Review

Exercise 1 1. Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients of the system, by Cramer's formulas) :

$$
\left\{\begin{array}{l}
2 x+y=1 \\
3 x+7 y=0
\end{array}\right.
$$

2. Choose the method that seems the quickest to you and solve, according to the values of a, the following systems :

$$
\begin{gathered}
\left\{\begin{array}{c}
a x+y= \\
\left(a^{2}+1\right) x+2 a y=
\end{array}\right. \\
\left\{\begin{aligned}
(a+1) x+(a-1) y= & 1 \\
(a-1) x+(a+1) y= & 1
\end{aligned}\right.
\end{gathered}
$$

Solution of Exercise 1:

1. (a) By substitution

$$
\begin{gathered}
\left\{\begin{array} { r l }
{ 2 x + y = 1 } \\
{ 3 x + 7 y = 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { r l }
{ 2 x + y = } & { 1 } \\
{ x = } & { - \frac { 7 } { 3 } y }
\end{array} \Leftrightarrow \left\{\begin{array}{rl}
-\frac{14}{3} y+\begin{array}{l}
y \\
x \\
x
\end{array} & =-\frac{7}{3} y \\
& \Leftrightarrow\left\{\begin{array}{l}
y= \\
y= \\
x
\end{array}\right) \frac{3}{11}
\end{array}\right.\right.\right. \\
\end{gathered}
$$

(b) By the Gauss method

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ 2 x + y = 1 } \\
{ 3 x + 7 y = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{rll}
2 x+y & =1 \\
11 y & = & -3
\end{array} \quad L_{2} \leftarrow 2 L_{2}-3 L_{1}\right.\right. \\
& \Leftrightarrow\left\{\begin{array} { l }
{ x = \frac { 1 - y } { 2 } } \\
{ y = - \frac { 3 } { 1 1 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
y=-\frac{3}{11} \\
x=\frac{7}{11}
\end{array}\right.\right.
\end{aligned}
$$

(c) The inverse of the matrix of coefficients of the system is

$$
\left(\begin{array}{ll}
2 & 1 \\
3 & 7
\end{array}\right)^{-1}=\frac{1}{11}\left(\begin{array}{cc}
7 & -1 \\
-3 & 2
\end{array}\right)
$$

Hence the solution of the system is

$$
\binom{x}{y}=\frac{1}{11}\left(\begin{array}{cc}
7 & -1 \\
-3 & 2
\end{array}\right)\binom{1}{0}=\binom{\frac{7}{11}}{-\frac{3}{11}}
$$

(d) By Cramer's formulas

$$
x=\frac{\left|\begin{array}{ll}
1 & 1 \\
0 & 7
\end{array}\right|}{\left|\begin{array}{ll}
2 & 1 \\
3 & 7
\end{array}\right|}=\frac{7}{11} \quad y=\frac{\left|\begin{array}{ll}
2 & 1 \\
3 & 0
\end{array}\right|}{\left|\begin{array}{ll}
2 & 1 \\
3 & 7
\end{array}\right|}=-\frac{3}{11}
$$

2. The determinant of the first system is

$$
\left|\begin{array}{cc}
a & 1 \\
\left(a^{2}+1\right) & 2 a
\end{array}\right|=a^{2}-1
$$

(a) If $a \notin\{1,-1\}$, one can use Cramer's formulas to obtain :

$$
\left\{\begin{array} { c }
{ a x + \begin{array} { c }
{ a x } \\
{ (a ^ { 2 } + 1) x + 2 a y = 2 }
\end{array} }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x=\frac{\left|\begin{array}{cc}
2 & 1 \\
1 & 2 a
\end{array}\right|}{\left|\begin{array}{cc}
a & 1 \\
\left(a^{2}+1\right) & 2 a
\end{array}\right|}=\frac{4 a-1}{a^{2}-1} \\
y=\frac{\left|\begin{array}{cc}
a & 2 \\
\left(a^{2}+1\right) & 1
\end{array}\right|}{\left|\begin{array}{cc}
a & 1 \\
\left(a^{2}+1\right) & 2 a
\end{array}\right|}=\frac{-2 a^{2}+a-2}{a^{2}-1}
\end{array}\right.\right.
$$

