
University of Lille I
PC first year list of exercises n◦ 7

Review

Exercise 1 1. Solve the following systems in 4 different ways (by substitution, by the Gauss method,
by inverting the matrix of coefficients of the system, by Cramer’s formulas) :{

2x + y = 1
3x + 7y = 0

2. Choose the method that seems the quickest to you and solve, according to the values of a, the
following systems : {

ax + y = 2
(a2 + 1)x + 2ay = 1{

(a+ 1)x + (a− 1)y = 1
(a− 1)x + (a+ 1)y = 1

Solution of Exercise 1 :

1. (a) By substitution{
2x + y = 1
3x + 7y = 0

⇔
{

2x + y = 1
x = −7

3y
⇔
{
−14

3 y + y = 1
x = −7

3y

⇔
{

y = − 3
11

x = 7
11

(b) By the Gauss method{
2x + y = 1
3x + 7y = 0

⇔
{

2x + y = 1
11y = −3 L2 ← 2L2 − 3L1

⇔
{

x = 1−y
2

y = − 3
11

⇔
{

y = − 3
11

x = 7
11

(c) The inverse of the matrix of coefficients of the system is(
2 1
3 7

)−1

=
1
11

(
7 −1
−3 2

)
.

Hence the solution of the system is(
x
y

)
=

1
11

(
7 −1
−3 2

)(
1
0

)
=
(

7
11
− 3

11

)
(d) By Cramer’s formulas

x =

∣∣∣∣ 1 1
0 7

∣∣∣∣∣∣∣∣ 2 1
3 7

∣∣∣∣ =
7
11

y =

∣∣∣∣ 2 1
3 0

∣∣∣∣∣∣∣∣ 2 1
3 7

∣∣∣∣ = − 3
11
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2. The determinant of the first system is∣∣∣∣ a 1
(a2 + 1) 2a

∣∣∣∣ = a2 − 1.

(a) If a /∈ {1,−1}, one can use Cramer’s formulas to obtain :

{
ax + y = 2

(a2 + 1)x + 2ay = 1
⇔



x =

˛̨̨̨
˛̨ 2 1

1 2a

˛̨̨̨
˛̨˛̨̨̨

˛̨ a 1
(a2 + 1) 2a

˛̨̨̨
˛̨

=
4a− 1
a2 − 1

y =

˛̨̨̨
˛̨ a 2

(a2 + 1) 1

˛̨̨̨
˛̨˛̨̨̨

˛̨ a 1
(a2 + 1) 2a

˛̨̨̨
˛̨

=
−2a2 + a− 2

a2 − 1

(b) If a = 1, the system becomes{
x + y = 2
2x + 2y = 1

⇔
{
x + y = 2

0 = −1 L2 ← L2 − 2L1

which is impossible.

(c) If a = −1, the system becomes{
−x + y = 2
2x − 2y = 1

⇔
{
x + y = 2

0 = 5 L2 ← L2 + 2L1

which is also impossible.
The determinant of the second system is∣∣∣∣ (a+ 1) (a− 1)

(a− 1) (a+ 1)

∣∣∣∣ = 4a.

(a) If a 6= 0, one can use Cramer’s formulas to obtain :

{
(a+ 1)x + (a− 1)y = 1
(a− 1)x + (a+ 1)y = 1

⇔


x =

∣∣∣∣ 1 (a− 1)
1 (a+ 1)

∣∣∣∣
4a

=
1
2a

y =

∣∣∣∣ (a+ 1) 1
(a− 1) 1

∣∣∣∣
4a

=
1
2a

(b) If a = 0, the system becomes{
x − y = 1
−x + y = 1

⇔
{
x − y = 1

0 = 2 L2 ← L2 + L1

which is impossible.

