = -\frac{3}{11}\\ x = \frac{7}{11} \end{cases}$$

(c) The inverse of the matrix of coefficients of the system is

$$\left(\begin{array}{cc} 2 & 1 \\ 3 & 7 \end{array}\right)^{-1} = \frac{1}{11} \left(\begin{array}{cc} 7 & -1 \\ -3 & 2 \end{array}\right).$$

Hence the solution of the system is

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{11} \begin{pmatrix} 7 & -1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{7}{11} \\ -\frac{3}{11} \end{pmatrix}$$

(d) By Cramer's formulas

$$x = \frac{\begin{vmatrix} 1 & 1 \\ 0 & 7 \end{vmatrix}}{\begin{vmatrix} 2 & 1 \\ 3 & 7 \end{vmatrix}} = \frac{7}{11} \qquad y = \frac{\begin{vmatrix} 2 & 1 \\ 3 & 0 \end{vmatrix}}{\begin{vmatrix} 2 & 1 \\ 3 & 7 \end{vmatrix}} = -\frac{3}{11}$$

2. The determinant of the first system is

$$\begin{vmatrix} a & 1\\ (a^2+1) & 2a \end{vmatrix} = a^2 - 1$$

(a) If $a \notin \{1, -1\}$, one can use Cramer's formulas to obtain :

$$\begin{cases} ax + y = 2\\ (a^{2}+1)x + 2ay = 1 \end{cases} \Leftrightarrow \begin{cases} x = \frac{\begin{vmatrix} 2 & 1\\ 1 & 2a \end{vmatrix}}{\begin{vmatrix} a & 1\\ (a^{2}+1) & 2a \end{vmatrix}} = \frac{4a-1}{a^{2}-1} \\ y = \frac{\begin{vmatrix} a & 2\\ (a^{2}+1) & 1\\ a & 1\\ (a^{2}+1) & 2a \end{vmatrix}} = \frac{-2a^{2}+a-2}{a^{2}-1} \end{cases}$$

(b) If a = 1, the system becomes

$$\begin{cases} x + y = 2 \\ 2x + 2y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y = 2 \\ 0 = -1 \quad L_2 \leftarrow L_2 - 2L_1 \end{cases}$$

which is impossible.

(c) If a = -1, the system becomes

$$\begin{cases} -x + y = 2\\ 2x - 2y = 1 \end{cases} \Leftrightarrow \begin{cases} x + y = 2\\ 0 = 5 \quad L_2 \leftarrow L_2 + 2L_1 \end{cases}$$

which is also impossible.

The determinant of the second system is

$$\begin{vmatrix} (a+1) & (a-1) \\ (a-1) & (a+1) \end{vmatrix} = 4a.$$

(a) If $a \neq 0$, one can use Cramer's formulas to obtain :

$$\begin{cases} (a+1)x + (a-1)y = 1\\ (a-1)x + (a+1)y = 1 \end{cases} \Leftrightarrow \begin{cases} x = \frac{\begin{vmatrix} 1 & (a-1) \\ 1 & (a+1) \end{vmatrix}}{4a} = \frac{1}{2a} \\ y = \frac{\begin{vmatrix} (a+1) & 1 \\ (a-1) & 1 \end{vmatrix}}{4a} = \frac{1}{2a} \end{cases}$$

(b) If a = 0, the system becomes

$$\begin{cases} x & -y = 1 \\ -x & +y = 1 \end{cases} \Leftrightarrow \begin{cases} x & -y = 1 \\ 0 & = 2 \\ L_2 \leftarrow L_2 + L_1 \end{cases}$$

which is impossible.

Exercise 2 Solve the following system of 5 equations with 6 unknowns :

$$\begin{cases} 2x + y + z - 2u + 3v - w = 1\\ 3x + 2y + 2z - 3u + 5v - 3w = 4\\ 2x + 2y + 2z - 2u + 4v - 4w = 6\\ x + y + z - u + 2v - 2w = 3\\ 3x - 3u + 3v + 3w = -6 \end{cases}$$