(b) If $a=1$, the system becomes

$$
\left\{\begin{array} { r l }
{ x + y = 2 } \\
{ 2 x + 2 y } & { = 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{rl}
x+y & =2 \\
0 & =-1 \quad L_{2} \leftarrow L_{2}-2 L_{1}
\end{array}\right.\right.
$$

which is impossible.
(c) If $a=-1$, the system becomes
which is also impossible.
The determinant of the second system is

$$
\left|\begin{array}{ll}
(a+1) & (a-1) \\
(a-1) & (a+1)
\end{array}\right|=4 a
$$

(a) If $a \neq 0$, one can use Cramer's formulas to obtain :

$$
\left\{\begin{array} { l }
{ (a + 1) x + (a - 1) y = 1 } \\
{ (a - 1) x + (a + 1) y = 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x=\frac{\left|\begin{array}{cc}
1 & (a-1) \\
1 & (a+1)
\end{array}\right|}{4 a}=\frac{1}{2 a} \\
y=\frac{\left|\begin{array}{cc}
(a+1) & 1 \\
(a-1) & 1
\end{array}\right|}{4 a}=\frac{1}{2 a}
\end{array}\right.\right.
$$

(b) If $a=0$, the system becomes
which is impossible.
Exercise 2 Solve the following system of 5 equations with 6 unknowns :

Solution of Exercise 2: By the Gauss method

$$
\begin{aligned}
& \Leftrightarrow\left\{\begin{array}{r}
x+y+z-u+2 v \\
-y-z
\end{array}\right.
\end{aligned}
$$

It follows that the set of solutions is a 4 -space in \mathbb{R}^{6}. Let us parametrize the set of solutions by $a=z \in \mathbb{R}$, $b=u \in \mathbb{R}, c=v \in \mathbb{R}, d=w \in \mathbb{R}$. One obtains

$$
\begin{aligned}
& \begin{cases}x=-y-a+b-2 c+2 d+3=b-c-d-2 \\
y & =-a-c+3 d+5 \\
z & =a \\
u & = \\
v & = \\
w & = \\
\hline\end{cases} \\
& \Leftrightarrow\left(\begin{array}{c}
x \\
y \\
z \\
u \\
w
\end{array}\right)=\left(\begin{array}{c}
-2 \\
5 \\
0 \\
0 \\
0 \\
0
\end{array}\right)+a\left(\begin{array}{c}
0 \\
-1 \\
0 \\
0 \\
0
\end{array}\right)+b\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)+c\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1 \\
0
\end{array}\right)+d\left(\begin{array}{c}
-1 \\
3 \\
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Exercise 3 For each pair $\left(A_{i}, b_{i}\right), 1 \leq i \leq 5$ of matrices below

1. give the nature of the set of solutions of the system $A_{i} X=b_{i}$;
2. give a parametric representation of the set of solutions of $A_{i} X=b_{i}$;
3. give a basis of the range and a basis of the kernel of A_{i}.
a) $A_{1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right)$
$b_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$
b) $A_{2}=\left(\begin{array}{lllll}1 & 2 & 0 & 1 & 3 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 1\end{array}\right)$
$b_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$
c) $A_{3}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$
d) $A_{4}=\left(\begin{array}{lllll}1 & 2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$
$b_{4}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right)$
e) $A_{5}=\left(\begin{array}{ccccc}1 & 2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right) \quad b_{5}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 0\end{array}\right)$;

Solution of Exercise 3 :

a) Since $\operatorname{det} A_{1}=1 \neq 0$, the matrix A_{1} is invertible hence defines an isomorphism of \mathbb{R}^{4}. The system $A_{1} X=b_{1}$ has therefore a unique solution given by $X=A_{1}^{-1} b_{1}=(0,0,-1,1)^{T}$ by a standard computation. The range of A_{1} is \mathbb{R}^{4}, hence the canonical basis of \mathbb{R}^{4} is a basis of $\operatorname{Im} A_{1}$. The kernel of A_{1} is $\{\overrightarrow{0}\}$, hence a basis of $\operatorname{ker} A_{1}$ is \emptyset.
b) The rank of A_{2} is 4 , hence the dimension of the kernel of A_{2} is 1 . Therefore the set of solutions of $A_{2} X=b_{2}$ is an affine line in \mathbb{R}^{5} parallel to $\operatorname{ker} A_{2}$. Denote by (x, y, z, t, u) the coordinates in \mathbb{R}^{5}. Let us parametrize the set of solutions by $a=u \in \mathbb{R}$. The system is equivalent to