Exercise 2 Solve the following system of 5 equations with 6 unknowns :
2x + y + z − 2u + 3v − w = 1
3x + 2y + 2z − 3u + 5v − 3w = 4
2x + 2y + 2z − 2u + 4v − 4w = 6
x + y + z − u + 2v − 2w = 3
3x − 3u + 3v + 3w = −6
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Solution of Exercise 2 : By the Gauss method
2x + y + z − 2u + 3v − w = 1
3x + 2y + 2z − 3u + 5v − 3w = 4
2x + 2y + 2z − 2u + 4v − 4w = 6
x + y + z − u + 2v − 2w = 3
3x − 3u + 3v + 3w = −6

⇔


x + y + z − u + 2v − 2w = 3 L1 ↔ L4

3x + 2y + 2z − 3u + 5v − 3w = 4
2x + 2y + 2z − 2u + 4v − 4w = 6
2x + y + z − 2u + 3v − w = 1
3x − 3u + 3v + 3w = −6

⇔


x + y + z − u + 2v − 2w = 3
− y − z − v + 3w = −5 L2 ← L2 − 3L1

0 = 0 L3 ← L3 − 2L1

− y − z − v + 3w = −5 L4 ← L4 − 2L1

− 3y − 3z − 3v + 9w = −15 L5 ← L5 − 3L1

⇔
{
x + y + z − u + 2v − 2w = 3
− y − z − v + 3w = −5

It follows that the set of solutions is a 4-space in R6. Let us parametrize the set of solutions by a = z ∈ R,
b = u ∈ R, c = v ∈ R, d = w ∈ R. One obtains

x = −y − a+ b− 2c+ 2d+ 3 = b− c− d− 2
y = −a− c+ 3d+ 5
z = a
u = b
v = c
w = d

⇔



x
y
z
u
v
w

 =



−2
5
0
0
0
0

+ a



0
−1
1
0
0
0

+ b



1
0
0
1
0
0

+ c



−1
−1
0
0
1
0

+ d



−1
3
0
0
0
1

 .

Exercise 3 For each pair (Ai, bi), 1 ≤ i ≤ 5 of matrices below

1. give the nature of the set of solutions of the system AiX = bi ;

2. give a parametric representation of the set of solutions of AiX = bi ;

3. give a basis of the range and a basis of the kernel of Ai.
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a) A1 =


1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1

 b1 =


1
1
1
1

 ; b) A2 =


1 2 0 1 3
0 1 1 1 2
0 0 1 2 3
0 0 0 1 1

 b2 =


1
1
1
1

 ;

c) A3 =


1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1
0 0 0 0

 b3 =


1
1
1
1
1

 ; d) A4 =


1 2 0 1 1
0 1 1 2 2
0 0 1 2 1
0 0 0 1 1
0 0 0 0 0

 b4 =


1
1
1
1
1

 ;

e) A5 =


1 2 0 1 1
0 1 1 2 2
0 0 1 2 1
0 0 0 1 1
0 0 0 0 0

 b5 =


1
1
1
1
0

 ;

Solution of Exercise 3 :

a) Since detA1 = 1 6= 0, the matrix A1 is invertible hence defines an isomorphism of R4. The system
A1X = b1 has therefore a unique solution given by X = A−1

1 b1 = (0, 0,−1, 1)T by a standard
computation. The range of A1 is R4, hence the canonical basis of R4 is a basis of Im A1. The kernel
of A1 is {−→0 }, hence a basis of kerA1 is ∅.

b) The rank of A2 is 4, hence the dimension of the kernel of A2 is 1. Therefore the set of solutions of
A2X = b2 is an affine line in R5 parallel to kerA2. Denote by (x, y, z, t, u) the coordinates in R5. Let
us parametrize the set of solutions by a = u ∈ R. The system is equivalent to

x + 2y + t = 1− 3a
y + z + t = 1− 2a

z + 2t = 1− 3a
t = 1− a

⇔


x = 1− 3a− 2y − t
y = 1− 2a− z − t
z = 1− 3a− 2t
t = 1− a

⇔


x = 1− 3a− 2− 1 + a = −2− 2a
y = 1− 2a+ 1 + a+−(1− a) = 1
z = 1− 3a− 2 + 2a = −1− a
t = 1− a

⇔


x
y
z
t
u

 =


−2
1
−1
1
0

+ a


−2
0
−1
−1
1

 , a ∈ R.