Solution of Exercise 2 : By the Gauss method

$$\begin{cases} 2x + y + z - 2u + 3v - w = 1\\ 3x + 2y + 2z - 3u + 5v - 3w = 4\\ 2x + 2y + 2z - 2u + 4v - 4w = 6\\ x + y + z - u + 2v - 2w = 3\\ 3x - 3u + 3v + 3w = -6 \end{cases}$$
$$\Leftrightarrow \begin{cases} x + y + z - u + 2v - 2w = 3\\ 3x - 3u + 3v + 3w = -6 \end{cases} L_1 \leftrightarrow L_4$$
$$\begin{cases} x + y + z - u + 2v - 2w = 3\\ 2x + 2y + 2z - 3u + 5v - 3w = 4\\ 2x + 2y + 2z - 2u + 4v - 4w = 6\\ 2x + y + z - 2u + 3v - w = 1\\ 3x - 3u + 3v + 3w = -6 \end{cases}$$
$$\Leftrightarrow \begin{cases} x + y + z - u + 2v - 2w = 3\\ - y - z - v + 3w = -5\\ - 3y - 3z - v + 3w = -5\\ - 3v + 9w = -15\\ L_5 \leftarrow L_2 - 3L_1\\ - 3y - 3z - 3v + 9w = -15\\ L_5 \leftarrow L_5 - 3L_1\\ + 3w - 5 - 3L_1 \leftarrow -2w - 2w = 3\\ - y - z - v + 3w = -5\\ - 3y - 3z - 3v + 9w = -5\\ - 3y - 3z - 3v + 9w = -5\\ - 3w - 3w - 3w - 5\\ - y - z - v + 3w = -5\\ - 3w - 3v - 3w - 3w - 5\\ - y - z - v + 3w = -5\\ - 3w - 3v - 3w - 3w - 5\\ - 3w - 3w - 3w - 3w - 5\\ - 3w - 3w - 5\\ - 3w - 3w - 5\\ - 3w - 5\\$$

It follows that the set of solutions is a 4-space in \mathbb{R}^6 . Let us parametrize the set of solutions by $a = z \in \mathbb{R}$, $b = u \in \mathbb{R}$, $c = v \in \mathbb{R}$, $d = w \in \mathbb{R}$. One obtains

$$\begin{cases} x = -y - a + b - 2c + 2d + 3 = b - c - d - 2\\ y = -a - c + 3d + 5\\ z = a\\ u = b\\ v = c\\ w = d \end{cases}$$
$$\Leftrightarrow \begin{pmatrix} x\\ y\\ z\\ u\\ v\\ w \end{pmatrix} = \begin{pmatrix} -2\\ 5\\ 0\\ 0\\ 0\\ 0 \end{pmatrix} + a \begin{pmatrix} 0\\ -1\\ 1\\ 0\\ 0\\ 0\\ 0 \end{pmatrix} + b \begin{pmatrix} 1\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0 \end{pmatrix} + c \begin{pmatrix} -1\\ -1\\ 0\\ 0\\ 1\\ 0 \end{pmatrix} + d \begin{pmatrix} -1\\ 3\\ 0\\ 0\\ 0\\ 1\\ 0 \end{pmatrix}$$

Exercise 3 For each pair $(A_i, b_i), 1 \le i \le 5$ of matrices below

- 1. give the nature of the set of solutions of the system $A_i X = b_i$;
- 2. give a parametric representation of the set of solutions of $A_i X = b_i$;
- 3. give a basis of the range and a basis of the kernel of A_i .

a)
$$A_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 $b_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$; b) $A_2 = \begin{pmatrix} 1 & 2 & 0 & 1 & 3 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$ $b_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$;
c) $A_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $b_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$; d) $A_4 = \begin{pmatrix} 1 & 2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $b_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$;
e) $A_5 = \begin{pmatrix} 1 & 2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ $b_5 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$;

Solution of Exercise 3 :

- a) Since det $A_1 = 1 \neq 0$, the matrix A_1 is invertible hence defines an isomorphism of \mathbb{R}^4 . The system $A_1X = b_1$ has therefore a unique solution given by $X = A_1^{-1}b_1 = (0, 0, -1, 1)^T$ by a standard computation. The range of A_1 is \mathbb{R}^4 , hence the canonical basis of \mathbb{R}^4 is a basis of Im A_1 . The kernel of A_1 is $\{\overrightarrow{0}\}$, hence a basis of ker A_1 is \emptyset .
- b) The rank of A_2 is 4, hence the dimension of the kernel of A_2 is 1. Therefore the set of solutions of $A_2X = b_2$ is an affine line in \mathbb{R}^5 parallel to ker A_2 . Denote by (x, y, z, t, u) the coordinates in \mathbb{R}^5 . Let us parametrize the set of solutions by $a = u \in \mathbb{R}$. The system is equivalent to