$$
\begin{aligned}
& \left\{\begin{array} { r l }
{ x + 2 y + t } & { = 1 - 3 a } \\
{ y + z + t } & { = 1 - 2 a } \\
{ z + 2 t } & { = 1 - 3 a } \\
{ t } & { = 1 - a }
\end{array} \Leftrightarrow \left\{\begin{array}{rl}
x & =1-3 a-2 y-t \\
y & =1-2 a-z-t \\
z & =1-3 a-2 t \\
t & =1-a
\end{array}\right.\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
x=1-3 a-2-1+a=-2-2 a \\
y=1-2 a+1+a+-(1-a)=1 \\
z=1-3 a-2+2 a=-1-a \\
t=1-a
\end{array} \Leftrightarrow\left(\begin{array}{c}
x \\
y \\
z \\
t \\
u
\end{array}\right)=\left(\begin{array}{c}
-2 \\
1 \\
-1 \\
1 \\
0
\end{array}\right)+a\left(\begin{array}{c}
-2 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right), a \in \mathbb{R} .\right.
\end{aligned}
$$

Since A_{2} is surjective, the canonical basis of \mathbb{R}^{4} is a basis of $\operatorname{Im} A_{2}$. The previous resolution implies that a basis of $\operatorname{ker} A_{2}$ is given by the single vector $\left(\begin{array}{c}-2 \\ 0 \\ -1 \\ -1 \\ 1\end{array}\right)$.
c) Since the last equation of the system is impossible, the system $A_{3} X=b_{3}$ admits no solution. The rank of A_{3} is 4 , therefore by the Rank theorem, the dimension of $\operatorname{ker} A_{3}$ is 0 . A basis of $\operatorname{Im} A_{3}$ is given by the 4 columns of A_{3}. A basis of $\operatorname{ker} A_{3}$ is given by the empty set \emptyset.
d) The last equation of $A_{4} X=b_{4}$ is impossible, hence this system admits no solution. The rank of A_{4} is 4 , hence by the Rank theorem, the dimension of the kernel of A_{4} is 1 . A basis of $\operatorname{Im} A_{4}$ is given by the first 4 columns of A_{4}. A basis of $\operatorname{ker} A_{4}$ is a nontrivial vector $X \in \mathbb{R}^{5}$ solution of $A_{4} X=\overrightarrow{0}$. One finds that $\left(\begin{array}{c}2 \\ -1 \\ 1 \\ -1 \\ 1\end{array}\right)$ generates $\operatorname{ker} A_{4}$.
e) For the basis of $\operatorname{Im} A_{5}$ and $\operatorname{ker} A_{5}$ see d). The vector b_{5} belongs to $\operatorname{Im} A_{5}$ since the last equation (compatibility condition) is satisfied. The kernel of A_{5} being a line, the set of solutions of $A_{5} X=b_{5}$
is an affine line in \mathbb{R}^{5} parallel to $\operatorname{ker} A_{5}$. Since the vector $\left(\begin{array}{c}2 \\ -1 \\ 0 \\ 0 \\ 1\end{array}\right)$ is a particular solution of the system, one obtains that the set of solutions is parametrized by

$$
\left(\begin{array}{l}
x \\
y \\
z \\
t \\
u
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
0 \\
0 \\
1
\end{array}\right)+a\left(\begin{array}{c}
2 \\
-1 \\
1 \\
-1 \\
1
\end{array}\right), a \in \mathbb{R} .
$$

Exercise 4 Compute a basis of the image and a basis of the kernel of the linear application

$$
\begin{aligned}
& f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{5} \\
& (x, y, z) \longmapsto(x+y, x+y+z, 2 x+y+z, 2 x+2 y+z, y+z)
\end{aligned}
$$

What is the rank of f ?
Solution of Exercise 4: The matrix of the linear application f is