Since A2 is surjective, the canonical basis of R4 is a basis of ImA2. The previous resolution implies

that a basis of kerA2 is given by the single vector


−2
0
−1
−1
1

 .

c) Since the last equation of the system is impossible, the system A3X = b3 admits no solution. The
rank of A3 is 4, therefore by the Rank theorem, the dimension of kerA3 is 0. A basis of ImA3 is given
by the 4 columns of A3. A basis of kerA3 is given by the empty set ∅.

d) The last equation of A4X = b4 is impossible, hence this system admits no solution. The rank of A4

is 4, hence by the Rank theorem, the dimension of the kernel of A4 is 1. A basis of ImA4 is given
by the first 4 columns of A4. A basis of kerA4 is a nontrivial vector X ∈ R5 solution of A4X =

−→
0 .

One finds that


2
−1
1
−1
1

 generates kerA4.
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e) For the basis of ImA5 and kerA5 see d). The vector b5 belongs to ImA5 since the last equation
(compatibility condition) is satisfied. The kernel of A5 being a line, the set of solutions of A5X = b5

is an affine line in R5 parallel to kerA5. Since the vector


2
−1
0
0
1

 is a particular solution of the

system, one obtains that the set of solutions is parametrized by
x
y
z
t
u

 =


2
−1
0
0
1

+ a


2
−1
1
−1
1

 , a ∈ R.

Exercise 4 Compute a basis of the image and a basis of the kernel of the linear application

f : R3 −→ R5

(x, y, z) 7−→ (x+ y, x+ y + z, 2x+ y + z, 2x+ 2y + z, y + z)

What is the rank of f ?

Solution of Exercise 4 : The matrix of the linear application f is
1 1 0
1 1 1
2 1 1
2 2 1
0 1 1

 .

Let us compute a basis of Imf and a basis of kerf . One has :
1 1 0
1 1 1
2 1 1
2 2 1
0 1 1


 1 0 0

0 1 0
0 0 1


→


1 0 0
1 0 1
2 −1 1
2 0 1
0 1 1


 1 −1 0

0 1 0
0 0 1


→


1 0 0
1 1 0
2 1 −1
2 1 0
0 1 1


 1 0 −1

0 0 1
0 1 0



Consequently the kernel of f is trivial, and a basis of Imf is given by v1 =


1
1
2
2
0

, v2 =


0
1
1
1
1

 and

v3 =


0
0
−1
0
1

. The rank of f is the dimension of Imf , that is, 3.

Exercise 5 Let A be the matrix

 1 0 0
0 1 1
3 1 1

.
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1. Consider the matrices B =

 1 1 1
0 1 0
1 0 0

 and C =

 1 1 1
1 2 1
0 −1 −1

. Show that AB = AC. Can

the matrix A be invertible ?

2. Determine all matrices F of size (3, 3) such that AF = 0 (where 0 denotes the matrix all of whose
entries are zero).

Solution of Exercise 5 :

1. One has

AB = AC =

 1 1 1
1 1 0
4 4 3

 .

Suppose that the matrix A is invertible. Multiply both members of the equation AB = AC on the
left by A−1 to get B = C. But the matrices B and C are not equal. This is a contradiction. Hence
the matrix A is not invertible.

2. Let F be any real matrix (3, 3)

F =

 a b c
d e f
g h i

 .

