University of Lille I
PC first year list of exercises n°7

Review

Exercise 1 1. Solve the following systems in 4 different ways (by substitution, by the Gauss method,
by inverting the matrix of coefficients of the system, by Cramer’s formulas) :

2z + y =1
3z + 7y = 0

2. Choose the method that seems the quickest to you and solve, according to the values of a, the
following systems :

ax + y =
(@®+1z + 2ay = 1

(e+1Dz + (a—1l)y = 1
(a—1z + (a+1)y = 1
Solution of Exercise 1 :
1. (a) By substitution
2 + y =1 2 + y = 1 —1—34y+y:1
{3x+7y20@{ x:—gy@}{ x:—%y
3
@{ Yoo
xr = 11
(b) By the Gauss method
2r + y =1 o 2c + y = 1
3r + 7y =0 11y = -3 L2<—2L2—3L1
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(c) The inverse of the matrix of coefficients of the system is

2 1\ 1/ 7 -1
3.7 S\ -3 2 )

Hence the solution of the system is
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(d) By Cramer’s formulas
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2. The determinant of the first system is
a 1 2
=a—1.
‘ (a®>+1) 2a “

(a) If a ¢ {1, —1}, one can use Cramer’s formulas to obtain :

2 1
|1 2| 4a-—1
T e 1] @i
ax + y = 2 (@*+1) 2a
{ (a>+ 1Dz + 2ay = 1 <
a 2
_ ’ (@®>+1) 1 ’ 2% 4a-2
O I R I
(a®>+1) 2a
(b) If @ = 1, the system becomes
r 4+ y = 2 el + y = 2
2% + 2 = 1 0 = —1 Lge Ly—2I,
which is impossible.
(c¢) If a = —1, the system becomes
—a:—l—yzQ@ r + y = 2
20 — 2y = 1 0 = 5 Lo+ Lo+2I4
which is also impossible.
The determinant of the second system is
(a+1) (a—1)|
‘ (a-1) (a+1) |4
(a) If a # 0, one can use Cramer’s formulas to obtain :
( 1 (a—1)
1 (a+1) 1
€r = —
{(a—i—l)x + (a 1)y = 1 o 4da 2a
(a—1)z + (a+1)y =1 (a+1) 1
| e-1) 1|
V= I " 2

(b) If a = 0, the system becomes

z —y =1 el T -y = 1
-z 4+ y =1 0 = 2 Lo« Ly+14
which is impossible.

Exercise 2 Solve the following system of 5 equations with 6 unknowns :

2t + y + z — 2u + v - w =1
3r + 2y + 22 — 3u + Hv — 3w =4
2 + 2y + 2z — 2u + 4v — 4w =6
r + vy + z - u + 2v - 2w =3
3z - 3u + 3v + 3w =-6



Solution of Exercise 2 : By the Gauss method

20t + y + z — 2u + v - w =1
3z + 2y + 2z — 3u + Hv — 3w =4
2 + 2y + 2z — 2u + 4 - 4w =
r + vy 4+ z — u + 2v - 2w =3
3z - 3u + 3v + 3w =-6
r + y 4+ z — u 4+ 2v — 2w =3 Lo Ly
3r + 2y + 2z — 3u + Hv — 3w =4
S 2r + 2y + 22 — 2u + 4dv — dw =
2t + y 4+ z — 2u 4+ v — w =1
3z - 3u + 3v + 3w =-6
zr + v + 2z - u + 2v - 2w =3
-y — =z — v 4+ 3w =-5 Lo+ Ly—3I4
- 0 =0 Ly «— L3 —2Lq
-y - z — v 4+ 3w =-5 L4 — L4 — 2L1
- 3y — 3z — 3v 4+ 9w =-15 Ls«+ Ls—3L,
o { T + vy + 2z — u + 2v — 2w =3
-y — =z - v + 3w =-5

It follows that the set of solutions is a 4-space in RS. Let us parametrize the set of solutions by a = z € R,
b=u€eR,c=veR,d=weR. One obtains

xr = —y—a+b—2c+2d+3=b—c—d—2

y = —a—c+3d+5

z = a

u = b

v o= ¢

w = d
T —2 0 1 -1 —1
Yy 5 -1 0 -1 3

sl 2 =1 Y [+al 2 {so] O fae| O |4al ©

u 0 0 1 0 0
v 0 0 0 1 0
w 0 0 0 0 1

Exercise 3 For each pair (A4;,b;), 1 <i <5 of matrices below
1. give the nature of the set of solutions of the system A; X = b;;
2. give a parametric representation of the set of solutions of 4; X = b;;

3. give a basis of the range and a basis of the kernel of A;.