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
2 & 1 & 1 \\
2 & 2 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Let us compute a basis of $\operatorname{Im} f$ and a basis of $\operatorname{ker} f$. One has:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
2 & 1 & 1 \\
2 & 2 & 1 \\
0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 1 \\
2 & -1 & 1 \\
2 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
2 & 1 & -1 \\
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

Consequently the kernel of f is trivial, and a basis of $\operatorname{Im} f$ is given by $v_{1}=\left(\begin{array}{l}1 \\ 1 \\ 2 \\ 2 \\ 0\end{array}\right), v_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right)$ and $v_{3}=\left(\begin{array}{c}0 \\ 0 \\ -1 \\ 0 \\ 1\end{array}\right)$. The rank of f is the dimension of $\operatorname{Im} f$, that is, 3.

Exercise 5 Let A be the matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1\end{array}\right)$.

1. Consider the matrices $B=\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$ and $C=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & -1\end{array}\right)$. Show that $A B=A C$. Can the matrix A be invertible?
2. Determine all matrices F of size $(3,3)$ such that $A F=0$ (where 0 denotes the matrix all of whose entries are zero).

Solution of Exercise 5:

1. One has

$$
A B=A C=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
4 & 4 & 3
\end{array}\right)
$$

Suppose that the matrix A is invertible. Multiply both members of the equation $A B=A C$ on the left by A^{-1} to get $B=C$. But the matrices B and C are not equal. This is a contradiction. Hence the matrix A is not invertible.
2. Let F be any real matrix $(3,3)$

$$
F=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)
$$

The equation $A F=0$ gives rise to the following system

$$
\left\{\begin{array}{l}
a=0 \\
b=0 \\
c=0 \\
d+g=0 \\
e+h=0 \\
f+i=0 \\
3 a+d+g=0 \\
3 b+e+h=0 \\
3 c+f+i=0
\end{array}\right.
$$

Consequently the set of matrices F such that $A F=0$ is the set of matrices of the form

$$
F=\left(\begin{array}{ccc}
0 & 0 & 0 \\
d & e & f \\
-d & -e & -f
\end{array}\right), d \in \mathbb{R}, e \in \mathbb{R}, f \in \mathbb{R}
$$

Exercise 6 For which values of a is the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & a
\end{array}\right)
$$

invertible? Compute in this case its inverse.
Solution of Exercise 6 : One has

$$
\operatorname{det} A=\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & a
\end{array}\right|=\left|\begin{array}{cc}
2 & 4 \\
3 & a
\end{array}\right|-\left|\begin{array}{cc}
1 & 1 \\
3 & a
\end{array}\right|+\left|\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right|=2 a-12-(a-3)+2=a-7
$$

Hence A is invertible if and only if $a \neq 7$. In this case, the standard algorithm yields

$$
A^{-1}=\frac{1}{a-7}\left(\begin{array}{ccc}
2 a-12 & 3-a & 2 \\
4-a & a-1 & -3 \\
1 & -2 & 1
\end{array}\right)
$$

Exercise 7 Let a and b be two real numbers, and A be the matrix

$$
A=\left(\begin{array}{cccc}
a & 2 & -1 & b \\
3 & 0 & 1 & -4 \\
5 & 4 & -1 & 2
\end{array}\right)
$$

Show that $\operatorname{rk}(A) \geq 2$ (where rk denotes the rank). For which values of a and b is the rank of A equal to 2 ?

Solution of Exercise 7 :

Recall that the rank of A is the greatest number of columns of A that are linearly independent. Since the second and third columns C_{2}, C_{3} of A are not proportional, they are linearly independent. Therefore the rank of A is at least 2 . For the rank of A to be exactly 2 , one has to impose that the first and last columns of A are each a linear combination of C_{2} and C_{3} (which are fixed). The only linear combination of C_{2} and C_{3} that has the form $(a, 3,5)^{T}$ is $3 C_{3}+2 C_{2}=(1,3,5)^{T}$, hence $a=1$. The only linear combination of C_{2} and C_{3} that has the form $(b,-4,2)^{T}$ is $-4 C_{3}-\frac{1}{2} C_{2}=(3,-4,2)^{T}$, hence $b=3$. Consequently the rank of A is 2 if and only if $a=1$ and $b=3$.