The equation AF = 0 gives rise to the following system

a = 0
b = 0
c = 0
d+ g = 0
e+ h = 0
f + i = 0
3a+ d+ g = 0
3b+ e+ h = 0
3c+ f + i = 0

Consequently the set of matrices F such that AF = 0 is the set of matrices of the form

F =

 0 0 0
d e f
−d −e −f

 , d ∈ R, e ∈ R, f ∈ R.

Exercise 6 For which values of a is the matrix

A =

 1 1 1
1 2 4
1 3 a


invertible ? Compute in this case its inverse.

Solution of Exercise 6 : One has

det A =

∣∣∣∣∣∣
1 1 1
1 2 4
1 3 a

∣∣∣∣∣∣ =
∣∣∣∣ 2 4

3 a

∣∣∣∣− ∣∣∣∣ 1 1
3 a

∣∣∣∣+
∣∣∣∣ 1 1

2 4

∣∣∣∣ = 2a− 12− (a− 3) + 2 = a− 7.

Hence A is invertible if and only if a 6= 7. In this case, the standard algorithm yields

A−1 =
1

a− 7

 2a− 12 3− a 2
4− a a− 1 −3

1 −2 1
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Exercise 7 Let a and b be two real numbers, and A be the matrix

A =

 a 2 −1 b
3 0 1 −4
5 4 −1 2


Show that rk(A) ≥ 2 (where rk denotes the rank). For which values of a and b is the rank of A equal to
2 ?

Solution of Exercise 7 :
Recall that the rank of A is the greatest number of columns of A that are linearly independent. Since the
second and third columns C2, C3 of A are not proportional, they are linearly independent. Therefore the
rank of A is at least 2. For the rank of A to be exactly 2, one has to impose that the first and last columns
of A are each a linear combination of C2 and C3 (which are fixed). The only linear combination of C2 and
C3 that has the form (a, 3, 5)T is 3C3 + 2C2 = (1, 3, 5)T , hence a = 1. The only linear combination of C2

and C3 that has the form (b,−4, 2)T is −4C3 − 1
2C2 = (3,−4, 2)T , hence b = 3. Consequently the rank of

A is 2 if and only if a = 1 and b = 3.

Exercise 8 Compute the inverse of the following matrix

A =


4 8 7 4
1 3 2 1
1 2 3 2
0 0 1 1


Solution of Exercise 8 : One obtains

A−1 =


1 −2 −1 0
0 1 −1 1
−1 0 4 −4
1 0 −4 5

 .

Exercise 9 Let us denote by {e1, e2, . . . , en} the canonical basis of Rn. To a permutation σ ∈ Sn, one
associates the following endomorphism uσ of Rn :

uσ : Rn −→ Rn x1
...
xn

 7−→

 xσ(1)
...

xσ(n)


1. Let τ = (ij) be a transposition. Write the matrix of uτ in the canonical basis. Show that det(uτ ) =
−1.

2. Show that ∀σ, σ′ ∈ Sn, uσ ◦ uσ′ = uσ′◦σ. Caution ! There was a typo in the French original.

3. Show that ∀σ ∈ Sn, detuσ = ε(σ) where ε denotes the signature.

Solution of Exercise 9 :

7



1. Let τ be the transposition which exchanges i and j. The matrix of uτ in the canonical basis of Rn is

i . . . j

1 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...
...

...
...

0 0 . . . 1 0 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 1 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0 0 . . . 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 . . . 0 0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 1 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 0 1 . . . 0 0
...

...
...

...
...

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 0 0 0 . . . 1 0
0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 1


By exchanging the columns i and j of the matrix of uτ one obtains the identity matrix. Therefore
det uτ = −det I = −1, where I denotes the identity matrix.

2. For any σ, σ′ ∈ Sn, one has

uσ ◦ uσ′

 x1
...
xn

 = uσ

 xσ′(1)
...

xσ′(n)

 =

 xσ′(σ(1))
...

xσ′(σ(n))

 =

 xσ′◦σ(1)
...

xσ′◦σ(n)

 = uσ′◦σ

 x1
...
xn



Since the previous equality is satisfied for every

 x1
...
xn

 in Rn, it implies that uσ ◦ uσ′ = uσ′◦σ.