12 3 4 1 12013 1
01 2 3 1 011 1 2 1
a)Ai=14 4 1 o =11 |; D A=1001 2 3 b= 1 |
0001 1 00011 1
12 3 4 1 1201 1 1
01 2 3 1 011 2 2 1
)Az=|00 1 2 b= 1| : HDA=] 00121 =1 11:
0001 1 0001 1 1
0000 1 00000 1
1201 1 1
011 2 2 1
As=|001 21 b= 1| ;
00011 1
00000 0

Solution of Exercise 3 :

a)

Since detA; = 1 # 0, the matrix A; is invertible hence defines an isomorphism of R*. The system
A1 X = by has therefore a unique solution given by X = Al_lbl = (0,0,—1,1)T by a standard
computatign. The range of A; is R*, hence the canonical basis of R? is a basis of Im A;. The kernel
of Ay is { 0}, hence a basis of kerA; is (.

The rank of As is 4, hence the dimension of the kernel of As is 1. Therefore the set of solutions of
A X = by is an affine line in R® parallel to kerAs. Denote by (z,, 2, t,u) the coordinates in R®. Let
us parametrize the set of solutions by @ = u € R. The system is equivalent to

r + 2y + t = 1-3a (2 = 1—3a—2y—t
y + z + t = 1-2a N y = 1—2a—2z—-1
z + 2t = 1—3a z = 1—3a—2t
t = 1l—a t = 1—a
r = 1-3a—2—-1+4+a=-2-2a ;“" _12 _02
el ¥ = 12t lrat—(1-a)=1 c =] -1 |+a| -1 |aer
z = 1-3a—242a=—-1—-a . 1 1
pu— 1 —_
g ¢ u 0 1
Since Aj is surjective, the canonical basis of R?* is a basis of ImAy. The previous resolution implies
-2
0
that a basis of kerAs is given by the single vector | —1
—1
1

Since the last equation of the system is impossible, the system A3X = b3 admits no solution. The
rank of Ags is 4, therefore by the Rank theorem, the dimension of ker As is 0. A basis of ImAjs is given
by the 4 columns of A3. A basis of kerAjs is given by the empty set ().

The last equation of A4 X = b4 is impossible, hence this system admits no solution. The rank of Ay
is 4, hence by the Rank theorem, the dimension of the kernel of A4 is 1. A basis of ImAy is given
by the first 4 columns of A4. A basis of kerAy is a nontrivial vector X € R solution of A4 X = 0.
2
—1
One finds that 1 generates kerAy.
—1
1



e) For the basis of ImAs; and kerAs see d). The vector bs belongs to ImAj; since the last equation
(compatibility condition) is satisfied. The kernel of A5 being a line, the set of solutions of A5 X = b5

2
-1
is an affine line in R® parallel to kerAs. Since the vector 0 is a particular solution of the
0
1
system, one obtains that the set of solutions is parametrized by
x 2 2
Y -1 -1
z = 0 +a 1 ,a € R
t 0 -1
U 1 1

Exercise 4 Compute a basis of the image and a basis of the kernel of the linear application

f: R — R®
(,y,2) — (z4+y,z+y+22c+y+222+2y+2,y+2)

What is the rank of f7

Solution of Exercise 4 : The matrix of the linear application f is

110
111
2 11
2 21
011

Let us compute a basis of Imf and a basis of kerf. One has :