Exercise 8 Compute the inverse of the following matrix

$$
A=\left(\begin{array}{llll}
4 & 8 & 7 & 4 \\
1 & 3 & 2 & 1 \\
1 & 2 & 3 & 2 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Solution of Exercise 8: One obtains

$$
A^{-1}=\left(\begin{array}{cccc}
1 & -2 & -1 & 0 \\
0 & 1 & -1 & 1 \\
-1 & 0 & 4 & -4 \\
1 & 0 & -4 & 5
\end{array}\right)
$$

Exercise 9 Let us denote by $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ the canonical basis of \mathbb{R}^{n}. To a permutation $\sigma \in \mathcal{S}_{n}$, one associates the following endomorphism u_{σ} of \mathbb{R}^{n} :

$$
\begin{array}{cccc}
u_{\sigma}: & \mathbb{R}^{n} & \longrightarrow & \mathbb{R}^{n} \\
& \left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) & \longmapsto & \left(\begin{array}{c}
x_{\sigma(1)} \\
\vdots \\
x_{\sigma(n)}
\end{array}\right)
\end{array}
$$

1. Let $\tau=(i j)$ be a transposition. Write the matrix of u_{τ} in the canonical basis. Show that $\operatorname{det}\left(u_{\tau}\right)=$ -1 .
2. Show that $\forall \sigma, \sigma^{\prime} \in \mathcal{S}_{n}, u_{\sigma} \circ u_{\sigma^{\prime}}=u_{\sigma^{\prime} \circ \sigma}$. Caution! There was a typo in the French original.
3. Show that $\forall \sigma \in \mathcal{S}_{n}$, $\operatorname{det} u_{\sigma}=\varepsilon(\sigma)$ where ε denotes the signature.

Solution of Exercise 9 :

1. Let τ be the transposition which exchanges i and j. The matrix of u_{τ} in the canonical basis of \mathbb{R}^{n} is

$$
\left(\begin{array}{ccccccccccccc}
& & & & i & & \ldots & & j & & & & \\
\mathbf{1} & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & \mathbf{1} & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & \mathbf{1} & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & \mathbf{1} & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 & \mathbf{1} & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & \mathbf{1} & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & \mathbf{1} & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & \mathbf{1} & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & \mathbf{1} & 0 \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & \mathbf{1}
\end{array}\right)
$$

By exchanging the columns i and j of the matrix of u_{τ} one obtains the identity matrix. Therefore $\operatorname{det} u_{\tau}=-\operatorname{det} I=-1$, where I denotes the identity matrix.
2. For any $\sigma, \sigma^{\prime} \in \mathcal{S}_{n}$, one has

$$
u_{\sigma} \circ u_{\sigma^{\prime}}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=u_{\sigma}\left(\begin{array}{c}
x_{\sigma^{\prime}(1)} \\
\vdots \\
x_{\sigma^{\prime}(n)}
\end{array}\right)=\left(\begin{array}{c}
x_{\sigma^{\prime}(\sigma(1))} \\
\vdots \\
x_{\sigma^{\prime}(\sigma(n))}
\end{array}\right)=\left(\begin{array}{c}
x_{\sigma^{\prime} \circ \sigma(1)} \\
\vdots \\
x_{\sigma^{\prime} \circ \sigma(n)}
\end{array}\right)=u_{\sigma^{\prime} \circ \sigma}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

Since the previous equality is satisfied for every $\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ in \mathbb{R}^{n}, it implies that $u_{\sigma} \circ u_{\sigma^{\prime}}=u_{\sigma^{\prime} \circ \sigma}$.
An alternative proof is to check that u_{σ} sends each e_{i} to $e_{\sigma^{-1}(i)}$ (the basis vector whose only nonzero coordinate is the $\sigma^{-1}(i)$-th $)$: hence,

$$
u_{\sigma} \circ u_{\sigma^{\prime}}\left(e_{i}\right)=u_{\sigma}\left(e_{\sigma^{\prime-1}(i)}\right)=e_{\sigma^{-1}\left(\sigma^{\prime-1}(i)\right)}=e_{\left(\sigma^{\prime} \circ \sigma\right)^{-1}(i)}=u_{\sigma^{\prime} \circ \sigma}(i)
$$