An alternative proof is to check that uσ sends each ei to eσ−1(i) (the basis vector whose only nonzero
coordinate is the σ−1(i)-th) : hence,

uσ ◦ uσ′(ei) = uσ(eσ′−1(i)) = eσ−1(σ′−1(i)) = e(σ′◦σ)−1(i) = uσ′◦σ(i).

3. By 2., the map which associates uσ−1 to a permutation σ is a group homomorphism from Sn into the
group of invertible matrices of size (n, n), because uσ−1 ◦uσ′−1 = uσ′−1◦σ−1 = u(σ◦σ′)−1 . Consequently,
the map which assigns to a permutation σ the number det uσ−1 is a group homomorphism from Sn
into {±1}. Since the transpositions generate the group of permutations Sn, two group homomor-
phisms from Sn to {±1} which coincide on the set of transpositions coincide on Sn. By 1., the group
homomorphism from Sn into {±1} which maps σ onto det uσ−1 coincides with the signature on the
set of transpositions, because a transposition is its own inverse. Hence ∀σ ∈ Sn, det uσ = ε(σ).

Exercise 10 1. Compute the eigenvalues and eigenvectors of the following matrix

A =

 0 2 −2
1 −1 2
1 −3 4

 .

2. Compute An for all n ∈ N.

Solution of Exercise 10 :
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1. One has

det (A−λI) =

∣∣∣∣∣∣
−λ 2 −2
1 −1− λ 2
1 −3 4− λ

∣∣∣∣∣∣ = −λ
∣∣∣∣ −1− λ 2
−3 4− λ

∣∣∣∣−1
∣∣∣∣ 2 −2
−3 4− λ

∣∣∣∣+1
∣∣∣∣ 2 −2
−1− λ 2

∣∣∣∣
= −λ3 + 3λ2 − 2λ = −λ (λ− 2) (λ− 1) .

Therefore the eigenvalues of A are λ1 = 0, λ2 = 2 and λ3 = 1.

A nontrivial vector in the kernel of A is given by v1 =

 −1
1
1

. Let us find a vector generating the

eigenspace associated to λ2 = 2. One has

 A− λ2I

I

 =



−2 2 −2
1 −3 2
1 −3 2

1 0 0
0 1 0
0 0 1


→

C2 ← C2 + C1

C3 ← C3 − C1

−2 0 0
1 −2 1
1 −2 1

1 1 −1
0 1 0
0 0 1


→

C3 ← 2C3 + C2

−2 0 0
1 −2 0
1 −2 0

1 1 −1
0 1 1
0 0 2



It follows that the vector v2 =

 −1
1
2

 is a basis of the eigenspace associated to λ2 = 2. Now one

has

A− I =

 −1 2 −2
1 −2 2
1 −3 3

 .

Consequently the vector v3 =

 0
1
1

 generates the eigenspace associated to λ3 = 1.

2. Denote by f the linear application whose matrix in the canonical basis of R3 is A. The vectors v1, v2
and v3 form a basis of R3. In this new basis, the matrix of f is

D =

 0 0 0
0 2 0
0 0 1

 .

The relation between A and D is D = P−1AP where P =

 −1 −1 0
1 1 1
1 2 1

 . The inverse of P is

P−1 =

 −1 1 −1
0 −1 1
1 1 0

 .

Therefore, for n > 0, we have An = (PDP−1)(PDP−1) . . . (PDP−1) : cancelling all occurrences of
P−1P = I one gets

An = PDnP−1 =

 −1 −1 0
1 1 1
1 2 1

 0n 0 0
0 2n 0
0 0 1n

 −1 1 −1
0 −1 1
1 1 0

 =

 0 2n −2n

1 −2n + 1 2n

1 −2n+1 + 1 2n+1

 .
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