$$\begin{cases} x + 2y + t = 1 - 3a \\ y + z + t = 1 - 2a \\ z + 2t = 1 - 3a \\ t = 1 - a \end{cases} \Leftrightarrow \begin{cases} x = 1 - 3a - 2y - t \\ y = 1 - 2a - z - t \\ z = 1 - 3a - 2t \\ t = 1 - a \end{cases}$$
$$\Leftrightarrow \begin{cases} x = 1 - 3a - 2 - 1 + a = -2 - 2a \\ y = 1 - 2a + 1 + a + -(1 - a) = 1 \\ z = 1 - 3a - 2 + 2a = -1 - a \\ t = 1 - a \end{cases} \Leftrightarrow \begin{pmatrix} x \\ y \\ z \\ t \\ u \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + a \begin{pmatrix} -2 \\ 0 \\ -1 \\ -1 \\ 1 \\ 1 \end{pmatrix}, a \in \mathbb{R}.$$

Since A_2 is surjective, the canonical basis of \mathbb{R}^4 is a basis of $\text{Im}A_2$. The previous resolution implies

(-2)

.

that a basis of ker
$$A_2$$
 is given by the single vector $\begin{pmatrix} 0\\ -1\\ -1\\ 1 \end{pmatrix}$

- c) Since the last equation of the system is impossible, the system $A_3X = b_3$ admits no solution. The rank of A_3 is 4, therefore by the Rank theorem, the dimension of ker A_3 is 0. A basis of Im A_3 is given by the 4 columns of A_3 . A basis of ker A_3 is given by the empty set \emptyset .
- d) The last equation of $A_4X = b_4$ is impossible, hence this system admits no solution. The rank of A_4 is 4, hence by the Rank theorem, the dimension of the kernel of A_4 is 1. A basis of $\text{Im}A_4$ is given by the first 4 columns of A_4 . A basis of ker A_4 is a nontrivial vector $X \in \mathbb{R}^5$ solution of $A_4X = \overrightarrow{0}$.

One finds that
$$\begin{pmatrix} 2\\ -1\\ 1\\ -1\\ 1 \end{pmatrix}$$
 generates ker A_4 .

e) For the basis of $\text{Im}A_5$ and ker A_5 see d). The vector b_5 belongs to $\text{Im}A_5$ since the last equation (compatibility condition) is satisfied. The kernel of A_5 being a line, the set of solutions of $A_5X = b_5$

is an affine line in \mathbb{R}^5 parallel to ker A_5 . Since the vector $\begin{pmatrix} 2\\ -1\\ 0\\ 0\\ 1 \end{pmatrix}$ is a particular solution of the

system, one obtains that the set of solutions is parametrized

$$\begin{pmatrix} x\\ y\\ z\\ t\\ u \end{pmatrix} = \begin{pmatrix} 2\\ -1\\ 0\\ 0\\ 1 \end{pmatrix} + a \begin{pmatrix} 2\\ -1\\ 1\\ -1\\ 1 \end{pmatrix}, a \in \mathbb{R}.$$

Exercise 4 Compute a basis of the image and a basis of the kernel of the linear application

$$\begin{array}{rcccc} f & : & \mathbb{R}^3 & \longrightarrow & \mathbb{R}^5 \\ & & (x,y,z) & \longmapsto & (x+y,x+y+z,2x+y+z,2x+2y+z,y+z) \end{array}$$

What is the rank of f?

Solution of Exercise 4: The matrix of the linear application f is

$$\left(\begin{array}{rrrrr}1 & 1 & 0\\ 1 & 1 & 1\\ 2 & 1 & 1\\ 2 & 2 & 1\\ 0 & 1 & 1\end{array}\right)$$

Let us compute a basis of Im f and a basis of ker f. One has :

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 2 & -1 & 1 \\ 2 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 1 & -1 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 1 & -1 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1\\1\\2\\2\\0 \end{pmatrix}, v_2 = \begin{pmatrix} 0\\1\\1\\1\\1 \end{pmatrix}$$
 and
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

Consequently the kernel of f is trivial, and a basis of $\operatorname{Im} f$ is given by $v_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \\ 0 \end{pmatrix}$ $v_3 = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$. The rank of f is the dimension of $\operatorname{Im} f$, that is, 3.

Exercise 5 Let *A* be the matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.