1 10 1 0 0 1 0 0
1 11 1 0 1 1 1 0
2 11 2 -1 1 2 1 -1
2 21 2 0 1 21 0
o11/) 7 \No 1 1) 7 \No1 1
1 00 1 -1 0 1 0 -1
010 0 1 0 0 0 1
0 01 0 0 1 01 0
1 0
1 1
Consequently the kernel of f is trivial, and a basis of Imf is given by v1 = | 2 |, vo = | 1 | and
2 1
0 1
0
0
v = | —1 |. The rank of f is the dimension of Imf, that is, 3.
0
1

Exercise 5 Let A be the matrix

w O =
e )
e )



1 1 1 1 1 1
1. Consider the matrices B = 010 and C = 1 2 1 . Show that AB = AC. Can
1 00 0o -1 -1

the matrix A be invertible 7

2. Determine all matrices F' of size (3,3) such that AF' = 0 (where 0 denotes the matrix all of whose
entries are zero).

Solution of Exercise 5 :
1. One has

111
AB=AC=1[11 1 0
4 4 3

Suppose that the matrix A is invertible. Multiply both members of the equation AB = AC on the
left by A~! to get B = C. But the matrices B and C are not equal. This is a contradiction. Hence
the matrix A is not invertible.

2. Let F be any real matrix (3,3)

a b c
F=|d e f
g h 1

The equation AF = 0 gives rise to the following system

a=20

b=0

c=0
d+g=0
e+h=0
f+i=0
3a+d+g=0
3b+e+h=0
3c+f+1=0

Consequently the set of matrices F' such that AF = 0 is the set of matrices of the form

0 0 0
F= d e f ,deR eeR, feR.
—d —e —f

Exercise 6 For which values of a is the matrix

111
A= 1 2 4
1 3 a
invertible 7 Compute in this case its inverse.
Solution of Exercise 6 : One has
1 1 1
det A=]1 2 4 |= 2 41 )i + Ll =20a—12—(a—3)+2=a—-T.
13 a 3 a 3 a 2 4

Hence A is invertible if and only if a # 7. In this case, the standard algorithm yields
20—12 3—a 2

4—a a—1 -3
1 -2 1

1

A7l =
a—"17




Exercise 7 Let a and b be two real numbers, and A be the matrix

a 2 =1 b
A= 3 0 1 -4
5 4 -1 2

Show that rk(A) > 2 (where rk denotes the rank). For which values of a and b is the rank of A equal to
27

Solution of Exercise 7 :

Recall that the rank of A is the greatest number of columns of A that are linearly independent. Since the
second and third columns C5, C3 of A are not proportional, they are linearly independent. Therefore the
rank of A is at least 2. For the rank of A to be exactly 2, one has to impose that the first and last columns
of A are each a linear combination of Cy and C3 (which are fixed). The only linear combination of Cy and
Cs3 that has the form (a,3,5)7 is 3C5 + 2Cs = (1,3,5)”, hence a = 1. The only linear combination of Cy
and Cs that has the form (b, —4,2)7 is —4C3 — %Cg = (3,—4,2)T, hence b = 3. Consequently the rank of
Ais 2 if and only if a =1 and b = 3.

Exercise 8 Compute the inverse of the following matrix

4 8 7 4
1 3 21
A= 1 2 3 2
0011
Solution of Exercise 8 : One obtains
1 -2 -1 0
0 1 -1 1
71 _
4 -1 0 4 -4
1 0 —4 5
Exercise 9 Let us denote by {ej,ea,...,e,} the canonical basis of R™. To a permutation o € S, one

associates the following endomorphism u, of R™ :

Uy - R™ — R"
L1 Lo(1)
— .
Tn :L‘J(n)

1. Let 7 = (ij) be a transposition. Write the matrix of u, in the canonical basis. Show that det(u,) =
—1.

2. Show that Vo,0’ € Sy, Uy 0 Uyr = Ugro,. Caution! There was a typo in the French original.

3. Show that Vo € S, det u, = £(0) where € denotes the signature.

Solution of Exercise 9 :



1. Let 7 be the transposition which exchanges ¢ and j. The matrix of w, in the canonical basis of R" is

i J
10 0 0 0 0 0 0 00
0 1 0 0 0 0 0 0 00
0 0 1 0 0 0 0 0 00
00 0 [0] 0 0 [1] o 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
00 0 [1] o 0 [0] o 0 0
0 0 0 0 0 0 0 1 0 0
00 ..000...000..10
00 ..00O0..000..01

By exchanging the columns ¢ and j of the matrix of u, one obtains the identity matrix. Therefore
det ur = —det I = —1, where I denotes the identity matrix.