3. By 2., the map which associates $u_{\sigma^{-1}}$ to a permutation σ is a group homomorphism from \mathcal{S}_{n} into the group of invertible matrices of size (n, n), because $u_{\sigma^{-1} \circ} u_{\sigma^{\prime-1}}=u_{\sigma^{\prime-1} \circ \sigma^{-1}}=u_{\left(\sigma \circ \sigma^{\prime}\right)^{-1}}$. Consequently, the map which assigns to a permutation σ the number det $u_{\sigma^{-1}}$ is a group homomorphism from \mathcal{S}_{n} into $\{ \pm 1\}$. Since the transpositions generate the group of permutations \mathcal{S}_{n}, two group homomorphisms from \mathcal{S}_{n} to $\{ \pm 1\}$ which coincide on the set of transpositions coincide on \mathcal{S}_{n}. By 1., the group homomorphism from \mathcal{S}_{n} into $\{ \pm 1\}$ which maps σ onto det $u_{\sigma^{-1}}$ coincides with the signature on the set of transpositions, because a transposition is its own inverse. Hence $\forall \sigma \in \mathcal{S}_{n}$, $\operatorname{det} u_{\sigma}=\varepsilon(\sigma)$.

Exercise 10 1. Compute the eigenvalues and eigenvectors of the following matrix

$$
A=\left(\begin{array}{ccc}
0 & 2 & -2 \\
1 & -1 & 2 \\
1 & -3 & 4
\end{array}\right)
$$

2. Compute A^{n} for all $n \in \mathbb{N}$.

Solution of Exercise 10 :

1. One has

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
-\lambda & 2 & -2 \\
1 & -1-\lambda & 2 \\
1 & -3 & 4-\lambda
\end{array}\right|=-\lambda\left|\begin{array}{cc}
-1-\lambda & 2 \\
-3 & 4-\lambda
\end{array}\right|-1\left|\begin{array}{cc}
2 & -2 \\
-3 & 4-\lambda
\end{array}\right|+1\left|\begin{array}{cc}
2 & -2 \\
-1-\lambda & 2
\end{array}\right| \\
=-\lambda^{3}+3 \lambda^{2}-2 \lambda=-\lambda(\lambda-2)(\lambda-1)
\end{gathered}
$$

Therefore the eigenvalues of A are $\lambda_{1}=0, \lambda_{2}=2$ and $\lambda_{3}=1$.
A nontrivial vector in the kernel of A is given by $v_{1}=\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$. Let us find a vector generating the eigenspace associated to $\lambda_{2}=2$. One has

It follows that the vector $v_{2}=\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$ is a basis of the eigenspace associated to $\lambda_{2}=2$. Now one has

$$
A-I=\left(\begin{array}{ccc}
-1 & 2 & -2 \\
1 & -2 & 2 \\
1 & -3 & 3
\end{array}\right)
$$

Consequently the vector $v_{3}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ generates the eigenspace associated to $\lambda_{3}=1$.
2. Denote by f the linear application whose matrix in the canonical basis of \mathbb{R}^{3} is A. The vectors v_{1}, v_{2} and v_{3} form a basis of \mathbb{R}^{3}. In this new basis, the matrix of f is

$$
D=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The relation between A and D is $D=P^{-1} A P$ where $P=\left(\begin{array}{ccc}-1 & -1 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 1\end{array}\right)$. The inverse of P is

$$
P^{-1}=\left(\begin{array}{ccc}
-1 & 1 & -1 \\
0 & -1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Therefore, for $n>0$, we have $A^{n}=\left(P D P^{-1}\right)\left(P D P^{-1}\right) \ldots\left(P D P^{-1}\right)$: cancelling all occurrences of $P^{-1} P=I$ one gets
$A^{n}=P D^{n} P^{-1}=\left(\begin{array}{ccc}-1 & -1 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 1\end{array}\right)\left(\begin{array}{ccc}0^{n} & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 1^{n}\end{array}\right)\left(\begin{array}{ccc}-1 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & 1 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & 2^{n} & -2^{n} \\ 1 & -2^{n}+1 & 2^{n} \\ 1 & -2^{n+1}+1 & 2^{n+1}\end{array}\right)$.