- 1. Consider the matrices $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}$. Show that AB = AC. Can the matrix A be invertible?
- 2. Determine all matrices F of size (3,3) such that AF = 0 (where 0 denotes the matrix all of whose entries are zero).

Solution of Exercise 5 :

1. One has

$$AB = AC = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 4 & 4 & 3 \end{array}\right).$$

Suppose that the matrix A is invertible. Multiply both members of the equation AB = AC on the left by A^{-1} to get B = C. But the matrices B and C are not equal. This is a contradiction. Hence the matrix A is not invertible.

2. Let F be any real matrix (3,3)

$$F = \left(\begin{array}{rrr} a & b & c \\ d & e & f \\ g & h & i \end{array}\right).$$

The equation AF = 0 gives rise to the following system

$$\left\{ \begin{array}{l} a = 0 \\ b = 0 \\ c = 0 \\ d + g = 0 \\ e + h = 0 \\ f + i = 0 \\ 3a + d + g = 0 \\ 3b + e + h = 0 \\ 3c + f + i = 0 \end{array} \right.$$

Consequently the set of matrices F such that AF = 0 is the set of matrices of the form

$$F = \begin{pmatrix} 0 & 0 & 0 \\ d & e & f \\ -d & -e & -f \end{pmatrix}, d \in \mathbb{R}, e \in \mathbb{R}, f \in \mathbb{R}.$$

Exercise 6 For which values of a is the matrix

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{array} \right)$$

invertible? Compute in this case its inverse.

Solution of Exercise 6 : One has

det
$$A = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{vmatrix} = \begin{vmatrix} 2 & 4 \\ 3 & a \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 3 & a \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix} = 2a - 12 - (a - 3) + 2 = a - 7.$$

Hence A is invertible if and only if $a \neq 7$. In this case, the standard algorithm yields

$$A^{-1} = \frac{1}{a-7} \begin{pmatrix} 2a-12 & 3-a & 2\\ 4-a & a-1 & -3\\ 1 & -2 & 1 \end{pmatrix}$$

Exercise 7 Let a and b be two real numbers, and A be the matrix

$$A = \left(\begin{array}{rrrr} a & 2 & -1 & b \\ 3 & 0 & 1 & -4 \\ 5 & 4 & -1 & 2 \end{array}\right)$$

Show that $rk(A) \ge 2$ (where rk denotes the rank). For which values of a and b is the rank of A equal to 2?

Solution of Exercise 7 :

Recall that the rank of A is the greatest number of columns of A that are linearly independent. Since the second and third columns C_2 , C_3 of A are not proportional, they are linearly independent. Therefore the rank of A is at least 2. For the rank of A to be exactly 2, one has to impose that the first and last columns of A are each a linear combination of C_2 and C_3 (which are fixed). The only linear combination of C_2 and C_3 that has the form $(a, 3, 5)^T$ is $3C_3 + 2C_2 = (1, 3, 5)^T$, hence a = 1. The only linear combination of C_2 and C_3 that has the form $(b, -4, 2)^T$ is $-4C_3 - \frac{1}{2}C_2 = (3, -4, 2)^T$, hence b = 3. Consequently the rank of A is 2 if and only if a = 1 and b = 3.

Exercise 8 Compute the inverse of the following matrix

$$A = \begin{pmatrix} 4 & 8 & 7 & 4 \\ 1 & 3 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Solution of Exercise 8 : One obtains

$$A^{-1} = \begin{pmatrix} 1 & -2 & -1 & 0 \\ 0 & 1 & -1 & 1 \\ -1 & 0 & 4 & -4 \\ 1 & 0 & -4 & 5 \end{pmatrix}.$$

Exercise 9 Let us denote by $\{e_1, e_2, \ldots, e_n\}$ the canonical basis of \mathbb{R}^n . To a permutation $\sigma \in S_n$, one associates the following endomorphism u_{σ} of \mathbb{R}^n :

- 1. Let $\tau = (ij)$ be a transposition. Write the matrix of u_{τ} in the canonical basis. Show that $det(u_{\tau}) = -1$.
- 2. Show that $\forall \sigma, \sigma' \in S_n, u_{\sigma} \circ u_{\sigma'} = u_{\sigma' \circ \sigma}$. Caution! There was a typo in the French original.
- 3. Show that $\forall \sigma \in S_n$, det $u_{\sigma} = \varepsilon(\sigma)$ where ε denotes the signature.