2. For any 0,0’ € S,,, one has

T Lo!(1) Lol (a(1)) Loloa(1) I
Ug O Ug! = Ug - - = Ug'oc
Tn Lo’ (n) Lo’ (a(n)) Lo'oo(n) Tn
T
Since the previous equality is satisfied for every : in R™, it implies that uy 0 g = Ugrog-
Tn

An alternative proof is to check that u, sends each e; to e,-1(;) (the basis vector whose only nonzero
coordinate is the o~!(i)-th) : hence,

Ug © Ugr(€) = Ug(€,—1(;)) = €ga1(pr—1(1)) = E(o’00)~1(i) = Uo'oo (1)-

3. By 2., the map which associates u,-1 to a permutation o is a group homomorphism from §,, into the
group of invertible matrices of size (n,n), because u, 10U, -1 = Uy-1,,-1 = U(go01)-1. Consequently,
the map which assigns to a permutation o the number det u -1 is a group homomorphism from S,
into {£1}. Since the transpositions generate the group of permutations S,, two group homomor-
phisms from S,, to {£1} which coincide on the set of transpositions coincide on S,,. By 1., the group
homomorphism from S, into {£1} which maps ¢ onto det u,-1 coincides with the signature on the
set of transpositions, because a transposition is its own inverse. Hence Vo € S, det u, = (o).

Exercise 10 1. Compute the eigenvalues and eigenvectors of the following matrix

0 2 =2
A= 1 -1 2
1 -3 4

2. Compute A™ for all n € N.

Solution of Exercise 10 :



1. One has
-A 2 -2

—1-A 2 2 -2 2 -2
det (A=AI)=] 1 —-1-—2AX 2 = - 3 4_>\‘—1‘_3 4_)\‘+1‘_1_)\ 9 ‘
-3 4— A
= - N432 -2 =-2A(1-2)(A—1).
Therefore the eigenvalues of A are A\ =0, Ao =2 and A3 = 1.
-1
A nontrivial vector in the kernel of A is given by v; = 1 . Let us find a vector generating the
1
eigenspace associated to Ay = 2. One has
Co — C2+ (4
-2 2 -2 C3— C3—C] Ci; 2(?3 +OC2
1 -3 2 -2 0 0 1 —92 o0
A— oI 1 -3 2 1 -2 1 1 -2 0
= — 1 -2 1 —
I 1 0
0 1 0 1 1 -1 (1] 1 _11
0 0 1 0 1 0 0
0o 0 1
-1
It follows that the vector vo = 1 is a basis of the eigenspace associated to A9 = 2. Now one
has
-1 2 =2
A-1T= 1 -2 2
1 -3 3
0
Consequently the vector v3 = | 1 | generates the eigenspace associated to A3 = 1.
1

2. Denote by f the linear application whose matrix in the canonical basis of R? is A. The vectors vy, vg
and v form a basis of R3. In this new basis, the matrix of f is

0 00
D=10 2 0
0 0 1
-1 -1 0
The relation between A and D is D = P~ AP where P = 1 1 1 |. The inverse of P is
1 2 1
-1 1 -1
Plt={( 0 -1 1
1 1 0

Therefore, for n > 0, we have A" = (PDP~Y)(PDP~1)...(PDP™1) : cancelling all occurrences of
P~1P =T one gets

-1 -1 0 0" 0 0 -1 1 -1 0 on —on
A" = pp"p~! = 1 1 1 0 2 0 0 -1 1 =1 —-2n41 27
1 2 1 0o 0 1™ 1 1 0 1 —ontly 1 ontl