Solution of Exercise 9 :

1. Let τ be the transposition which exchanges *i* and *j*. The matrix of u_{τ} in the canonical basis of \mathbb{R}^n is

					i				j				
(:	1	0		0	0	0		0	0	0		0	0
	0	1		0	0	0		0	0	0		0	0
	:	÷	••.	÷	÷	÷		÷	÷	÷		÷	:
	0	0		1	0	0		0	0	0		0	0
	0	0		0	0	0		0	1	0		0	0
	0	0		0	0	1		0	0	0		0	0
	:	÷		÷	÷	÷	۰.	÷	÷	÷		÷	÷
	: 0	: 0		: 0	: 0	: 0	••. 	: 1	: 0	: 0		: 0	: 0
	: 0 0	: 0 0		: 0 0	: 0 1	: 0 0	·	: 1 0	$\begin{array}{c} \vdots \\ 0 \\ \end{array}$: 0 0		: 0 0	: 0 0
	: 0 0 0	: 0 0 0	· · · · · · ·	: 0 0 0	$\begin{array}{c} \vdots \\ 0 \\ \hline 1 \\ 0 \end{array}$: 0 0 0	··. 	: 1 0 0	$\begin{array}{c} \vdots \\ 0 \\ \hline 0 \\ 0 \\ \end{array}$: 0 0 1	· · · · · · ·	: 0 0 0	: 0 0 0
	: 0 0 0 :	: 0 0 0 :	· · · · · · ·	: 0 0 0 :	$\begin{array}{c} \vdots \\ 0 \\ \hline 1 \\ 0 \\ \vdots \end{array}$: 0 0 0 :	· 	: 1 0 0 :	$\begin{array}{c} \vdots \\ 0 \\ \hline 0 \\ 0 \\ \vdots \end{array}$: 0 0 1 :	···· ··· ···	: 0 0 0 :	: 0 0 0 :
	\vdots 0 0 0 \vdots 0	$\begin{array}{c} \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{array}$	· · · · · · ·	$\begin{array}{c} \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{array}$	$\begin{array}{c} \vdots \\ 0 \\ \hline 1 \\ 0 \\ \vdots \\ 0 \end{array}$	$\begin{array}{c} \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{array}$	·	: 1 0 0 : 0	$\begin{array}{c} \vdots \\ 0 \\ \hline 0 \\ 0 \\ \vdots \\ 0 \end{array}$: 0 0 1 : 0	···· ··· ···	: 0 0 : 1	: 0 0 0 : 0

By exchanging the columns i and j of the matrix of u_{τ} one obtains the identity matrix. Therefore det $u_{\tau} = -\det I = -1$, where I denotes the identity matrix.

2. For any $\sigma, \sigma' \in \mathcal{S}_n$, one has

Since

$$u_{\sigma} \circ u_{\sigma'} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = u_{\sigma} \begin{pmatrix} x_{\sigma'(1)} \\ \vdots \\ x_{\sigma'(n)} \end{pmatrix} = \begin{pmatrix} x_{\sigma'(\sigma(1))} \\ \vdots \\ x_{\sigma'(\sigma(n))} \end{pmatrix} = \begin{pmatrix} x_{\sigma'\circ\sigma(1)} \\ \vdots \\ x_{\sigma'\circ\sigma(n)} \end{pmatrix} = u_{\sigma'\circ\sigma} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

the previous equality is satisfied for every $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ in \mathbb{R}^n , it implies that $u_{\sigma} \circ u_{\sigma'} = u_{\sigma'\circ\sigma}$.

An alternative proof is to check that u_{σ} sends each e_i to $e_{\sigma^{-1}(i)}$ (the basis vector whose only nonzero coordinate is the $\sigma^{-1}(i)$ -th) : hence,

$$u_{\sigma} \circ u_{\sigma'}(e_i) = u_{\sigma}(e_{\sigma'^{-1}(i)}) = e_{\sigma^{-1}(\sigma'^{-1}(i))} = e_{(\sigma' \circ \sigma)^{-1}(i)} = u_{\sigma' \circ \sigma}(i).$$

3. By 2., the map which associates $u_{\sigma^{-1}}$ to a permutation σ is a group homomorphism from S_n into the group of invertible matrices of size (n, n), because $u_{\sigma^{-1}} \circ u_{\sigma'^{-1}} = u_{\sigma'^{-1} \circ \sigma^{-1}} = u_{(\sigma \circ \sigma')^{-1}}$. Consequently, the map which assigns to a permutation σ the number det $u_{\sigma^{-1}}$ is a group homomorphism from S_n into $\{\pm 1\}$. Since the transpositions generate the group of permutations S_n , two group homomorphisms from S_n to $\{\pm 1\}$ which coincide on the set of transpositions coincide on S_n . By 1., the group homomorphism from S_n into $\{\pm 1\}$ which maps σ onto det $u_{\sigma^{-1}}$ coincides with the signature on the set of transpositions, because a transposition is its own inverse. Hence $\forall \sigma \in S_n$, det $u_{\sigma} = \varepsilon(\sigma)$.

Exercise 10 1. Compute the eigenvalues and eigenvectors of the following matrix

$$A = \left(\begin{array}{rrrr} 0 & 2 & -2 \\ 1 & -1 & 2 \\ 1 & -3 & 4 \end{array}\right).$$

2. Compute A^n for all $n \in \mathbb{N}$.

Solution of Exercise 10 :

1. One has

$$\det (A - \lambda I) = \begin{vmatrix} -\lambda & 2 & -2 \\ 1 & -1 - \lambda & 2 \\ 1 & -3 & 4 - \lambda \end{vmatrix} = -\lambda \begin{vmatrix} -1 - \lambda & 2 \\ -3 & 4 - \lambda \end{vmatrix} \begin{vmatrix} -1 & 2 & -2 \\ -3 & 4 - \lambda \end{vmatrix} + 1 \begin{vmatrix} 2 & -2 \\ -1 - \lambda & 2 \end{vmatrix}$$

 $= -\lambda^{3} + 3\lambda^{2} - 2\lambda = -\lambda \left(\lambda - 2\right) \left(\lambda - 1\right).$

Therefore the eigenvalues of A are $\lambda_1 = 0$, $\lambda_2 = 2$ and $\lambda_3 = 1$. A nontrivial vector in the kernel of A is given by $v_1 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$. Let us find a vector generating the eigenspace associated to $\lambda_2 = 2$. One has

$$\begin{pmatrix} A - \lambda_2 I \\ I \end{pmatrix} = \begin{pmatrix} -2 & 2 & -2 \\ 1 & -3 & 2 \\ 1 & -3 & 2 \\ 1 & -3 & 2 \\ & & \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} C_2 \leftarrow C_2 + C_1 \\ C_3 \leftarrow C_3 - C_1 \\ & \\ 1 & -2 & 1 \\ 1 & -2 & 1 \\ 1 & -2 & 1 \\ & \\ 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} C_3 \leftarrow 2C_3 + C_2 \\ -2 & 0 & 0 \\ 1 & -2 & 0 \\ 1 & -2 & 0 \\ & \\ 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

It follows that the vector $v_2 = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$ is a basis of the eigenspace associated to $\lambda_2 = 2$. Now one has

$$A - I = \begin{pmatrix} -1 & 2 & -2 \\ 1 & -2 & 2 \\ 1 & -3 & 3 \end{pmatrix}$$

Consequently the vector $v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ generates the eigenspace associated to $\lambda_3 = 1$.

2. Denote by f the linear application whose matrix in the canonical basis of \mathbb{R}^3 is A. The vectors v_1, v_2 and v_3 form a basis of \mathbb{R}^3 . In this new basis, the matrix of f is

$$D = \left(\begin{array}{rrr} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

The relation between A and D is $D = P^{-1}AP$ where $P = \begin{pmatrix} -1 & -1 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}$. The inverse of P is

$$P^{-1} = \left(\begin{array}{rrrr} -1 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & 1 & 0 \end{array}\right).$$

Therefore, for n > 0, we have $A^n = (PDP^{-1})(PDP^{-1}) \dots (PDP^{-1})$: cancelling all occurrences of $P^{-1}P = I$ one gets

$$A^{n} = PD^{n}P^{-1} = \begin{pmatrix} -1 & -1 & 0\\ 1 & 1 & 1\\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 0^{n} & 0 & 0\\ 0 & 2^{n} & 0\\ 0 & 0 & 1^{n} \end{pmatrix} \begin{pmatrix} -1 & 1 & -1\\ 0 & -1 & 1\\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2^{n} & -2^{n}\\ 1 & -2^{n}+1 & 2^{n}\\ 1 & -2^{n+1}+1 & 2^{n+1} \end{pmatrix}$$